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CHAPTER 1

Charm++ Quickstart

This section gives a concise overview of running your first Charm++ application.

1.1 Installing Charm++

To download the latest Charm++ release, run:

$ wget https://charm.cs.illinois.edu/distrib/charm-latest.tar.gz
$ tar xzf charm-latest.tar.gz

To download the development version of Charm++, run:

$ git clone https://github.com/UIUC-PPL/charm

To build Charm++, use the following commands:

$ cd charm
$ ./build charm++ netlrts-linux-x86_64 --with-production -j4

This is the recommended version to install Charm++ on Linux systems. For MacOS, substitute “linux” with “darwin”.
For advanced compilation options, please see Section 2.6.1 of the manual.

1.2 Parallel “Hello World” with Charm++

The basic unit of computation in Charm++ is a chare, which is a C++ object. Chares have entry methods that can be
invoked asynchronously. A Charm++ application consists of collections of chares (such as chare arrays) distributed
among the processors of the system.

Each chare has a proxy associated to it, through which other chares can invoke entry methods. This proxy is exposed
through the thisProxy member variable, which can be sent to other chares, allowing them to invoke entry methods on
this chare.
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Each Charm++ application consists of at least two files, a Charm interface (.ci) file, and a normal C++ file. The
interface file describes the parallel interface of the application (such as chares, chare arrays, and entry methods), while
the C++ files implement its behavior. Please see Section 2.2.1 of the manual for more information about the program
structure.

In this section, we present a parallel Hello World example, consisting of the files hello.ci and hello.cpp.

1.2.1 The hello.ci File

The hello.ci file contains a mainchare, which starts and ends execution, and a Hello chare array, whose elements
print the “Hello World” message. Compiling this file creates C++ header files (hello.decl.h and hello.def.h)
that can be included in your C++ files.

mainmodule hello {
mainchare Main {
// Main's entry methods
entry Main(CkArgMsg *m);
entry void done();

};
array [1D] Hello {
// Hello's entry methods
entry Hello();
entry void SayHi();

};
};

1.2.2 The hello.cpp File

The hello.cpp file contains the implementation of the mainchare and chare array declared in the hello.ci file
above.

#include "hello.decl.h" // created from hello.ci file above

/*readonly*/ CProxy_Main mainProxy;
constexpr int nElem = 8;

/*mainchare*/
class Main : public CBase_Main
{
public:

Main(CkArgMsg* m)
{
//Start computation
CkPrintf("Running Hello on %d processors with %d elements.\n", CkNumPes(), nElem);
CProxy_Hello arr = CProxy_Hello::ckNew(nElem); // Create a new chare array with

→˓nElem elements
mainProxy = thisProxy;
arr[0].SayHi(0);

};

void done()
{
// Finish computation
CkPrintf("All done.\n");
CkExit();

(continues on next page)
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(continued from previous page)

};
};

/*array [1D]*/
class Hello : public CBase_Hello
{
public:

Hello() {}

void SayHi()
{
// thisIndex stores the element’s array index
CkPrintf("PE %d says: Hello world from element %d.\n", CkMyPe(), thisIndex);
if (thisIndex < nElem - 1) {

thisProxy[thisIndex + 1].SayHi(); // Pass the hello on
} else {
mainProxy.done(); // We've been around once -- we're done.

}
}

};

#include "hello.def.h" // created from hello.ci file above

1.2.3 Compiling the Example

Charm++ has a compiler wrapper, charmc, to compile Charm++ applications. Please see Section 2.6.2 for more
information about charmc.

$ charm/bin/charmc hello.ci # creates hello.def.h and hello.decl.h
$ charm/bin/charmc hello.cpp -o hello

1.2.4 Running the Example

Charm++ applications are started via charmrun, which is automatically created by the charmc command above.
Please see Section 2.6.3 for more information about charmrun.

To run the application on two processors, use the following command:

$ ./charmrun +p2 ./hello
Charmrun> scalable start enabled.
Charmrun> started all node programs in 1.996 seconds.
Charm++> Running in non-SMP mode: 1 processes (PEs)
Converse/Charm++ Commit ID: v6.9.0-172-gd31997cce
Charm++> scheduler running in netpoll mode.
CharmLB> Load balancer assumes all CPUs are same.
Charm++> Running on 1 hosts (1 sockets x 4 cores x 2 PUs = 8-way SMP)
Charm++> cpu topology info is gathered in 0.000 seconds.
Running Hello on 2 processors with 8 elements.
PE 0 says: Hello world from element 0.
PE 0 says: Hello world from element 1.
PE 0 says: Hello world from element 2.
PE 0 says: Hello world from element 3.
PE 1 says: Hello world from element 4.

(continues on next page)
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(continued from previous page)

PE 1 says: Hello world from element 5.
PE 1 says: Hello world from element 6.
PE 1 says: Hello world from element 7.
All done
[Partition 0][Node 0] End of program

1.3 Where to go From Here

• The tests/charm++/simplearrayhello folder in the Charm++ distribution has a more comprehensive
example, from which the example in this file was derived.

• The main Charm++ manual (https://charm.readthedocs.io/) contains more information about developing and
running Charm++ applications.

• Charm++ has lots of other features, such as chare migration, load balancing, and checkpoint/restart. The main
manual has more information about them.

• AMPI (https://charm.readthedocs.io/en/latest/ampi/manual.html) is an implementation of MPI on top of
Charm++, allowing MPI applications to run on the Charm++ runtime mostly unmodified.

• Charm4py (https://charm4py.readthedocs.io) is a Python package that enables development of Charm++ appli-
cations in Python.
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CHAPTER 2

The Charm++ Parallel Programming System
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* Debugging
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2.1 Basic Concepts

Charm++ is a C++-based parallel programming system, founded on the migratable-objects programming model, and
supported by a novel and powerful adaptive runtime system. It supports both irregular as well as regular applications,
and can be used to specify task-parallelism as well as data parallelism in a single application. It automates dynamic
load balancing for task-parallel as well as data-parallel applications, via separate suites of load-balancing strategies.
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Via its message-driven execution model, it supports automatic latency tolerance, modularity and parallel composition.
Charm++ also supports automatic checkpoint/restart, as well as fault tolerance based on distributed checkpoints.

Charm++ is a production-quality parallel programming system used by multiple applications in science and engi-
neering on supercomputers as well as smaller clusters around the world. Currently the parallel platforms supported by
Charm++ are the IBM BlueGene/Q and OpenPOWER systems, Cray XE, XK, and XC systems, Omni-Path and Infini-
band clusters, single workstations and networks of workstations (including x86 (running Linux, Windows, MacOS)),
etc. The communication protocols and infrastructures supported by Charm++ are UDP, MPI, OFI, UCX, Infiniband,
uGNI, and PAMI. Charm++ programs can run without changing the source on all these platforms. Charm++ programs
can also interoperate with MPI programs (Section 2.3.14). Please see the Installation and Usage section for details
about installing, compiling and running Charm++ programs (Section 2.6.1).

2.1.1 Programming Model

The key feature of the migratable-objects programming model is over-decomposition: The programmer decomposes
the program into a large number of work units and data units, and specifies the computation in terms of creation of
and interactions between these units, without any direct reference to the processor on which any unit resides. This
empowers the runtime system to assign units to processors, and to change the assignment at runtime as necessary.
Charm++ is the main (and early) exemplar of this programming model. AMPI is another example within the Charm++
family of the same model.

2.1.2 Execution Model

A basic unit of parallel computation in Charm++ programs is a chare. A chare is similar to a process, an actor, an
ADA task, etc. At its most basic level, it is just a C++ object. A Charm++ computation consists of a large number
of chares distributed on available processors of the system, and interacting with each other via asynchronous method
invocations. Asynchronously invoking a method on a remote object can also be thought of as sending a “message” to
it. So, these method invocations are sometimes referred to as messages. (besides, in the implementation, the method
invocations are packaged as messages anyway). Chares can be created dynamically.

Conceptually, the system maintains a “work-pool” consisting of seeds for new chares, and messages for existing chares.
The Charm++ runtime system ( Charm RTS) may pick multiple items, non-deterministically, from this pool and exe-
cute them, with the proviso that two different methods cannot be simultaneously executing on the same chare object
(say, on different processors). Although one can define a reasonable theoretical operational semantics of Charm++ in
this fashion, a more practical description of execution is useful to understand Charm++. A Charm++ application’s ex-
ecution is distributed among Processing Elements (PEs), which are OS threads or processes depending on the selected
Charm++ build options. (See section 2.1.4 for a precise description.) On each PE, there is a scheduler operating with
its own private pool of messages. Each instantiated chare has one PE which is where it currently resides. The pool
on each PE includes messages meant for Chares residing on that PE, and seeds for new Chares that are tentatively
meant to be instantiated on that PE. The scheduler picks a message, creates a new chare if the message is a seed (i.e. a
constructor invocation) for a new Chare, and invokes the method specified by the message. When the method returns
control back to the scheduler, it repeats the cycle. I.e. there is no pre-emptive scheduling of other invocations.

When a chare method executes, it may create method invocations for other chares. The Charm Runtime System (RTS)
locates the PE where the targeted chare resides, and delivers the invocation to the scheduler on that PE.

Methods of a chare that can be remotely invoked are called entry methods. Entry methods may take serializable
parameters, or a pointer to a message object. Since chares can be created on remote processors, obviously some
constructor of a chare needs to be an entry method. Ordinary entry methods1 are completely non-preemptive- Charm++
will not interrupt an executing method to start any other work, and all calls made are asynchronous.

Charm++ provides dynamic seed-based load balancing. Thus location (processor number) need not be specified while
creating a remote chare. The Charm RTS will then place the remote chare on a suitable processor. Thus one can

1 “Threaded” or “synchronous” methods are different. But even they do not lead to pre-emption; only to cooperative multi-threading

2.1. Basic Concepts 9



Charm++ Documentation

imagine chare creation as generating only a seed for the new chare, which may take root on some specific processor
at a later time.

Chares can be grouped into collections. The types of collections of chares supported in Charm++ are: chare-arrays,
chare-groups, and chare-nodegroups, referred to as arrays, groups, and nodegroups throughout this manual for brevity.
A Chare-array is a collection of an arbitrary number of migratable chares, indexed by some index type, and mapped
to processors according to a user-defined map group. A group (nodegroup) is a collection of chares, with exactly one
member element on each PE (“node”).

Charm++ does not allow global variables, except readonly variables (see 2.2.2). A chare can normally only access
its own data directly. However, each chare is accessible by a globally valid name. So, one can think of Charm++ as
supporting a global object space.

Every Charm++ program must have at least one mainchare. Each mainchare is created by the system on processor 0
when the Charm++ program starts up. Execution of a Charm++ program begins with the Charm RTS constructing all
the designated mainchares. For a mainchare named X, execution starts at constructor X() or X(CkArgMsg *) which are
equivalent. Typically, the mainchare constructor starts the computation by creating arrays, other chares, and groups. It
can also be used to initialize shared readonly objects.

Charm++ program execution is terminated by the CkExit call. Like the exit system call, CkExit never returns, and
it optionally accepts an integer value to specify the exit code that is returned to the calling shell. If no exit code is
specified, a value of zero (indicating successful execution) is returned. The Charm RTS ensures that no more messages
are processed and no entry methods are called after a CkExit. CkExit need not be called on all processors; it is enough
to call it from just one processor at the end of the computation.

As described so far, the execution of individual Chares is “reactive”: When method A is invoked the chare executes this
code, and so on. But very often, chares have specific life-cycles, and the sequence of entry methods they execute can
be specified in a structured manner, while allowing for some localized non-determinism (e.g. a pair of methods may
execute in any order, but when they both finish, the execution continues in a pre-determined manner, say executing a
3rd entry method). To simplify expression of such control structures, Charm++ provides two methods: the structured
dagger notation (Section 2.2.4), which is the main notation we recommend you use. Alternatively, you may use
threaded entry methods, in combination with futures and sync methods (See 2.3.3). The threaded methods run in
light-weight user-level threads, and can block waiting for data in a variety of ways. Again, only the particular thread
of a particular chare is blocked, while the PE continues executing other chares.

The normal entry methods, being asynchronous, are not allowed to return any value, and are declared with a void
return type. However, the sync methods are an exception to this. They must be called from a threaded method, and so
are allowed to return (certain types of) values.

2.1.3 Proxies and the charm interface file

To support asynchronous method invocation and global object space, the RTS needs to be able to serialize (“marshall”)
the parameters, and be able to generate global “names” for chares. For this purpose, programmers have to declare the
chare classes and the signature of their entry methods in a special “.ci” file, called an interface file. Other than
the interface file, the rest of a Charm++ program consists of just normal C++ code. The system generates several
classes based on the declarations in the interface file, including “Proxy” classes for each chare class. Those familiar
with various component models (such as CORBA) in the distributed computing world will recognize “proxy” to be
a dummy, standin entity that refers to an actual entity. For each chare type, a “proxy” class exists. The methods of
this “proxy” class correspond to the remote methods of the actual class, and act as “forwarders”. That is, when one
invokes a method on a proxy to a remote object, the proxy marshalls the parameters into a message, puts adequate
information about the target chare on the envelope of the message, and forwards it to the remote object. Individual
chares, chare array, groups, node-groups, as well as the individual elements of these collections have a such a proxy.
Multiple methods for obtaining such proxies are described in the manual. Proxies for each type of entity in Charm++
have some differences among the features they support, but the basic syntax and semantics remain the same - that of
invoking methods on the remote object by invoking methods on proxies.

10 Chapter 2. The Charm++ Parallel Programming System
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The following sections provide detailed information about various features of the Charm++ programming system. Part
I, “Basic Usage”, is sufficient for writing full-fledged applications. Note that only the last two chapters of this part
involve the notion of physical processors (cores, nodes, ..), with the exception of simple query-type utilities (Section
2.2.1). We strongly suggest that all application developers, beginners and experts alike, try to stick to the basic
language to the extent possible, and use features from the advanced sections only when you are convinced they are
essential. (They are useful in specific situations; but a common mistake we see when we examine programs written
by beginners is the inclusion of complex features that are not necessary for their purpose. Hence the caution). The
advanced concepts in the Part II of the manual support optimizations, convenience features, and more complex or
sophisticated features.2

2.1.4 Machine Model

At its basic level, Charm++ machine model is very simple: Think of each chare as a separate processor by itself.
The methods of each chare can access its own instance variables (which are all private, at this level), and any global
variables declared as readonly. It also has access to the names of all other chares (the “global object space”), but all
that it can do with that is to send asynchronous remote method invocations towards other chare objects. (Of course,
the instance variables can include as many other regular C++ objects that it “has”; but no chare objects. It can only
have references to other chare objects).

In accordance with this vision, the first part of the manual (up to and including the chapter on load balancing) has
almost no mention of entities with physical meanings (cores, nodes, etc.). The runtime system is responsible for the
magic of keeping closely communicating objects on nearby physical locations, and optimizing communications within
chares on the same node or core by exploiting the physically available shared memory. The programmer does not have
to deal with this at all. The only exception to this pure model in the basic part are the functions used for finding out
which “processor” an object is running on, and for finding how many total processors are there.

However, for implementing lower level libraries, and certain optimizations, programmers need to be aware of proces-
sors. In any case, it is useful to understand how the Charm++ implementation works under the hood. So, we describe
the machine model, and some associated terminology here.

In terms of physical resources, we assume the parallel machine consists of one or more nodes, where a node is a largest
unit over which cache coherent shared memory is feasible (and therefore, the maximal set of cores per which a single
process can run. Each node may include one or more processor chips, with shared or private caches between them.
Each chip may contain multiple cores, and each core may support multiple hardware threads (SMT for example).

Charm++ recognizes two logical entities: a PE (processing element) and a logical node, or simply “node”. In a
Charm++ program, a PE is a unit of mapping and scheduling: each PE has a scheduler with an associated pool of
messages. Each chare is assumed to reside on one PE at a time. A logical node is implemented as an OS process.
In non-SMP mode there is no distinction between a PE and a logical node. Otherwise, a PE takes the form of an OS
thread, and a logical node may contain one or more PEs. Physical nodes may be partitioned into one or more logical
nodes. Since PEs within a logical node share the same memory address space, the Charm++ runtime system optimizes
communication between them by using shared memory. Depending on the runtime command-line parameters, a PE
may optionally be associated with a subset of cores or hardware threads.

A Charm++ program can be launched with one or more (logical) nodes per physical node. For example, on a machine
with a four-core processor, where each core has two hardware threads, common configurations in non-SMP mode
would be one node per core (four nodes/PEs total) or one node per hardware thread (eight nodes/PEs total). In SMP
mode, the most common choice to fully subscribe the physical node would be one logical node containing seven
PEs-one OS thread is set aside per process for network communications. (When built in the “multicore” mode that
lacks network support, a comm thread is unnecessary, and eight PEs can be used in this case. A comm thread is also

2 For a description of the underlying design philosophy please refer to the following papers:

• L. V. Kale and Sanjeev Krishnan, “Charm++: Parallel Programming with Message-Driven Objects”, in “Parallel Programming Using
C++”, MIT Press, 1995.

• L. V. Kale and Sanjeev Krishnan, “Charm++: A Portable Concurrent Object Oriented System Based On C++”, Proceedings of the
Conference on Object Oriented Programming, Systems, Languages and Applications (OOPSLA), September 1993.

2.1. Basic Concepts 11
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omitted when using some high-performance network layers such as PAMI.) Alternatively, one can choose to partition
the physical node into multiple logical nodes, each containing multiple PEs. One example would be three PEs per
logical node and two logical nodes per physical node, again reserving a comm thread per logical node.

It is not a general practice in Charm++ to oversubscribe the underlying physical cores or hardware threads on each
node. In other words, a Charm++ program is usually not launched with more PEs than there are physical cores or
hardware threads allocated to it. More information about these launch time options are provided in Appendix 2.6.3.
And utility functions to retrieve the information about those Charm++ logical machine entities in user programs can
be referred in section 2.2.1.

2.2 Basic Charm++ Programming

2.2.1 Program Structure, Compilation and Utilities

A Charm++ program is essentially a C++ program where some components describe its parallel structure. Sequential
code can be written using any programming technologies that cooperate with the C++ toolchain. This includes C and
Fortran. Parallel entities in the user’s code are written in C++. These entities interact with the Charm++ framework
via inherited classes and function calls.

Charm++ Interface (.ci) Files

All user program components that comprise its parallel interface (such as messages, chares, entry methods, etc.) are
granted this elevated status by declaring them in separate charm++ interface description files. These files have a .ci
suffix and adopt a C++-like declaration syntax with several additional keywords. In some declaration contexts, they
may also contain some sequential C++ source code. Charm++ parses these interface descriptions and generates C++
code (base classes, utility classes, wrapper functions etc.) that facilitates the interaction of the user program’s entities
with the framework. A program may have several interface description files.

Syntax Highlighting of .ci Files

Vim

To enable syntax highlighting of .ci files in Vim, do the following:

$ cp charm/contrib/ci.vim ~/.vim/syntax/.
$ vim ~/.vim/filetype.vim

And paste the following line in that file:

au! BufRead,BufNewFile *.ci set filetype=ci

Sublime Text

Syntax highlighting in Sublime Text (version 3 or newer) can be enabled by installing the Charmci package through
Package Control.

12 Chapter 2. The Charm++ Parallel Programming System
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Emacs

Syntax highlighting in Emacs can be enabled by triggering C++ handling on the .ci file extension by adding the
following line to your .emacs file.

(add-to-list 'auto-mode-alist '("\\.ci\\'" . c++-mode))

Pygments

Pygments supports syntax highlighting of .ci files starting with version 2.4.0, when setting charmci as the highlight-
ing language, or automatically for files with the .ci filename extension.

Modules

The top-level construct in a ci file is a named container for interface declarations called a module. Modules allow
related declarations to be grouped together, and cause generated code for these declarations to be grouped into files
named after the module. Modules cannot be nested, but each ci file can have several modules. Modules are specified
using the keyword module. A module name must be a valid C++ identifier.

module myFirstModule {
// Parallel interface declarations go here
...

};

Generated Files

Each module present in a ci file is parsed to generate two files. The basename of these files is the same as the
name of the module and their suffixes are .decl.h and .def.h. For e.g., the module defined earlier will produce the
files “myFirstModule.decl.h” and “myFirstModule.def.h”. As the suffixes indicate, they contain the declarations and
definitions respectively, of all the classes and functions that are generated based on the parallel interface description.

We recommend that the header file containing the declarations (decl.h) be included at the top of the files that contain
the declarations or definitions of the user program entities mentioned in the corresponding module. The def.h is not
actually a header file because it contains definitions for the generated entities. To avoid multiple definition errors, it
should be compiled into just one object file. A convention we find useful is to place the def.h file at the bottom of the
source file (.C, .cpp, .cc etc.) which includes the definitions of the corresponding user program entities.

It should be noted that the generated files have no dependence on the name of the ci file, but only on the names of the
modules. This can make automated dependency-based build systems slightly more complicated.

Module Dependencies

A module may depend on the parallel entities declared in another module. It can express this dependency using the
extern keyword. extern ed modules do not have to be present in the same ci file.

module mySecondModule {

// Entities in this module depend on those declared in another module
extern module myFirstModule;

// More parallel interface declarations

(continues on next page)
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(continued from previous page)

...
};

The extern keyword places an include statement for the decl.h file of the extern ed module in the generated code
of the current module. Hence, decl.h files generated from extern ed modules are required during the compilation of
the source code for the current module. This is usually required anyway because of the dependencies between user
program entities across the two modules.

The Main Module and Reachable Modules

Charm++ software can contain several module definitions from several independently developed libraries / compo-
nents. However, the user program must specify exactly one module as containing the starting point of the program’s
execution. This module is called the mainmodule. Every Charm++ program has to contain precisely one mainmodule.

All modules that are “reachable” from the mainmodule via a chain of extern ed module dependencies are included in
a Charm++ program. More precisely, during program execution, the Charm++ runtime system will recognize only the
user program entities that are declared in reachable modules. The decl.h and def.h files may be generated for other
modules, but the runtime system is not aware of entities declared in such unreachable modules.

module A {
...

};

module B {
extern module A;
...

};

module C {
extern module A;
...

};

module D {
extern module B;
...

};

module E {
...

};

mainmodule M {
extern module C;
extern module D;
// Only modules A, B, C and D are reachable and known to the runtime system
// Module E is unreachable via any chain of externed modules
...

};

Including other headers

There can be occasions where code generated from the module definitions requires other declarations / definitions
in the user program’s sequential code. Usually, this can be achieved by placing such user code before the point of

14 Chapter 2. The Charm++ Parallel Programming System
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inclusion of the decl.h file. However, this can become laborious if the decl.h file has to included in several places.
Charm++ supports the keyword include in ci files to permit the inclusion of any header directly into the generated
decl.h files.

module A {
include "myUtilityClass.h"; //< Note the semicolon
// Interface declarations that depend on myUtilityClass
...

};

module B {
include "someUserTypedefs.h";
// Interface declarations that require user typedefs
...

};

module C {
extern module A;
extern module B;
// The user includes will be indirectly visible here too
...

};

The main() function

The Charm++ framework implements its own main function and retains control until the parallel execution environ-
ment is initialized and ready for executing user code. Hence, the user program must not define a main() function.
Control enters the user code via the mainchare of the mainmodule. This will be discussed in further detail in 2.1.2.

Using the facilities described thus far, the parallel interface declarations for a Charm++ program can be spread across
multiple ci files and multiple modules, permitting good control over the grouping and export of parallel API. This aids
the encapsulation of parallel software.

Compiling Charm++ Programs

Charm++ provides a compiler-wrapper called charmc that handles all ci, C, C++ and Fortran source files that are part
of a user program. Users can invoke charmc to parse their interface descriptions, compile source code and link objects
into binaries. It also links against the appropriate set of charm framework objects and libraries while producing a
binary. charmc and its functionality is described in 2.6.2.

Utility Functions

The following calls provide basic rank information and utilities useful when running a Charm++ program.

void CkAssert(int expression) Aborts the program if expression is 0.

void CkAbort(const char *format, ...) Causes the program to abort, printing the given error message.
Supports printf-style formatting. This function never returns.

void CkExit() This call informs the Charm RTS that computation on all processors should terminate. This routine
never returns, so any code after the call to CkExit() inside the function that calls it will not execute. Other processors
will continue executing until they receive notification to stop, so it is a good idea to ensure through synchronization
that all useful work has finished before calling CkExit().

double CkWallTimer() Returns the elapsed wall time since the start of execution.
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Information about Logical Machine Entities

As described in section 2.1.4, Charm++ recognizes two logical machine entities: “node” and PE (processing element).
The following functions provide basic information about such logical machine that a Charm++ program runs on. PE
and “node” are numbered starting from zero.

int CkNumPes() Returns the total number of PEs across all nodes.

int CkMyPe() Returns the index of the PE on which the call was made.

int CkNumNodes() Returns the total number of logical Charm++ nodes.

int CkMyNode() Returns the index of the “node” on which the call was made.

int CkMyRank() Returns the rank number of the PE on a “node” on which the call was made. PEs within a “node”
are also ranked starting from zero.

int CkNodeFirst(int nd) Returns the index of the first PE on the logical node 𝑛𝑑.

int CkNodeSize(int nd) Returns the number of PEs on the logical node 𝑛𝑑 on which the call was made.

int CkNodeOf(int pe) Returns the “node” number that PE 𝑝𝑒 belongs to.

int CkRankOf(int pe) Returns the rank of the given PE within its node.

Terminal I/O

Charm++ provides both C and C++ style methods of doing terminal I/O.

In place of C-style printf and scanf, Charm++ provides CkPrintf and CkScanf. These functions have interfaces that
are identical to their C counterparts, but there are some differences in their behavior that should be mentioned.

Charm++ also supports all forms of printf, cout, etc. in addition to the special forms shown below. The special forms
below are still useful, however, since they obey well-defined (but still lax) ordering requirements.

int CkPrintf(format [, arg]*) This call is used for atomic terminal output. Its usage is similar to
printf in C. However, CkPrintf has some special properties that make it more suited for parallel programming.
CkPrintf routes all terminal output to a single end point which prints the output. This guarantees that the output for
a single call to CkPrintf will be printed completely without being interleaved with other calls to CkPrintf. Note that
CkPrintf is implemented using an asynchronous send, meaning that the call to CkPrintf returns immediately after the
message has been sent, and most likely before the message has actually been received, processed, and displayed. As
such, there is no guarantee of order in which the output for concurrent calls to CkPrintf is printed. Imposing such an
order requires proper synchronization between the calls to CkPrintf in the parallel application.

void CkError(format [, arg]*)) Like CkPrintf, but used to print error messages on stderr.

int CkScanf(format [, arg]*) This call is used for atomic terminal input. Its usage is similar to scanf in
C. A call to CkScanf, unlike CkPrintf, blocks all execution on the processor it is called from, and returns only after all
input has been retrieved.

For C++ style stream-based I/O, Charm++ offers ckout and ckerr in place of cout and cerr. The C++ streams
and their Charm++ equivalents are related in the same manner as printf and scanf are to CkPrintf and CkScanf.
The Charm++ streams are all used through the same interface as the C++ streams, and all behave in a slightly different
way, just like C-style I/O.

2.2.2 Basic Syntax
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Entry Methods

Member functions in the user program which function as entry methods have to be defined in public scope within the
class definition. Entry methods typically do not return data and have a “void” return type. An entry method with the
same name as its enclosing class is a constructor entry method and is used to create or spawn chare objects during
execution. Class member functions are annotated as entry methods by declaring them in the interface file as:

entry void Entry1(parameters);

Parameters is either a list of serializable parameters, (e.g., “int i, double x”), or a message type (e.g., “MyMessage
*msg”). Since parameters get marshalled into a message before being sent across the network, in this manual we use
“message” to mean either a message type or a set of marshalled parameters.

Messages are lower level, more efficient, more flexible to use than parameter marshalling.

For example, a chare could have this entry method declaration in the interface (.ci) file:

entry void foo(int i,int k);

Then invoking foo(2,3) on the chare proxy will eventually invoke foo(2,3) on the chare object.

Since Charm++ runs on distributed memory machines, we cannot pass an array via a pointer in the usual C++ way.
Instead, we must specify the length of the array in the interface file, as:

entry void bar(int n,double arr[n]);

Since C++ does not recognize this syntax, the array data must be passed to the chare proxy as a simple pointer. The
array data will be copied and sent to the destination processor, where the chare will receive the copy via a simple
pointer again. The remote copy of the data will be kept until the remote method returns, when it will be freed. This
means any modifications made locally after the call will not be seen by the remote chare; and the remote chare’s
modifications will be lost after the remote method returns- Charm++ always uses call-by-value, even for arrays and
structures.

This also means the data must be copied on the sending side, and to be kept must be copied again at the receive side.
Especially for large arrays, this is less efficient than messages, as described in the next section.

Array parameters and other parameters can be combined in arbitrary ways, as:

entry void doLine(float data[n],int n);
entry void doPlane(float data[n*n],int n);
entry void doSpace(int n,int m,int o,float data[n*m*o]);
entry void doGeneral(int nd,int dims[nd],float data[product(dims,nd)]);

The array length expression between the square brackets can be any valid C++ expression, including a fixed constant,
and may depend in any manner on any of the passed parameters or even on global functions or global data. The array
length expression is evaluated exactly once per invocation, on the sending side only. Thus executing the doGeneral
method above will invoke the (user-defined) product function exactly once on the sending processor.

Marshalling User-Defined Structures and Classes

The marshalling system uses the pup framework to copy data, meaning every user class that is marshalled needs either
a pup routine, a “PUPbytes” declaration, or a working operator|. See the PUP description in Section 2.2.5 for more
details on these routines.

Any user-defined types in the argument list must be declared before including the “.decl.h” file. Any user-defined
types must be fully defined before the entry method declaration that consumes it. This is typically done by including
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the header defining the type in the .ci file. Alternatively, one may define it before including the .decl.h file. As
usual in C, it is often dramatically more efficient to pass a large structure by reference than by value.

As an example, refer to the following code from examples/charm++/PUP/HeapPUP:

// In HeapObject.h:

class HeapObject {
public:
int publicInt;

// ... other methods ...

void pup(PUP::er &p) {
// remember to pup your superclass if there is one
p|publicInt;
p|privateBool;
if (p.isUnpacking())

data = new float[publicInt];
PUParray(p, data, publicInt);

}

private:
bool privateBool;
float *data;

};

// In SimplePup.ci:

mainmodule SimplePUP {
include "HeapObject.h";

// ... other Chare declarations ...

array [1D] SimpleArray{
entry SimpleArray();
entry void acceptData(HeapObject &inData);

};
};

// In SimplePup.h:

#include "SimplePUP.decl.h"

// ... other definitions ...

class SimpleArray : public CBase_SimpleArray {
public:
void acceptData(HeapObject &inData) {
// ... code using marshalled parameter ...

}
};

// In SimplePup.C:

#include "SimplePUP.h"

main::main(CkArgMsg *m)

(continues on next page)
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(continued from previous page)

{
// normal object construction
HeapObject exampleObject(... parameters ...);

// normal chare array construction
CProxy_SimpleArray simpleProxy = CProxy_SimpleArray::ckNew(30);

// pass object to remote method invocation on the chare array
simpleProxy[29].acceptData(exampleObject);

}

#include "SimplePUP.def.h"

Chare Objects

Chares are concurrent objects with methods that can be invoked remotely. These methods are known as entry methods.
All chares must have a constructor that is an entry method, and may have any number of other entry methods. All
chare classes and their entry methods are declared in the interface (.ci) file:

chare ChareType
{

entry ChareType(parameters1);
entry void EntryMethodName(parameters2);

};

Although it is declared in an interface file, a chare is a C++ object and must have a normal C++ implementation
(definition) in addition. A chare class ChareType must inherit from the class CBase_ChareType, which is a
special class that is generated by the Charm++ translator from the interface file. Note that C++ namespace constructs
can be used in the interface file, as demonstrated in examples/charm++/namespace.

To be concrete, the C++ definition of the chare above might have the following definition in a .h file:

class ChareType : public CBase_ChareType {
// Data and member functions as in C++
public:

ChareType(parameters1);
void EntryMethodName2(parameters2);

};

Each chare encapsulates data associated with medium-grained units of work in a parallel application. Chares can
be dynamically created on any processor; there may be thousands of chares on a processor. The location of a chare
is usually determined by the dynamic load balancing strategy. However, once a chare commences execution on a
processor, it does not migrate to other processors3. Chares do not have a default “thread of control”: the entry methods
in a chare execute in a message driven fashion upon the arrival of a message4.

The entry method definition specifies a function that is executed without interruption when a message is received and
scheduled for processing. Only one message per chare is processed at a time. Entry methods are defined exactly
as normal C++ function members, except that they must have the return value void (except for the constructor entry
method which may not have a return value, and for a synchronous entry method, which is invoked by a threaded
method in a remote chare). Each entry method can either take no arguments, take a list of arguments that the runtime
system can automatically pack into a message and send (see section 2.2.2), or take a single argument that is a pointer
to a Charm++ message (see section 2.3.1).

3 Except when it is part of an array.
4 Threaded methods augment this behavior since they execute in a separate user-level thread, and thus can block to wait for data.
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A chare’s entry methods can be invoked via proxies (see section 2.1.3). Proxies to a chare of type chareType have
type CProxy_chareType. By inheriting from the CBase parent class, each chare gets a thisProxy member
variable, which holds a proxy to itself. This proxy can be sent to other chares, allowing them to invoke entry methods
on this chare.

Chare Creation

Once you have declared and defined a chare class, you will want to create some chare objects to use. Chares are
created by the ckNew method, which is a static method of the chare’s proxy class:

CProxy_chareType::ckNew(parameters, int destPE);

The parameters correspond to the parameters of the chare’s constructor. Even if the constructor takes several
arguments, all of the arguments should be passed in order to ckNew. If the constructor takes no arguments, the
parameters are omitted. By default, the new chare’s location is determined by the runtime system. However, this can
be overridden by passing a value for destPE, which specifies the PE where the chare will be created.

The chare creation method deposits the seed for a chare in a pool of seeds and returns immediately. The chare will
be created later on some processor, as determined by the dynamic load balancing strategy (or by destPE). When a
chare is created, it is initialized by calling its constructor entry method with the parameters specified by ckNew.

Suppose we have declared a chare class C with a constructor that takes two arguments, an int and a double.

1. This will create a new chare of type C on any processor and return a proxy to that chare:

CProxy_C chareProxy = CProxy_C::ckNew(1, 10.0);

2. This will create a new chare of type C on processor destPE and return a proxy to that chare:

CProxy_C chareProxy = CProxy_C::ckNew(1, 10.0, destPE);

For an example of chare creation in a full application, see examples/charm++/fib in the Charm++ software
distribution, which calculates Fibonacci numbers in parallel.

Method Invocation on Chares

A message may be sent to a chare through a proxy object using the notation:

chareProxy.EntryMethod(parameters)

This invokes the entry method EntryMethod on the chare referred to by the proxy chareProxy. This call is asynchronous
and non-blocking; it returns immediately after sending the message.

Local Access

You can get direct access to a local chare using the proxy’s ckLocal method, which returns an ordinary C++ pointer to
the chare if it exists on the local processor, and NULL otherwise.

C *c=chareProxy.ckLocal();
if (c==NULL) {

// object is remote; send message
} else {

// object is local; directly use members and methods of c
}
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Read-only Data

Since Charm++ does not allow global variables, it provides a special mechanism for sharing data amongst all objects.
Read-only variables of simple data types or compound data types including messages and arrays are used to share
information that is obtained only after the program begins execution and does not change after they are initialized in
the dynamic scope of the main function of the mainchare. They are broadcast to every Charm++ Node (process) by
the Charm++ runtime, and can be accessed in the same way as C++ “global” variables on any process. Compound
data structures containing pointers can be made available as read-only variables using read-only messages(see section
2.3.1) or read-only arrays(see section 2.2.3). Note that memory has to be allocated for read-only messages by using
new to create the message in the main function of the mainchare.

Read-only variables are declared by using the type modifier readonly, which is similar to const in C++. Read-only
data is specified in the .ci file (the interface file) as:

readonly Type ReadonlyVarName;

The variable ReadonlyVarName is declared to be a read-only variable of type Type. Type must be a single token and
not a type expression.

readonly message MessageType *ReadonlyMsgName;

The variable ReadonlyMsgName is declared to be a read-only message of type MessageType. Pointers are not allowed
to be readonly variables unless they are pointers to message types. In this case, the message will be initialized on every
PE.

readonly Type ReadonlyArrayName [arraysize];

The variable ReadonlyArrayName is declared to be a read-only array of type Type with arraysize elements. Type must
be a single token and not a type expression. The value of arraysize must be known at compile time.

Read-only variables must be declared either as global or as public class static data in the C/C++ implementation files,
and these declarations have the usual form:

Type ReadonlyVarName;
MessageType *ReadonlyMsgName;
Type ReadonlyArrayName [arraysize];

Similar declarations preceded by extern would appear in the .h file.

Note: The current Charm++ translator cannot prevent assignments to read-only variables. The user must make sure
that no assignments occur in the program outside of the mainchare constructor.

For concrete examples for using read-only variables, please refer to examples such as examples/charm++/array
and examples/charm++/gaussSeidel3D.

Users can get the same functionality of readonly variables by making such variables members of Charm++ Node
Group objects and constructing the Node Group in the mainchare’s main routine.

2.2.3 Chare Arrays

Chare arrays are arbitrarily-sized, possibly-sparse collections of chares that are distributed across the processors.
The entire array has a globally unique identifier of type CkArrayID, and each element has a unique index of type
CkArrayIndex. A CkArrayIndex can be a single integer (i.e. a one-dimensional array), several integers (i.e. a multi-
dimensional array), or an arbitrary string of bytes (e.g. a binary tree index).

Array elements can be dynamically created and destroyed on any PE, migrated between PEs, and messages for the
elements will still arrive properly. Array elements can be migrated at any time, allowing arrays to be efficiently load
balanced. A chare array (or a subset of array elements) can receive a broadcast/multicast or contribute to a reduction.
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An example program can be found here: examples/charm++/array.

Declaring a One-dimensional Array

You can declare a one-dimensional (1D) chare array as:

//In the .ci file:
array [1D] A {

entry A(parameters1);
entry void someEntry(parameters2);

};

Array elements extend the system class CBase_ClassName, inheriting several fields:

• thisProxy: the proxy to the entire chare array that can be indexed to obtain a proxy to a specific array element
(e.g. for a 1D chare array thisProxy[10]; for a 2D chare array thisProxy(10, 20))

• thisArrayID: the array’s globally unique identifier

• thisIndex: the element’s array index (an array element can obtain a proxy to itself like this thisProxy[thisIndex])

class A : public CBase_A {
public:
A(parameters1);

void someEntry(parameters2);
};

Note that A must have a migration constructor if it is to be migratable. The migration constructor is typically empty:

//In the .C file:
A::A(void)
{

//... constructor code ...
}

A::someEntry(parameters2)
{

// ... code for someEntry ...
}

See the section 2.2.5 on migratable array elements for more information on the migration constructor that takes Ck-
MigrateMessage * as the argument.

Declaring Multi-dimensional Arrays

Charm++ supports multi-dimensional or user-defined indices. These array types can be declared as:

//In the .ci file:
array [1D] ArrayA { entry ArrayA(); entry void e(parameters);}
array [2D] ArrayB { entry ArrayB(); entry void e(parameters);}
array [3D] ArrayC { entry ArrayC(); entry void e(parameters);}
array [4D] ArrayD { entry ArrayD(); entry void e(parameters);}
array [5D] ArrayE { entry ArrayE(); entry void e(parameters);}
array [6D] ArrayF { entry ArrayF(); entry void e(parameters);}
array [Foo] ArrayG { entry ArrayG(); entry void e(parameters);}
array [Bar<3>] ArrayH { entry ArrayH(); entry void e(parameters);}
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The declaration of ArrayG expects an array index of type CkArrayIndexFoo, which must be defined before including
the .decl.h file (see section 2.3.4 on user-defined array indices for more information).

//In the .h file:
class ArrayA : public CBase_ArrayA { public: ArrayA(){} ...};
class ArrayB : public CBase_ArrayB { public: ArrayB(){} ...};
class ArrayC : public CBase_ArrayC { public: ArrayC(){} ...};
class ArrayD : public CBase_ArrayD { public: ArrayD(){} ...};
class ArrayE : public CBase_ArrayE { public: ArrayE(){} ...};
class ArrayF : public CBase_ArrayF { public: ArrayF(){} ...};
class ArrayG : public CBase_ArrayG { public: ArrayG(){} ...};
class ArrayH : public CBase_ArrayH { public: ArrayH(){} ...};

The fields in thisIndex are different depending on the dimensionality of the chare array:

• 1D array: thisIndex

• 2D array (𝑥,𝑦): thisIndex.x, thisIndex.y

• 3D array (𝑥,𝑦,𝑧): thisIndex.x, thisIndex.y, thisIndex.z

• 4D array (𝑤,𝑥,𝑦,𝑧): thisIndex.w, thisIndex.x, thisIndex.y, thisIndex.z

• 5D array (𝑣,𝑤,𝑥,𝑦,𝑧): thisIndex.v, thisIndex.w, thisIndex.x, thisIndex.y, thisIndex.z

• 6D array (𝑥1,𝑦1,𝑧1,𝑥2,𝑦2,𝑧2): thisIndex.x1, thisIndex.y1, thisIndex.z1, thisIndex.x2, thisIndex.y2, thisIndex.z2

• Foo array: thisIndex

• Bar<3> array: thisIndex

Creating an Array

An array is created using the CProxy_Array::ckNew routine, which must be called from PE 0. To create an array from
any PE, asynchronous array creation using a callback can be used. See section 2.3.4 for asynchronous array creation.
CProxy_Array::ckNew returns a proxy object, which can be kept, copied, or sent in messages. The following creates
a 1D array containing elements indexed (0, 1, . . . , dimX-1):

CProxy_ArrayA a1 = CProxy_ArrayA::ckNew(params, dimX);

Likewise, a dense multidimensional array can be created by passing the extents at creation time to ckNew.

CProxy_ArrayB a2 = CProxy_ArrayB::ckNew(params, dimX, dimY);
CProxy_ArrayC a3 = CProxy_ArrayC::ckNew(params, dimX, dimY, dimZ);
CProxy_ArrayD a4 = CProxy_ArrayC::ckNew(params, dimW, dimX, dimY, dimZ);
CProxy_ArrayE a5 = CProxy_ArrayC::ckNew(params, dimV, dimW, dimX, dimY, dimZ);
CProxy_ArrayF a6 = CProxy_ArrayC::ckNew(params, dimX1, dimY1, dimZ1, dimX2, dimY2,
→˓dimZ2);

For user-defined arrays, this functionality cannot be used. The array elements must be inserted individually as de-
scribed in section 2.3.4.

During creation, the constructor is invoked on each array element. For more options when creating the array, see
section 2.3.4.

Entry Method Invocation

To obtain a proxy to a specific element in chare array, the chare array proxy (e.g. thisProxy) must be indexed by the
appropriate index call depending on the dimensionality of the array:
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• 1D array, to obtain a proxy to element 𝑖: thisProxy[𝑖] or thisProxy(𝑖)

• 2D array, to obtain a proxy to element (𝑖, 𝑗): thisProxy(𝑖,𝑗)

• 3D array, to obtain a proxy to element (𝑖, 𝑗, 𝑘): thisProxy(𝑖,𝑗,𝑘)

• 4D array, to obtain a proxy to element (𝑖, 𝑗, 𝑘, 𝑙): thisProxy(𝑖,𝑗,𝑘,𝑙)

• 5D array, to obtain a proxy to element (𝑖, 𝑗, 𝑘, 𝑙,𝑚): thisProxy(𝑖,𝑗,𝑘,𝑙,𝑚)

• 6D array, to obtain a proxy to element (𝑖, 𝑗, 𝑘, 𝑙,𝑚, 𝑛): thisProxy(𝑖,𝑗,𝑘,𝑙,𝑚,𝑛)

• User-defined array, to obtain a proxy to element 𝑖: thisProxy[𝑖] or thisProxy(𝑖)

To send a message to an array element, index the proxy and call the method name:

a1[i].doSomething(parameters);
a3(x,y,z).doAnother(parameters);
aF[CkArrayIndexFoo(...)].doAgain(parameters);

You may invoke methods on array elements that have not yet been created. The Charm++ runtime system will buffer
the message until the element is created.5

Messages are not guaranteed to be delivered in order. For instance, if a method is invoked on method A and then
method B; it is possible that B is executed before A.

a1[i].A();
a1[i].B();

Messages sent to migrating elements will be delivered after the migrating element arrives on the destination PE. It is
an error to send a message to a deleted array element.

Broadcasts on Chare Arrays

To broadcast a message to all the current elements of an array, simply omit the index (invoke an entry method on the
chare array proxy):

a1.doIt(parameters); //<- invokes doIt on each array element

The broadcast message will be delivered to every existing array element exactly once. Broadcasts work properly even
with ongoing migrations, insertions, and deletions.

Reductions on Chare Arrays

A reduction applies a single operation (e.g. add, max, min, . . . ) to data items scattered across many processors and
collects the result in one place. Charm++ supports reductions over the members of an array or group.

The data to be reduced comes from a call to the member contribute method:

void contribute(int nBytes, const void *data, CkReduction::reducerType type);

This call contributes nBytes bytes starting at data to the reduction type (see Section 2.2.3). Unlike sending a message,
you may use data after the call to contribute. All members of the chare array or group must call contribute, and all of
them must use the same reduction type.

For example, if we want to sum each array/group member’s single integer myInt, we would use:
5 However, the element must eventually be created.
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// Inside any member method
int myInt=get_myInt();
contribute(sizeof(int),&myInt,CkReduction::sum_int);

The built-in reduction types (see below) can also handle arrays of numbers. For example, if each element of a chare
array has a pair of doubles forces[2], the corresponding elements of which are to be added across all elements, from
each element call:

double forces[2]=get_my_forces();
contribute(2*sizeof(double),forces,CkReduction::sum_double);

Note that since C++ arrays (like forces[2]) are already pointers, we don’t use &forces.

A slightly simpler interface is available for std::vector<T>, since the class determines the size and count of the
underlying type:

CkCallback cb(...);
vector<double> forces(2);
get_my_forces(forces);
contribute(forces, CkReduction::sum_double, cb);

Either of these will result in a double array of 2 elements, the first of which contains the sum of all forces[0] values,
with the second element holding the sum of all forces[1] values of the chare array elements.

Typically the client entry method of a reduction takes a single argument of type CkReductionMsg (see Section 2.3.8).
However, by giving an entry method the reductiontarget attribute in the .ci file, you can instead use entry methods
that take arguments of the same type as specified by the contribute call. When creating a callback to the reduction
target, the entry method index is generated by CkReductionTarget(ChareClass, method_name) instead
of CkIndex_ChareClass::method_name(...). For example, the code for a typed reduction that yields an
int, would look like this:

// In the .ci file...
entry [reductiontarget] void done(int result);

// In some .C file:
// Create a callback that invokes the typed reduction client
// driverProxy is a proxy to the chare object on which
// the reduction target method "done" is called upon completion
// of the reduction
CkCallback cb(CkReductionTarget(Driver, done), driverProxy);

// Contribution to the reduction...
contribute(sizeof(int), &intData, CkReduction::sum_int, cb);

// Definition of the reduction client...
void Driver::done(int result)
{

CkPrintf("Reduction value: %d", result);
}

This will also work for arrays of data elements(entry [reductiontarget] void done(int n, int
result[n])), and for any user-defined type with a PUP method (see 2.2.5). If you know that the reduction will
yield a particular number of elements, say 3 ints, you can also specify a reduction target which takes 3 ints and it
will be invoked correctly.

Reductions do not have to specify commutative-associative operations on data; they can also be used to signal the fact
that all array/group members have reached a certain synchronization point. In this case, a simpler version of contribute
may be used:
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contribute();

In all cases, the result of the reduction operation is passed to the reduction client. Many different kinds of reduction
clients can be used, as explained in Section 2.3.8.

Please refer to examples/charm++/reductions/typed_reduction for a working example of reductions
in Charm++.

Note that the reduction will complete properly even if chare array elements are migrated or deleted during the reduc-
tion. Additionally, when you create a new chare array element, it is expected to contribute to the next reduction not
already in progress on that processor.

Built-in Reduction Types

Charm++ includes several built-in reduction types, used to combine individual contributions. Any of them may be
passed as an argument of type CkReduction::reducerType to contribute.

The first four operations (sum, product, max, and min) work on char, short, int, long, long long,
float, or double data as indicated by the suffix. The logical reductions (and, or) only work on bool and in-
teger data. All the built-in reductions work on either single numbers (pass a pointer) or arrays- just pass the correct
number of bytes to contribute.

1. CkReduction::nop : no operation performed.

2. CkReduction::sum_char, sum_short, sum_int, sum_long, sum_long_long, sum_uchar, sum_ushort, sum_uint,
sum_ulong, sum_ulong_long, sum_float, sum_double : the result will be the sum of the given numbers.

3. CkReduction::product_char, product_short, product_int, product_long, product_long_long, product_uchar,
product_ushort, product_uint, product_ulong, product_ulong_long, product_float, product_double : the result
will be the product of the given numbers.

4. CkReduction::max_char, max_short, max_int, max_long, max_long_long, max_uchar, max_ushort, max_uint,
max_ulong, max_ulong_long, max_float, max_double : the result will be the largest of the given numbers.

5. CkReduction::min_char, min_short, min_int, min_long, min_long_long, min_uchar, min_ushort, min_uint,
min_ulong, min_ulong_long, min_float, min_double : the result will be the smallest of the given numbers.

6. CkReduction::logical_and_bool, logical_and_int : the result will be the logical AND of the given values.

7. CkReduction::logical_or_bool, logical_or_int : the result will be the logical OR of the given values.

8. CkReduction::logical_xor_bool, logical_xor_int : the result will be the logical XOR of the given values.

9. CkReduction::bitvec_and_bool, bitvec_and_int : the result will be the bitvector AND of the given values.

10. CkReduction::bitvec_or_bool, bitvec_or_int : the result will be the bitvector OR of the given values.

11. CkReduction::bitvec_xor_bool, bitvec_xor_int : the result will be the bitvector XOR of the given values.

12. CkReduction::set : the result will be a verbatim concatenation of all the contributed data, separated into CkRe-
duction::setElement records. The data contributed can be of any length, and can vary across array elements or
reductions. To extract the data from each element, see the description below.

13. CkReduction::concat : the result will be a byte-by-byte concatenation of all the contributed data. The contributed
elements are not delimiter-separated.

14. CkReduction::random : the result will be a single randomly selected value of all of the contributed values.

15. CkReduction::statistics : returns a CkReduction::statisticsElement struct, containing summary statistics of the
contributed data. Specifically, the struct contains the following fields: int count, double mean, and double m2,
and the following functions: double variance() and double stddev().
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CkReduction::set returns a collection of CkReduction::setElement objects, one per contribution. This class has the
definition:

class CkReduction::setElement
{
public:

int dataSize; //The length of the `data' array in bytes.
char data[1]; //A place holder that marks the start of the data array.
CkReduction::setElement *next(void);

};

Example: Suppose you would like to contribute 3 integers from each array element. In the reduction method you
would do the following:

void ArrayClass::methodName (CkCallback &cb)
{

int result[3];
result[0] = 1; // Copy the desired values into the result.
result[1] = 2;
result[2] = 3;
// Contribute the result to the reductiontarget cb.
contribute(3*sizeof(int), result, CkReduction::set, cb);

}

Inside the reduction’s target method, the contributions can be accessed by using the
CkReduction::setElement->next() iterator.

void SomeClass::reductionTargetMethod (CkReductionMsg *msg)
{

// Get the initial element in the set.
CkReduction::setElement *current = (CkReduction::setElement*) msg->getData();
while(current != NULL) // Loop over elements in set.
{
// Get the pointer to the packed int's.
int *result = (int*) &current->data;
// Do something with result.
current = current->next(); // Iterate.

}
}

The reduction set order is undefined. You should add a source field to the contributed elements if you need to know
which array element gave a particular contribution. Additionally, if the contributed elements are of a complex data
type, you will likely have to supply code for serializing/deserializing them. Consider using the PUP interface (Section
2.2.5) to simplify your object serialization needs.

If the outcome of your reduction is dependent on the order in which data elements are processed, or if your data
is just too heterogeneous to be handled elegantly by the predefined types and you don’t want to undertake multiple
reductions, you can use a tuple reduction or define your own custom reduction type.

Tuple reductions allow performing multiple different reductions in the same message. The reductions can be on the
same or different data, and the reducer type for each reduction can be set independently as well. The contributions
that make up a single tuple reduction message are all reduced in the same order as each other. As an example, a chare
array element can contribute to a gatherv-like operation using a tuple reduction that consists of two set reductions.

int tupleSize = 2;
CkReduction::tupleElement tupleRedn[] = {

CkReduction::tupleElement(sizeof(int), &thisIndex, CkReduction::set),
CkReduction::tupleElement(sizeData, data, CkReduction::set)

(continues on next page)
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};
CkReductionMsg* msg = CkReductionMsg::buildFromTuple(tupleRedn, tupleSize);
CkCallback allgathervCB(CkIndex_Foo::allgathervResult(0), thisProxy);
msg->setCallback(allgathervCB);
contribute(msg);

Note that CkReduction::tupleElement only holds pointers to the data that will make up the reduction mes-
sage, therefore any local variables used must remain in scope until CkReductionMsg::buildFromTuple com-
pletes.

The result of this reduction is a single CkReductionMsg that can be processed as multiple reductions:

void Foo::allgathervResult (CkReductionMsg* msg)
{

int numReductions;
CkReduction::tupleElement* results;

msg->toTuple(&results, &numReductions);
CkReduction::setElement* currSrc = (CkReduction::setElement*)results[0].data;
CkReduction::setElement* currData = (CkReduction::setElement*)results[1].data;

// ... process currSrc and currData

delete [] results;
}

See the next section (Section 2.3.8) for details on custom reduction types.

Destroying Array Elements

To destroy an array element - detach it from the array, call its destructor, and release its memory-invoke its Array
destroy method, as:

a1[i].ckDestroy();

Note that this method can also be invoked remotely i.e. from a process different from the one on which the array
element resides. You must ensure that no messages are sent to a deleted element. After destroying an element, you
may insert a new element at its index.

2.2.4 Structured Control Flow: Structured Dagger

Charm++ is based on the message-driven parallel programming paradigm. In contrast to many other approaches,
Charm++ programmers encode entry points to their parallel objects, but do not explicitly wait (i.e. block) on the
runtime to indicate completion of posted ‘receive’ requests. Thus, a Charm++ object’s overall flow of control can end
up fragmented across a number of separate methods, obscuring the sequence in which code is expected to execute.
Furthermore, there are often constraints on when different pieces of code should execute relative to one another, related
to data and synchronization dependencies.

Consider one way of expressing these constraints using flags, buffers, and counters, as in the following example:

// in .ci file
chare ComputeObject {

entry void ComputeObject();
entry void startStep();

(continues on next page)
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entry void firstInput(Input i);
entry void secondInput(Input j);

};

// in C++ file
class ComputeObject : public CBase_ComputeObject {
int expectedMessageCount;
Input first, second;

public:
ComputeObject() {
startStep();

}
void startStep() {
expectedMessageCount = 2;

}

void firstInput(Input i) {
first = i;
if (--expectedMessageCount == 0)

computeInteractions(first, second);
}

void recv_second(Input j) {
second = j;
if (--expectedMessageCount == 0)

computeInteractions(first, second);
}

void computeInteractions(Input a, Input b) {
// do computations using a and b
...
// send off results
...
// reset for next step
startStep();

}
};

In each step, this object expects pairs of messages, and waits to process the incoming data until it has both of them.
This sequencing is encoded across 4 different functions, which in real code could be much larger and more numerous,
resulting in a spaghetti-code mess.

Instead, it would be preferable to express this flow of control using structured constructs, such as loops. Charm++
provides such constructs for structured control flow across an object’s entry methods in a notation called Structured
Dagger. The basic constructs of Structured Dagger (SDAG) provide for program-order execution of the entry methods
and code blocks that they define. These definitions appear in the .ci file definition of the enclosing chare class as a
‘body’ of an entry method following its signature.

The most basic construct in SDAG is the serial (aka the atomic) block. Serial blocks contain sequential C++ code.
They’re also called atomic because the code within them executes without returning control to the Charm++ runtime
scheduler, and thus avoiding interruption from incoming messages. The keywords atomic and serial are synonymous,
and you can find example programs that use atomic. However, we recommend the use of serial and are considering the
deprecation of the atomic keyword. Typically serial blocks hold the code that actually deals with incoming messages
in a when statement, or to do local operations before a message is sent or after it’s received. The earlier example can
be adapted to use serial blocks as follows:
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// in .ci file
chare ComputeObject {

entry void ComputeObject();
entry void startStep();
entry void firstInput(Input i) {
serial {

first = i;
if (--expectedMessageCount == 0)

computeInteractions(first, second);
}

};
entry void secondInput(Input j) {
serial {

second = j;
if (--expectedMessageCount == 0)

computeInteractions(first, second);
}

};
};

// in C++ file
class ComputeObject : public CBase_ComputeObject {
ComputeObject_SDAG_CODE
int expectedMessageCount;
Input first, second;

public:
ComputeObject() {
startStep();

}
void startStep() {
expectedMessageCount = 2;

}

void computeInteractions(Input a, Input b) {
// do computations using a and b
. . .
// send off results
. . .
// reset for next step
startStep();

}
};

Note that chare classes containing SDAG code must include a few additional declarations in addition to inheriting
from their CBase_Foo class, by incorporating the Foo_SDAG_CODE generated-code macro in the class.

Serial blocks can also specify a textual ‘label’ that will appear in traces, as follows:

entry void firstInput(Input i) {
serial "process first" {
first = i;
if (--expectedMessageCount == 0)

computeInteractions(first, second);
}

};

In order to control the sequence in which entry methods are processed, SDAG provides the when construct. These
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statements, also called triggers, indicate that we expect an incoming message of a particular type, and provide code to
handle that message when it arrives. From the perspective of a chare object reaching a when statement, it is effectively
a ‘blocking receive.’

Entry methods defined by a when are not executed immediately when a message targeting them is delivered, but
instead are held until control flow in the chare reaches a corresponding when clause. Conversely, when control flow
reaches a when clause, the generated code checks whether a corresponding message has arrived: if one has arrived, it
is processed; otherwise, control is returned to the Charm++ scheduler.

The use of when substantially simplifies the example from above:

// in .ci file
chare ComputeObject {

entry void ComputeObject();
entry void startStep() {
when firstInput(Input first)

when secondInput(Input second)
serial {
computeInteractions(first, second);

}
};
entry void firstInput(Input i);
entry void secondInput(Input j);

};

// in C++ file
class ComputeObject : public CBase_ComputeObject {
ComputeObject_SDAG_CODE

public:
ComputeObject() {
startStep();

}

void computeInteractions(Input a, Input b) {
// do computations using a and b
. . .
// send off results
. . .
// reset for next step
startStep();

}
};

Like an if or while in C code, each when clause has a body made up of the statement or block following it. The
variables declared as arguments to the entry method triggering the when are available in the scope of the body. By
using the sequenced execution of SDAG code and the availability of parameters to when-defined entry methods in their
bodies, the counter expectedMessageCount and the intermediate copies of the received input are eliminated.
Note that the entry methods firstInput and secondInput are still declared in the .ci file, but their definition
is in the SDAG code. The interface translator generates code to handle buffering and triggering them appropriately.

For simplicity, when constructs can also specify multiple expected entry methods that all feed into a single body, by
separating their prototypes with commas:

entry void startStep() {
when firstInput(Input first),

secondInput(Input second)
serial {

(continues on next page)
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computeInteractions(first, second);
}

};

A single entry method is allowed to appear in more than one when statement. If only one of those when statements
has been triggered when the runtime delivers a message to that entry method, that when statement is guaranteed to
process it. If there is no trigger waiting for that entry method, then the next corresponding when to be reached will
receive that message. If there is more than one when waiting on that method, which one will receive it is not specified,
and should not be relied upon. For an example of multiple when statements handling the same entry method without
reaching the unspecified case, see the CharmLU benchmark.

To more finely control the correspondence between incoming messages and when clauses associated with the target
entry method, SDAG supports matching on reference numbers. Matching is typically used to denote an iteration of
a program that executes asynchronously (without any sort of barrier or other synchronization between steps) or a
particular piece of the problem being solved. Matching is requested by placing an expression denoting the desired
reference number in square brackets between the entry method name and its parameter list. For parameter marshalled
entry methods, the reference number expression will be compared for equality with the entry method’s first argument.
For entry methods that accept an explicit message (Section 2.3.1), the reference number on the message can be set
by calling the function CkSetRefNum(void *msg, CMK_REFNUM_TYPE ref). Matching is used in the loop
example below, and in examples/charm++/jacobi2d-sdag/jacobi2d.ci. Multiple when triggers for
an entry method with different matching reference numbers will not conflict - each will receive only corresponding
messages.

SDAG supports the for and while loop constructs mostly as if they appeared in plain C or C++ code. In the running
example, computeInteractions() calls startStep() when it is finished to start the next step. Instead of
this arrangement, the loop structure can be made explicit:

// in .ci file
chare ComputeObject {

entry void ComputeObject();
entry void runForever() {
while(true) {

when firstInput(Input first),
secondInput(Input second) serial {

computeInteractions(first, second);
}

}
};
entry void firstInput(Input i);
entry void secondInput(Input j);

};

// in C++ file
class ComputeObject : public CBase_ComputeObject {
ComputeObject_SDAG_CODE

public:
ComputeObject() {
runForever();

}

void computeInteractions(Input a, Input b) {
// do computations using a and b
. . .
// send off results
. . .

(continues on next page)
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}
};

If this code should instead run for a fixed number of iterations, we can instead use a for loop:

// in .ci file
chare ComputeObject {

entry void ComputeObject();
entry void runForever() {
for(iter = 0; iter < n; ++iter) {

// Match to only accept inputs for the current iteration
when firstInput[iter](int a, Input first),

secondInput[iter](int b, Input second) serial {
computeInteractions(first, second);

}
}

};
entry void firstInput(int a, Input i);
entry void secondInput(int b, Input j);

};

// in C++ file
class ComputeObject : public CBase_ComputeObject {
ComputeObject_SDAG_CODE
int n, iter;

public:
ComputeObject() {
n = 10;
runForever();

}

void computeInteractions(Input a, Input b) {
// do computations using a and b
. . .
// send off results
. . .

}
};

Note that int iter; is declared in the chare’s class definition and not in the .ci file. This is necessary because
the Charm++ interface translator does not fully parse the declarations in the for loop header, because of the inherent
complexities of C++.

SDAG also supports conditional execution of statements and blocks with if statements. The syntax of SDAG if
statements matches that of C and C++. However, if one encounters a syntax error on correct-looking code in a loop
or conditional statement, try assigning the condition expression to a boolean variable in a serial block preceding the
statement and then testing that boolean’s value. This can be necessary because of the complexity of parsing C++ code.

In cases where multiple tasks must be processed before execution continues, but with no dependencies or interactions
among them, SDAG provides the overlap construct. Overlap blocks contain a series of SDAG statements within
them which can occur in any order. Commonly these blocks are used to hold a series of when triggers which can be
received and processed in any order. Flow of control doesn’t leave the overlap block until all the statements within it
have been processed.

In the running example, suppose each input needs to be preprocessed independently before the call to
computeInteractions. Since we don’t care which order they get processed in, and want it to happen as soon as
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possible, we can apply overlap:

// in .ci file
chare ComputeObject {

entry void ComputeObject();
entry void startStep() {
overlap {

when firstInput(Input i)
serial { first = preprocess(i); }

when secondInput(Input j)
serial { second = preprocess(j); }

}
serial {

computeInteractions(first, second);
}

};
entry void firstInput(Input i);
entry void secondInput(Input j);

};

// in C++ file
class ComputeObject : public CBase_ComputeObject {
ComputeObject_SDAG_CODE

public:
ComputeObject() {
startStep();

}

void computeInteractions(Input a, Input b) {
// do computations using a and b
. . .
// send off results
. . .
// reset for next step
startStep();

}
};

Another construct offered by SDAG is the forall loop. These loops are used when the iterations of a loop can be
performed independently and in any order. This is in contrast to a regular for loop, in which each iteration is executed
sequentially. The loop iterations are executed entirely on the calling PE, so they do not run in parallel. However, they
are executed concurrently, in that execution of different iterations can interleave at when statements, like any other
SDAG code. SDAG statements following the forall loop will not execute until all iterations have completed. The
forall loop can be seen as an overlap with an indexed set of otherwise identical statements in the body.

The syntax of forall is

forall [IDENT] (MIN:MAX,STRIDE) BODY

The range from MIN to MAX is inclusive. In each iteration instance of BODY, the IDENT variable will take on one of
the values in the specified range. The IDENT variable must be declared in the application C++ code as a member of
the enclosing chare class.

Use of forall is demonstrated through distributed parallel matrix-matrix multiply shown in examples/
charm++/matmul/matmul.ci
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The case Statement

The case statement in SDAG expresses a disjunction over a set of when clauses. In other words, if it is known that
one dependency out of a set will be satisfied, but which one is not known, this statement allows the set to be specified
and will execute the corresponding block based on which dependency ends up being fulfilled.

The following is a basic example of the case statement. Note that the trigger b(), d() will only be fulfilled if both
b() and d() arrive. If only one arrives, then it will partially match, and the runtime will not “commit” to this branch
until the second arrives. If another dependency fully matches, the partial match will be ignored and can be used to
trigger another when later in the execution.

case {
when a() { }
when b(), d() { }
when c() { }

}

A full example of the case statement can be found tests/charm++/sdag/case/caseTest.ci.

Usage Notes

SDAG Code Declaration

If you’ve added Structured Dagger code to your class, you must link in the code by adding “class-
Name_SDAG_CODE” inside the class declaration in the .h file. This macro defines the entry points and support
code used by Structured Dagger. Forgetting this results in a compile error (undefined SDAG entry methods referenced
from the .def.h file).

For example, an array named “Foo” that uses sdag code might contain:

class Foo : public CBase_Foo {
public:

Foo_SDAG_CODE
Foo(...) {

...
}
Foo(CkMigrateMessage *m) { }

void pup(PUP::er &p) {
...

}
. . .

};

Direct Calls to SDAG Entry Methods

An SDAG entry method that contains one or more when clause(s) cannot be directly called and will result in a runtime
error with an error message. It has to be only called through a proxy. This is a runtime requirement that is enforced
in order to prevent accidental calls to SDAG entry methods that are asynchronous in nature. Additionally, since they
are called using a proxy, it enhances understandability and clarity as to not be confused for a regular function call that
returns immediately.

For example, in the first example discussed, it is invalid to call the SDAG entry method startStep directly as
startStep(); because it contains when clauses. It has to be only called using the proxy i.e. computeObj.
startStep(); , where computeObj is the proxy to ComputeObject.
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2.2.5 Serialization Using the PUP Framework

The PUP (Pack/Unpack) framework is a generic way to describe the data in an object and to use that description for
serialization. The Charm++ system can use this description to pack the object into a message and unpack the message
into a new object on another processor, to pack and unpack migratable objects for load balancing or checkpoint/restart-
based fault tolerance. The PUP framework also includes support special for STL containers to ease development in
C++.

Like many C++ concepts, the PUP framework is easier to use than describe:

class foo : public mySuperclass {
private:

double a;
int x;
char y;
unsigned long z;
float arr[3];

public:
...other methods...

//pack/unpack method: describe my fields to charm++
void pup(PUP::er &p) {

mySuperclass::pup(p);
p|a;
p|x; p|y; p|z;
PUParray(p,arr,3);

}
};

This class’s pup method describes the fields of the class to Charm++. This allows Charm++ to marshall parameters of
type foo across processors, translate foo objects across processor architectures, read and write foo objects to files on
disk, inspect and modify foo objects in the debugger, and checkpoint and restart programs involving foo objects.

PUP contract

Your object’s pup method must save and restore all your object’s data. As shown, you save and restore a class’s
contents by writing a method called “pup” which passes all the parts of the class to an object of type PUP::er, which
does the saving or restoring. This manual will often use “pup” as a verb, meaning “to save/restore the value of” or
equivalently, “to call the pup method of”.

Pup methods for complicated objects normally call the pup methods for their simpler parts. Since all objects depend
on their immediate superclass, the first line of every pup method is a call to the superclass’s pup method—the only
time you shouldn’t call your superclass’s pup method is when you don’t have a superclass. If your superclass has no
pup method, you must pup the values in the superclass yourself.

PUP operator

The recommended way to pup any object a is to use p|a;. This syntax is an operator | applied to the PUP::er p and
the user variable a.

The p|a; syntax works wherever a is:

• A simple type, including char, short, int, long, float, or double. In this case, p|a; copies the data in-place. This
is equivalent to passing the type directly to the PUP::er using p(a).

• Any object with a pup method. In this case, p|a; calls the object’s pup method. This is equivalent to the
statement a.pup(p);.

36 Chapter 2. The Charm++ Parallel Programming System



Charm++ Documentation

• A pointer to a PUP::able object, as described in Section 2.3.9. In this case, p|a; allocates and copies the
appropriate subclass.

• An object with a PUPbytes(myClass) declaration in the header. In this case, p|a; copies the object as plain
bytes, like memcpy.

• An object with a custom operator | defined. In this case, p|a; calls the custom operator |.

See examples/charm++/PUP

For container types, you must simply pup each element of the container. For arrays, you can use the utility method
PUParray, which takes the PUP::er, the array base pointer, and the array length. This utility method is defined for
user-defined types T as:

template<class T>
inline void PUParray(PUP::er &p,T *array,int length) {

for (int i=0;i<length;i++) p|array[i];
}

PUP STL Container Objects

If the variable is from the C++ Standard Template Library, you can include operator|’s for STL containers such as
vector, map, set, list, pair, and string, templated on anything, by including the header “pup_stl.h”.

See examples/charm++/PUP/STLPUP

PUP Dynamic Data

As usual in C++, pointers and allocatable objects usually require special handling. Typically this only requires a
p.isUnpacking() conditional block, where you perform the appropriate allocation. See Section 2.3.9 for more infor-
mation and examples.

If the object does not have a pup method, and you cannot add one or use PUPbytes, you can define an operator| to
pup the object. For example, if myClass contains two fields a and b, the operator| might look like:

inline void operator|(PUP::er &p,myClass &c) {
p|c.a;
p|c.b;

}

See examples/charm++/PUP/HeapPUP

PUP as bytes

For classes and structs with many fields, it can be tedious and error-prone to list all the fields in the pup method. You
can avoid this listing in two ways, as long as the object can be safely copied as raw bytes—this is normally the case
for simple structs and classes without pointers.

• Use the PUPbytes(myClass) macro in your header file. This lets you use the p|*myPtr; syntax to pup
the entire class as sizeof(myClass) raw bytes.

• Use p((void *)myPtr,sizeof(myClass)); in the pup method. This is a direct call to pup a set of
bytes.

• Use p((char *)myCharArray,arraySize); in the pup method. This is a direct call to pup a set of
bytes. Other primitive types may also be used.
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Note that pupping as bytes is just like using ‘memcpy’: it does nothing to the data other than copy it whole. For
example, if the class contains any pointers, you must make sure to do any allocation needed, and pup the referenced
data yourself.

Pupping as bytes may prevent your pup method from ever being able to work across different machine architectures.
This is currently an uncommon scenario, but heterogeneous architectures may become more common, so pupping as
bytes is discouraged.

PUP overhead

The PUP::er overhead is very small—one virtual function call for each item or array to be packed/unpacked. The
actual packing/unpacking is normally a simple memory-to-memory binary copy.

For arrays and vectors of builtin arithmetic types like “int” and “double”, or of types declared as “PUPbytes”, PUParray
uses an even faster block transfer, with one virtual function call per array or vector.

Thus, if an object does not contain pointers, you should prefer declaring it as PUPbytes.

For types of objects whose default constructors do more than necessary when an object will be unpacked from
PUP, it is possible to tell the runtime system to call a more minimalistic alternative. This can apply to types
used as both member variables of chares and as marshalled arguments to entry methods. A non-chare class can
define a constructor that takes an argument of type PUP::reconstruct for this purpose. The runtime sys-
tem code will call a PUP::reconstruct constructor in preference to a default constructor when it’s available.
Where necessary, constructors taking PUP::reconstruct should call the constructors of members variables with
PUP::reconstruct if applicable to that member.

PUP modes

Charm++ uses your pup method to both pack and unpack, by passing different types of PUP::ers to it. The method
p.isUnpacking() returns true if your object is being unpacked—that is, your object’s values are being restored. Your
pup method must work properly in sizing, packing, and unpacking modes; and to save and restore properly, the same
fields must be passed to the PUP::er, in the exact same order, in all modes. This means most pup methods can ignore
the pup mode.

Three modes are used, with three separate types of PUP::er: sizing, which only computes the size of your data without
modifying it; packing, which reads/saves values out of your data; and unpacking, which writes/restores values into
your data. You can determine exactly which type of PUP::er was passed to you using the p.isSizing(), p.isPacking(),
and p.isUnpacking() methods. However, sizing and packing should almost always be handled identically, so most
programs should use p.isUnpacking() and !p.isUnpacking(). Any program that calls p.isPacking() and does not also
call p.isSizing() is probably buggy, because sizing and packing must see exactly the same data.

The p.isDeleting() flag indicates the object will be deleted after calling the pup method. This is normally only needed
for pup methods called via the C or f90 interface, as provided by AMPI or the other frameworks. Other Charm++ array
elements, marshalled parameters, and other C++ interface objects have their destructor called when they are deleted,
so the p.isDeleting() call is not normally required—instead, memory should be deallocated in the destructor as usual.

More specialized modes and PUP::ers are described in section 2.3.9.

PUP Usage Sequence

Typical method invocation sequence of an object with a pup method is shown in Figure 1. As usual in C++, objects
are constructed, do some processing, and are then destroyed.

Objects can be created in one of two ways: they can be created using a normal constructor as usual; or they can
be created using their pup constructor. The pup constructor for Charm++ array elements and PUP::able objects is a
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1: Method sequence of an object with a pup method.

“migration constructor” that takes a single “CkMigrateMessage *” which the user should not free; for other objects,
such as parameter marshalled objects, the pup constructor has no parameters. The pup constructor is always followed
by a call to the object’s pup method in isUnpacking mode.

Once objects are created, they respond to regular user methods and remote entry methods as usual. At any time, the
object pup method can be called in isSizing or isPacking mode. User methods and sizing or packing pup
methods can be called repeatedly over the object lifetime.

Finally, objects are destroyed by calling their destructor as usual.

Migratable Array Elements using PUP

Array objects can migrate from one PE to another. For example, the load balancer (see section 2.2.6) might migrate
array elements to better balance the load between processors. For an array element to be migratable, it must implement
a pup method. The standard PUP contract (see section 2.2.5) and constraints wrt to serializing data apply. The one
exception for chare , group and node group types is that since the runtime system will be the one to invoke their PUP
routines, the runtime will automatically call PUP on the generated CBase_ superclasses so users do not need to call
PUP on generated superclasses.

A simple example for an array follows:

//In the .h file:
class A2 : public CBase_A2 {
private: //My data members:

int nt;
unsigned char chr;
float flt[7];
int numDbl;
double *dbl;

public:
//...other declarations

virtual void pup(PUP::er &p);
};

//In the .C file:
void A2::pup(PUP::er &p)
{

// The runtime will automatically call CBase_A2::pup()
p|nt;
p|chr;
p(flt,7);
p|numDbl;

(continues on next page)
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(continued from previous page)

if (p.isUnpacking()) dbl=new double[numDbl];
p(dbl,numDbl);

}

The default assumption, as used in the example above, for the object state at PUP time is that a chare, and its member
objects, could be migrated at any time while it is inactive, i.e. not executing an entry method. Actual migration time
can be controlled (see section 2.2.6) to be less frequent. If migration timing is fully user controlled, e.g., at the end
of a synchronized load balancing step, then PUP implementation can be simplified to only transport “live” ephemeral
data matching the object state which coincides with migration. More intricate state based PUPing, for objects whose
memory footprint varies substantially with computation phase, can be handled by explicitly maintaining the object’s
phase in a member variable and implementing phase conditional logic in the PUP method (see section 2.3.9).

Marshalling User Defined Data Types via PUP

Parameter marshalling requires serialization and is therefore implemented using the PUP framework. User defined
data types passed as parameters must abide by the standard PUP contract (see section 2.2.5).

A simple example of using PUP to marshall user defined data types follows:

class Buffer {
public:
//...other declarations

void pup(PUP::er &p) {
// remember to pup your superclass if there is one
p|size;
if (p.isUnpacking())

data = new int[size];
PUParray(p, data, size);

}

private:
int size;
int *data;

};

// In some .ci file
entry void process(Buffer &buf);

For efficiency, arrays are always copied as blocks of bytes and passed via pointers. This means classes that need their
pup routines to be called, such as those with dynamically allocated data or virtual methods cannot be passed as arrays-
use STL vectors to pass lists of complicated user-defined classes. For historical reasons, pointer-accessible structures
cannot appear alone in the parameter list (because they are confused with messages).

The order of marshalling operations on the send side is:

• Call “p|a” on each marshalled parameter with a sizing PUP::er.

• Compute the lengths of each array.

• Call “p|a” on each marshalled parameter with a packing PUP::er.

• memcpy each arrays’ data.

The order of marshalling operations on the receive side is:

• Create an instance of each marshalled parameter using its default constructor.

• Call “p|a” on each marshalled parameter using an unpacking PUP::er.
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• Compute pointers into the message for each array.

Finally, very large structures are most efficiently passed via messages, because messages are an efficient, low-level
construct that minimizes copying and overhead; but very complicated structures are often most easily passed via
marshalling, because marshalling uses the high-level pup framework.

See examples/charm++/PUP/HeapPUP

2.2.6 Load Balancing

Load balancing in Charm++ is enabled by its ability to place, or migrate, chares or chare array elements. Typical
application usage to exploit this feature will construct many more chares than processors, and enable their runtime
migration.

Iterative applications, which are commonplace in physical simulations, are the most suitable target for Charm++’s
measurement based load balancing techniques. Such applications may contain a series of time-steps, and/or iterative
solvers that run to convergence. For such computations, typically, the heuristic principle that we call “principle of
persistence” holds: the computational loads and communication patterns between objects (chares) tend to persist
over multiple iterations, even in dynamic applications. In such cases, the recent past is a good predictor of the near
future. Measurement-based chare migration strategies are useful in this context. Currently these apply to chare-array
elements, but they may be extended to chares in the future.

For applications without such iterative structure, or with iterative structure, but without predictability (i.e. where the
principle of persistence does not apply), Charm++ supports “seed balancers” that move “seeds” for new chares among
processors (possibly repeatedly) to achieve load balance. These strategies are currently available for both chares
and chare-arrays. Seed balancers were the original load balancers provided in Charm since the late 80’s. They are
extremely useful for state-space search applications, and are also useful in other computations, as well as in conjunction
with migration strategies.

For iterative computations when there is a correlation between iterations/steps, but either it is not strong, or the machine
environment is not predictable (due to noise from OS interrupts on small time steps, or time-shared desktop machines),
one can use a combination of the two kinds of strategies. The baseline load balancing is provided by migration
strategies, but in each iteration one also spawns off work in the form of chares that can run on any processor. The seed
balancer will handle such work as it arises.

Examples are in examples/charm++/load_balancing and tests/charm++/load_balancing

Measurement-based Object Migration Strategies

In Charm++, objects (except groups, nodegroups) can migrate from processor to processor at runtime. Object migra-
tion can potentially improve the performance of the parallel program by migrating objects from overloaded processors
to underloaded ones.

Charm++ implements a generic, measurement-based load balancing framework which automatically instruments all
Charm++ objects, collects computation load and communication structure during execution and stores them into a load
balancing database. Charm++ then provides a collection of load balancing strategies whose job it is to decide on a new
mapping of objects to processors based on the information from the database. Such measurement based strategies are
efficient when we can reasonably assume that objects in a Charm++ application tend to exhibit temporal correlation
in their computation and communication patterns, i.e. future can be to some extent predicted using the historical
measurement data, allowing effective measurement-based load balancing without application-specific knowledge.

Two key terms in the Charm++ load balancing framework are:

• Load balancing database provides the interface of almost all load balancing calls. On each processor, it stores the
load balancing instrumented data and coordinates the load balancing manager and balancer. It is implemented
as a Chare Group called LBDatabase.
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• Load balancer or strategy takes the load balancing database and produces the new mapping of the objects. In
Charm++, it is implemented as Chare Group inherited from BaseLB. Three kinds of schemes are implemented:
(a) centralized load balancers, (b) fully distributed load balancers and (c) hierarchical load balancers.

Available Load Balancing Strategies

Load balancing can be performed in either a centralized, a fully distributed, or an hierarchical fashion.

In centralized approaches, the entire machine’s load and communication structure are accumulated to a single point,
typically processor 0, followed by a decision making process to determine the new distribution of Charm++ objects.
Centralized load balancing requires synchronization which may incur an overhead and delay. However, due to the fact
that the decision process has a high degree of the knowledge about the entire platform, it tends to be more accurate.

In distributed approaches, load data is only exchanged among neighboring processors. There is no global synchro-
nization. However, they will not, in general, provide an immediate restoration for load balance - the process is iterated
until the load balance can be achieved.

In hierarchical approaches, processors are divided into independent autonomous sets of processor groups and these
groups are organized in hierarchies, thereby decentralizing the load balancing task. Different strategies can be used to
balance the load on processors inside each processor group, and processors across groups in a hierarchical fashion.

Listed below are some of the available non-trivial centralized load balancers and their brief descriptions:

• GreedyLB: Uses a greedy algorithm that always assigns the heaviest object to the least loaded processor.

• GreedyRefineLB: Uses a greedy algorithm that assigns the heaviest object to the least loaded processor when
the benefit outweighs the migration cost, otherwise leaves the object on its current processor. It takes an optional
command-line argument +LBPercentMoves,which specifies the percentage of migrations that can be tolerated.

• TopoCentLB: Extends the greedy algorithm to take processor topology into account.

• RefineLB: Moves objects away from the most overloaded processors to reach average, limits the number of
objects migrated.

• RefineSwapLB: Moves objects away from the most overloaded processors to reach average. In case it cannot
migrate an object from an overloaded processor to an underloaded processor, it swaps objects to reduce the load
on the overloaded processor. This strategy limits the number of objects migrated.

• RefineTopoLB: Same idea as in RefineLB, but takes processor topology into account.

• BlockLB: This strategy does a blocked distribution of objects to processors.

• ComboCentLB: A special load balancer that can be used to combine any number of centralized load balancers
mentioned above.

Listed below are some of the communication-aware load balancers:

• MetisLB: Uses METIS to partition the object communication graph.

• ScotchLB: Uses the SCOTCH library for partitioning the object communication graph, while also taking object
load imbalance into account.

• GreedyCommLB: Extends the greedy algorithm to take the communication graph into account.

• RefineCommLB: Same idea as in RefineLB, but takes communication into account.

Listed below are the distributed load balancers:

• NeighborLB: A neighborhood load balancer in which each processor tries to average out its load only among
its neighbors.

• WSLB: A load balancer for workstation clusters, which can detect load changes on desktops (and other time-
shared processors) and adjust load without interfering with other’s use of the desktop.
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• DistributedLB: A load balancer which uses partial information about underloaded and overloaded processors
in the system to do probabilistic transfer of load. This is a refinement based strategy.

An example of a hierarchical strategy can be found in:

• HybridLB: This calls GreedyLB at the lower level and RefineLB at the root.

Listed below are load balancers for debugging purposes:

• RandCentLB: Randomly assigns objects to processors;

• RotateLB: This strategy moves objects to the next available PE every time it is called. It is useful for debugging
PUP routines and other migration related bugs.

Users can choose any load balancing strategy they think is appropriate for their application. We recommend using
GreedyRefineLB with applications in general. For applications where the cost of migrating objects is very high, say,
due to frequent load balancing to handle frequent load changes or due to size of data in the object being large, a strategy
which favors migration minimization at the cost of balance (eg: RefineLB) is more suitable. DistributedLB and
HybridLB are suitable for large number of nodes. Communication-aware load balancers like MetisLB and ScotchLB
are suitable for communication intensive applications. RotateLB and RandCentLB are more useful for debugging
object migrations. The compiler and runtime options are described in section 2.2.6.

Metabalancer to automatically schedule load balancing

Metabalancer can be invoked to automatically decide when to invoke the load balancer, given the load-balancing strat-
egy. Metabalancer uses a linear prediction model to set the load balancing period based on observed load imbalance.

The runtime option +MetaLB can be used to invoke this feature to automatically invoke the load balancing strategy
based on the imbalance observed. This option needs to be specified alongside the +balancer option to specify the load
balancing strategy to use. Metabalancer relies on the AtSync() calls specified in Section 2.2.6 to collect load statistics.

+MetaLBModelDir <path-to-model> can be used to invoke the Metabalancer feature to automatically decide
which load balancing strategy to invoke. A model trained on a generic representative load imbalance benchmark can
be found in charm/src/ck-ldb/rf_model. Metabalancer makes a decision on which load balancing strategy to
invoke out of a subset of strategies, namely GreedyLB, RefineLB, HybridLB, DistributedLB, MetisLB and ScotchLB.
For using the model based prediction in Metabalancer, Charm++ needs to be built with all the above load balancing
strategies, including ScotchLB that relies on the external partitioning library SCOTCH specified in the Section 2.2.6.

Load Balancing Chare Arrays

The load balancing framework is well integrated with chare array implementation - when a chare array is created,
it automatically registers its elements with the load balancing framework. The instrumentation of compute time
(WALL/CPU time) and communication pattern is done automatically and APIs are provided for users to trigger the
load balancing. To use the load balancer, you must make your array elements migratable (see migration section above)
and choose a load balancing strategy (see the section 2.2.6 for a description of available load balancing strategies).

There are three different ways to use load balancing for chare arrays to meet different needs of the applications. These
methods are different in how and when a load balancing phase starts. The three methods are: periodic load balancing
mode, at sync mode and manual mode.

In periodic load balancing mode, a user specifies only how often load balancing is to occur, using +LBPeriod runtime
option to specify the time interval.

In at sync mode, the application invokes the load balancer explicitly at appropriate (generally at a pre-existing syn-
chronization boundary) to trigger load balancing by inserting a function call (AtSync) in the application source code.

In the prior two load balancing modes, users do not need to worry about how to start load balancing. However, in
one scenario, those automatic load balancers will fail to work - when array elements are created by dynamic insertion.
This is because the above two load balancing modes require an application to have fixed the number of objects at the
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time of load balancing. The array manager needs to maintain a head count of local array elements for the local barrier.
In this case, the application must use the manual mode to trigger load balancer.

The detailed APIs of these three methods are described as follows:

1. Periodical load balancing mode: In the default setting, load balancing happens whenever the array elements
are ready, with an interval of 1 second. It is desirable for the application to set a larger interval using +LBPeriod
runtime option. For example “+LBPeriod 5.0” can be used to start load balancing roughly every 5 seconds. By
default, array elements may be asked to migrate at any time, provided that they are not in the middle of executing
an entry method. The array element’s variable usesAtSync being false attributes to this default behavior.

2. At sync mode: Using this method, elements can be migrated only at certain points in the execution when
the application invokes AtSync(). In order to use the at sync mode, one should set usesAtSync to true in the
array element constructor. When an element is ready to migrate, call AtSync()6. When all local elements call
AtSync, the load balancer is triggered. Once all migrations are completed, the load balancer calls the virtual
function ArrayElement::ResumeFromSync() on each of the array elements. This function can be redefined in
the application.

Note that the minimum time for AtSync() load balancing to occur is controlled by the LBPeriod. Unusually
high frequency load balancing (more frequent than 500ms) will perform better if this value is set via +LBPeriod
or SetLBPeriod() to a number shorter than your load balancing interval.

Note that AtSync() is not a blocking call, it just gives a hint to load balancing that it is time for load balancing.
During the time between AtSync and ResumeFromSync, the object may be migrated. One can choose to let
objects continue working with incoming messages, however keep in mind the object may suddenly show up in
another processor and make sure no operations that could possibly prevent migration be performed. This is the
automatic way of doing load balancing where the application does not need to define ResumeFromSync().

The more commonly used approach is to force the object to be idle until load balancing finishes. The user
places an AtSync call at the end of some iteration and when all elements reach that call load balancing is
triggered. The objects can start executing again when ResumeFromSync() is called. In this case, the user
redefines ResumeFromSync() to trigger the next iteration of the application. This manual way of using the at
sync mode results in a barrier at load balancing (see example here 2.2.6).

3. Manual mode: The load balancer can be programmed to be started manually. To switch to the manual mode, the
application calls TurnManualLBOn() on every processor to prevent the load balancer from starting automatically.
TurnManualLBOn() should be called as early as possible in the program. It could be called at the initialization
part of the program, for example from a global variable constructor, or in an initproc call (Section 2.2.8). It can
also be called in the constructor of a static array or before the doneInserting call for a dynamic array. It can be
called multiple times on one processor, but only the last one takes effect.

The function call CkStartLB() starts load balancing immediately. This call should be made at only one place
on only one processor. This function is not blocking, the object will continue to process messages and the load
balancing, when triggered, happens in the background.

TurnManualLBOff() turns off manual load balancing and switches back to the automatic load balancing mode.

Migrating objects

Load balancers migrate objects automatically. For an array element to migrate, user can refer to Section 2.2.5 for how
to write a “pup” for an array element.

In general one needs to pack the whole snapshot of the member data in an array element in the pup subroutine. This
is because the migration of the object may happen at any time. In certain load balancing schemes where the user
explicitly controls when load balancing occurs, the user may choose to pack only a part of the data and may skip
temporary data.

6 AtSync() is a member function of class ArrayElement
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An array element can migrate by calling the migrateMe(destination processor) member function- this call must be the
last action in an element entry method. The system can also migrate array elements for load balancing (see the section
2.2.6).

To migrate your array element to another processor, the Charm++ runtime will:

• Call your ckAboutToMigrate method

• Call your pup method with a sizing PUP::er to determine how big a message it needs to hold your element.

• Call your pup method again with a packing PUP::er to pack your element into a message.

• Call your element’s destructor (deleting the old copy).

• Send the message (containing your element) across the network.

• Call your element’s migration constructor on the new processor.

• Call your pup method on with an unpacking PUP::er to unpack the element.

• Call your ckJustMigrated method

Migration constructors, then, are normally empty- all the unpacking and allocation of the data items is done in the
element’s pup routine. Deallocation is done in the element destructor as usual.

Other utility functions

There are several utility functions that can be called in applications to configure the load balancer, etc. These functions
are:

• LBTurnInstrumentOn() and LBTurnInstrumentOff(): are plain C functions to control the load balancing
statistics instrumentation on or off on the calling processor. No implicit broadcast or synchronization exists in
these functions. Fortran interface: FLBTURNINSTRUMENTON() and FLBTURNINSTRUMENTOFF().

• setMigratable(bool migratable): is a member function of array element. This function can be called in an
array element constructor to tell the load balancer whether this object is migratable or not7.

• LBSetPeriod(double s): this function can be called anywhere (even in Charm++ initnodes or initprocs) to
specify the load balancing period time in seconds. It tells load balancer not to start next load balancing in less
than 𝑠 seconds. This can be used to prevent load balancing from occurring too often in automatic without sync
mode. Here is how to use it:

// if used in an array element
LBDatabase *lbdb = getLBDB();
lbdb->SetLBPeriod(5.0);

// if used outside of an array element
LBSetPeriod(5.0);

Alternatively, one can specify +LBPeriod {seconds} at command line.

Compiler and runtime options to use load balancing module

Load balancing strategies are implemented as libraries in Charm++. This allows programmers to easily experiment
with different existing strategies by simply linking a pool of strategy modules and choosing one to use at runtime via
a command line option.

Note: linking a load balancing module is different from activating it:

7 Currently not all load balancers recognize this setting though.
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• link an LB module: is to link a Load Balancer module(library) at compile time. You can link against multiple
LB libraries as candidates.

• activate an LB: is to actually ask the runtime to create an LB strategy and start it. You can only activate load
balancers that have been linked at compile time.

Below are the descriptions about the compiler and runtime options:

1. compile time options:

• -module NeighborLB -module GreedyCommLB . . .
links the modules NeighborLB, GreedyCommLB etc into an application, but these load balancers will
remain inactive at execution time unless overridden by other runtime options.

• -module CommonLBs
links a special module CommonLBs which includes some commonly used Charm++ built-in load
balancers. The commonly used load balancers include: DummyLB, GreedyLB, GreedyRefineLB,
CommLB, RandCentLB, RefineLB, RefineCommLB, RotateLB, DistributedLB, HybridLB, ComboCentLB,
RefineSwapLB, NeighborLB, OrbLB, BlockLB, GreedyCommLB

• -balancer GreedyCommLB
links the load balancer GreedyCommLB and invokes it at runtime.

• -balancer GreedyCommLB -balancer RefineLB
invokes GreedyCommLB at the first load balancing step and RefineLB in all subsequent load balancing
steps.

• -balancer ComboCentLB:GreedyLB,RefineLB
You can create a new combination load balancer made of multiple load balancers. In the above example,
GreedyLB and RefineLB strategies are applied one after the other in each load balancing step.

The list of existing load balancers is given in Section 2.2.6. Note: you can have multiple -module *LB options.
LB modules are linked into a program, but they are not activated automatically at runtime. Using -balancer A at
compile time will activate load balancer A automatically at runtime. Having -balancer A implies -module A, so
you don’t have to write -module A again, although that is not invalid. Using CommonLBs is a convenient way
to link against the commonly used existing load balancers.

The SCOTCH-based load balancer(s) use an external partitioning library requiring 3rd party software:

SCOTCH can be downloaded from: http://www.labri.fr/perso/pelegrin/scotch/

Use the -incdir and -libdir build time option to add your installation of any third party libraries you wish to use
to the Charm++ search paths.

2. Building individual load balancers

Load balancers can be built individually by changing the current working directory to the tmp subdirectory of
your build and making them by name.

$ cd netlrts-linux-x86_64/tmp
$ make PhasebyArrayLB

3. Write and use your own load balancer

Refer Section 2.4.1 for writing a new load balancer. Compile it in the form of library and name it libmodule-
FooLB.a where FooLB is the new load balancer. Add the path to the library and link the load balancer into an
application using -module FooLB.

You can create a library by modifying the Makefile in the following way. This will create libmoduleFooLB.a.
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libmoduleFooLB.a: FooLB.o
$(CHARMC) -o libmoduleFooLB.a FooLB.o

To include this balancer in your application, the Makefile can be changed in the following way

$(TARGET): $(OBJECTS)
$(CHARMC) -o $(TARGET) -L/path-to-the-lib $(OBJS) -module FooLB

4. runtime options:

Runtime balancer selection options are similar to the compile time options as described above, but they can be
used to override those compile time options.

• +balancer help
displays all available balancers that have been linked in.

• +balancer GreedyCommLB
invokes GreedyCommLB

• +balancer GreedyCommLB +balancer RefineLB
invokes GreedyCommLB at the first load balancing step and RefineLB in all subsequent load balancing
steps.

• +balancer ComboCentLB:GreedyLB,RefineLB
same as the example in the -balancer compile time option.

Note: +balancer option works only if you have already linked the corresponding load balancers module at
compile time. Giving +balancer with a wrong LB name will result in a runtime error. When you have used
-balancer A as compile time option, you do not need to use +balancer A again to activate it at runtime. However,
you can use +balancer B to override the compile time option and choose to activate B instead of A.

5. Handling the case that no load balancer is activated by users

When no balancer is linked by users, but the program counts on a load balancer because it used AtSync() and
expect ResumeFromSync() to be called to continue, a special load balancer called NullLB will be automatically
created to run the program. This default load balancer calls ResumeFromSync() after AtSync(). It keeps a
program from hanging after calling AtSync(). NullLB will be suppressed if another load balancer is created.

6. Other useful runtime options

There are a few other runtime options for load balancing that may be useful:

• +LBDebug {verbose level}
{verbose level} can be any positive integer number. 0 is to turn off the verbose. This option asks load
balancer to output load balancing information to stdout. The bigger the verbose level is, the more verbose
the output is.

• +LBPeriod {seconds}
{Seconds} can be any float number. This option sets the minimum period time in seconds between two
consecutive load balancing steps. The default value is 1 second. That is to say that a load balancing step
will not happen until 1 second after the last load balancing step.

• +LBSameCpus
This option simply tells load balancer that all processors are of same speed. The load balancer will then
skip the measurement of CPU speed at runtime. This is the default.

• +LBTestPESpeed
This option tells the load balancer to test the speed of all processors at runtime. The load balancer may
use this measurement to perform speed-aware load balancing.
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• +LBObjOnly
This tells load balancer to ignore processor background load when making migration decisions.

• +LBSyncResume
After load balancing step, normally a processor can resume computation once all objects are received on
that processor, even when other processors are still working on migrations. If this turns out to be a
problem, that is when some processors start working on computation while the other processors are still
busy migrating objects, then this option can be used to force a global barrier on all processors to make
sure that processors can only resume computation after migrations are completed on all processors.

• +LBOff
This option turns off load balancing instrumentation of both CPU and communication usage at startup
time.

• +LBCommOff
This option turns off load balancing instrumentation of communication at startup time. The instrument of
CPU usage is left on.

Seed load balancers - load balancing Chares at creation time

Seed load balancing involves the movement of object creation messages, or “seeds”, to create a balance of work across
a set of processors. This seed load balancing scheme is used to balance chares at creation time. After the chare
constructor is executed on a processor, the seed balancer does not migrate it. Depending on the movement strategy,
several seed load balancers are available now. Examples can be found examples/charm++/NQueen.

1. random
A strategy that places seeds randomly when they are created and does no movement of seeds thereafter. This is
used as the default seed load balancer.

2. neighbor
A strategy which imposes a virtual topology on the processors, load exchange happens among neighbors only.
The overloaded processors initiate the load balancing and send work to its neighbors when it becomes
overloaded. The default topology is mesh2D, one can use command line option to choose other topology such
as ring, mesh3D and dense graph.

3. spray
A strategy which imposes a spanning tree organization on the processors, results in communication via global
reduction among all processors to compute global average load via periodic reduction. It uses averaging of
loads to determine how seeds should be distributed.

4. workstealing
A strategy that the idle processor requests a random processor and steal chares.

Other strategies can also be explored by following the simple API of the seed load balancer.

Compile and run time options for seed load balancers

To choose a seed load balancer other than the default rand strategy, use link time command line option -balance foo.

When using neighbor seed load balancer, one can also specify the virtual topology at runtime. Use +LBTopo topo,
where topo can be one of: (a) ring, (b) mesh2d, (c) mesh3d and (d) graph.

To write a seed load balancer, name your file as cldb.foo.c, where foo is the strategy name. Compile it in the form of
library under charm/lib, named as libcldb-foo.a, where foo is the strategy name used above. Now one can use -balance
foo as compile time option to charmc to link with the foo seed load balancer.
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Simple Load Balancer Usage Example - Automatic with Sync LB

A simple example of how to use a load balancer in sync mode in one’s application is presented below.

/*** lbexample.ci ***/
mainmodule lbexample {
readonly CProxy_Main mainProxy;
readonly int nElements;

mainchare Main {
entry Main(CkArgMsg *m);
entry void done(void);

};

array [1D] LBExample {
entry LBExample(void);
entry void doWork();

};
};

——————————————————————————-

/*** lbexample.C ***/
#include <stdio.h>
#include "lbexample.decl.h"

/*readonly*/ CProxy_Main mainProxy;
/*readonly*/ int nElements;

#define MAX_WORK_CNT 50
#define LB_INTERVAL 5

/*mainchare*/
class Main : public CBase_Main
{
private:

int count;
public:

Main(CkArgMsg* m)
{
/*....Initialization....*/
mainProxy = thisProxy;
CProxy_LBExample arr = CProxy_LBExample::ckNew(nElements);
arr.doWork();

};

void done(void)
{
count++;
if(count==nElements){

CkPrintf("All done");
CkExit();

}
};

};

/*array [1D]*/
class LBExample : public CBase_LBExample

(continues on next page)
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{
private:
int workcnt;

public:
LBExample()
{
workcnt=0;
/* May initialize some variables to be used in doWork */
//Must be set to true to make AtSync work
usesAtSync = true;

}

LBExample(CkMigrateMessage *m) { /* Migration constructor -- invoked when chare
→˓migrates */ }

/* Must be written for migration to succeed */
void pup(PUP::er &p){
p|workcnt;
/* There may be some more variables used in doWork */

}

void doWork()
{
/* Do work proportional to the chare index to see the effects of LB */

workcnt++;
if(workcnt==MAX_WORK_CNT)

mainProxy.done();

if(workcnt%LB_INTERVAL==0)
AtSync();

else
doWork();

}

void ResumeFromSync(){
doWork();

}
};

#include "lbexample.def.h"

2.2.7 Processor-Aware Chare Collections

So far, we have discussed chares separately from the underlying hardware resources to which they are mapped. How-
ever, for writing lower-level libraries or optimizing application performance it is sometimes useful to create chare
collections where a single chare is mapped per specified resource used in the run. The group8 and node group con-
structs provide this facility by creating a collection of chares with a single chare (or branch) on each PE (in the case of
groups) or process (for node groups).

8 Originally called Branch Office Chare or Branched Chare
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Group Objects

Groups have a definition syntax similar to normal chares, and they have to inherit from the system-defined class
CBase_ClassName, where ClassName is the name of the group’s C++ class9.

Group Definition

In the interface (.ci) file, we declare

group Foo {
// Interface specifications as for normal chares

// For instance, the constructor ...
entry Foo(parameters1);

// ... and an entry method
entry void someEntryMethod(parameters2);

};

The definition of the Foo class is given in the .h file, as follows:

class Foo : public CBase_Foo {
// Data and member functions as in C++
// Entry functions as for normal chares

public:
Foo(parameters1);
void someEntryMethod(parameters2);

};

Group Creation

Groups are created using ckNew like chares and chare arrays. Given the declarations and definitions of group Foo
from above, we can create a group in the following manner:

CProxy_Foo fooProxy = CProxy_Foo::ckNew(parameters1);

One can also use ckNew to get a CkGroupID as shown below:

CkGroupID fooGroupID = CProxy_Foo::ckNew(parameters1);

A CkGroupID is useful to specify dependence in group creations using CkEntryOptions. For example, in the following
code, the creation of group GroupB on each PE depends on the creation of GroupA on that PE.

// Create GroupA
CkGroupID groupAID = CProxy_GroupA::ckNew(parameters1);

// Create GroupB. However, for each PE, do this only
// after GroupA has been created on it

// Specify the dependency through a `CkEntryOptions' object
CkEntryOptions opts;

(continues on next page)

9 Older, deprecated syntax allows groups to inherit directly from the system-defined class Group
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opts.setGroupDepID(groupAId);

// The last argument to `ckNew' is the `CkEntryOptions' object from above
CkGroupID groupBID = CProxy_GroupB::ckNew(parameters2, opts);

Note that there can be several instances of each group type. In such a case, each instance has a unique group identifier,
and its own set of branches.

Method Invocation on Groups

An asynchronous entry method can be invoked on a particular branch of a group through a proxy of that group. If we
have a group with a proxy fooProxy and we wish to invoke entry method someEntryMethod on that branch of
the group which resides on PE somePE, we would accomplish this with the following syntax:

fooProxy[somePE].someEntryMethod(parameters);

This call is asynchronous and non-blocking; it returns immediately after sending the message. A message may be
broadcast to all branches of a group (i.e., to all PEs) using the notation :

fooProxy.anotherEntryMethod(parameters);

This invokes entry method anotherEntryMethod with the given parameters on all branches of the group. This call is
also asynchronous and non-blocking, and it, too, returns immediately after sending the message.

Finally, when running in SMP mode with multiple PEs per node, one can broadcast a message to the branches of a
group local to the sending node:

CkWithinNodeBroadcast(CkIndex_Foo::bar(), msg, fooProxy);

Where CkIndex_Foo::bar() is the index of the entry method you wish to invoke, msg is the Charm++ message
(section 2.3.1) you wish to send, and fooProxy is the proxy to the group you wish to send. As before, it is an
asynchrounous call which returns immediately. Furthermore, if the receiving entry method is marked as [nokeep]
(2.3.1), the message pointer will be shared with each group chare instead of creating an independent copy per receiver.

Recall that each PE hosts a branch of every instantiated group. Sequential objects, chares and other groups can gain
access to this PE-local branch using ckLocalBranch():

GroupType *g=groupProxy.ckLocalBranch();

This call returns a regular C++ pointer to the actual object (not a proxy) referred to by the proxy groupProxy. Once
a proxy to the local branch of a group is obtained, that branch can be accessed as a regular C++ object. Its public
methods can return values, and its public data is readily accessible.

Let us end with an example use-case for groups. Suppose that we have a task-parallel program in which we dynami-
cally spawn new chares. Furthermore, assume that each one of these chares has some data to send to the mainchare.
Instead of creating a separate message for each chare’s data, we create a group. When a particular chare finishes its
work, it reports its findings to the local branch of the group. When all the chares on a PE have finished their work, the
local branch can send a single message to the main chare. This reduces the number of messages sent to the mainchare
from the number of chares created to the number of processors.

For a more concrete example on how to use groups, please refer to examples/charm++/histogram_group.
It presents a parallel histogramming operation in which chare array elements funnel their bin counts through a group,
instead of contributing directly to a reduction across all chares.
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NodeGroup Objects

The node group construct is similar to the group construct discussed above. Rather than having one chare per PE, a
node group is a collection of chares with one chare per process, or logical node. Therefore, each logical node hosts
a single branch of the node group. As with groups, node groups can be addressed via globally unique identifiers.
Nonetheless, there are significant differences in the semantics of node groups as compared to groups and chare arrays.
When an entry method of a node group is executed on one of its branches, it executes on some PE within the logical
node. Also, multiple entry method calls can execute concurrently on a single node group branch. This makes node
groups significantly different from groups and requires some care when using them.

NodeGroup Declaration

Node groups are defined in a similar way to groups.10 For example, in the interface file, we declare:

nodegroup NodeGroupType {
// Interface specifications as for normal chares

};

In the .h file, we define NodeGroupType as follows:

class NodeGroupType : public CBase_NodeGroupType {
// Data and member functions as in C++
// Entry functions as for normal chares

};

Like groups, NodeGroups are identified by a globally unique identifier of type CkGroupID. Just as with groups, this
identifier is common to all branches of the NodeGroup, and can be obtained from the inherited data member thisgroup.
There can be many instances corresponding to a single NodeGroup type, and each instance has a different identifier,
and its own set of branches.

Method Invocation on NodeGroups

As with chares, chare arrays and groups, entry methods are invoked on NodeGroup branches via proxy objects. An
entry method may be invoked on a particular branch of a nodegroup by specifying a logical node number argument
to the square bracket operator of the proxy object. A broadcast is expressed by omitting the square bracket notation.
For completeness, example syntax for these two cases is shown below:

// Invoke `someEntryMethod' on the i-th logical node of
// a NodeGroup whose proxy is `myNodeGroupProxy':
myNodeGroupProxy[i].someEntryMethod(parameters);

// Invoke `someEntryMethod' on all logical nodes of
// a NodeGroup whose proxy is `myNodeGroupProxy':
myNodeGroupProxy.someEntryMethod(parameters);

It is worth restating that when an entry method is invoked on a particular branch of a nodegroup, it may be executed
by any PE in that logical node. Thus two invocations of a single entry method on a particular branch of a NodeGroup
may be executed concurrently by two different PEs in the logical node. If this could cause data races in your program,
please consult Section 2.2.7 (below).

10 As with groups, older syntax allows node groups to inherit from NodeGroup instead of a specific, generated “CBase_” class.
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NodeGroups and exclusive Entry Methods

Node groups may have exclusive entry methods. The execution of an exclusive entry method invocation is mutually
exclusive with those of all other exclusive entry methods invocations. That is, an exclusive entry method invocation
is not executed on a logical node as long as another exclusive entry method is executing on it. More explicitly, if a
method M of a nodegroup NG is marked exclusive, it means that while an instance of M is being executed by a PE
within a logical node, no other PE within that logical node will execute any other exclusive methods. However, PEs in
the logical node may still execute non-exclusive entry method invocations. An entry method can be marked exclusive
by tagging it with the exclusive attribute, as explained in Section 2.3.1.

Accessing the Local Branch of a NodeGroup

The local branch of a NodeGroup NG, and hence its member fields and methods, can be accessed through the method
NG* CProxy_NG::ckLocalBranch() of its proxy. Note that accessing data members of a NodeGroup branch in this
manner is not thread-safe by default, although you may implement your own mutual exclusion schemes to ensure
safety. One way to ensure safety is to use node-level locks, which are described in the Converse manual.

NodeGroups can be used in a similar way to groups so as to implement lower-level optimizations such as data sharing
and message reduction.

2.2.8 Initializations at Program Startup

initnode and initproc Routines

Some registration routines need be executed exactly once before the computation begins. You may choose to declare
a regular C++ subroutine initnode in the .ci file to ask Charm++ to execute the routine exactly once on every logical
node before the computation begins, or to declare a regular C++ subroutine initproc to be executed exactly once on
every PE.

module foo {
initnode void fooNodeInit(void);
initproc void fooProcInit(void);
chare bar {

...
initnode void barNodeInit(void);
initproc void barProcInit(void);

};
};

This code will execute the routines fooNodeInit and static bar::barNodeInit once on every logical node and fooProcInit
and bar::barProcInit on every PE before the main computation starts. Initnode calls are always executed before initproc
calls. Both init calls (declared as static member functions) can be used in chares, chare arrays and groups.

Note that these routines should only implement registration and startup functionality, and not parallel computation,
since the Charm++ run time system will not have started up fully when they are invoked. In order to begin the parallel
computation, you should use a mainchare instead, which gets executed on only PE 0.

Event Sequence During Charm++ Startup

At startup, every Charm++ program performs the following actions, in sequence:

1. Module Registration: all modules given in the .ci files are registered in the order of their specification in the link-
ing stage of program compilation. For example, if you specified “-module A -module B” while linking
your Charm++ program, then module A is registered before module B at runtime.
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2. initnode, initproc Calls: all initnode and initproc functions are invoked before the creation of Charm++ data
structures, and before the invocation of any mainchares’ main() methods.

3. readonly Variables: readonly variables are initialized on PE 0 in the mainchare, following program order as
given in the main() method. After initialization, they are broadcast to all other PEs making them available in
the constructors groups, chares, chare arrays, etc. (see below.)

4. Group and NodeGroup Creation: on PE 0, constructors of these objects are invoked in program order. However,
on all other PEs, their creation is triggered by messages. Since message order is not guaranteed in Charm++
program, constructors of groups and nodegroups should not depend on other Group or NodeGroup objects
on a PE. However, if your program structure requires it, you can explicitly specify that the creation of cer-
tain Groups/NodeGroups depends on the creation of others, as described in Section 2.2.7. In addition, since
those objects are initialized after the initialization of readonly variables, readonly variables can be used in the
constructors of Groups and NodeGroups.

5. Charm++ Array Creation: the order in which array constructors are called on PEs is similar to that described
for groups and nodegroups, above. Therefore, the creation of one array should not depend on other arrays. As
Array objects are initialized last, their constructors can use readonly variables and local branches of Group or
NodeGroup objects.

2.3 Advanced Programming Techniques

2.3.1 Optimizing Entry Method Invocation

Messages

Although Charm++ supports automated parameter marshalling for entry methods, you can also manually handle the
process of packing and unpacking parameters by using messages. A message encapsulates all the parameters sent to an
entry method. Since the parameters are already encapsulated, sending messages is often more efficient than parameter
marshalling, and can help to avoid unnecessary copying. Moreover, assume that the receiver is unable to process the
contents of the message at the time that it receives it. For example, consider a tiled matrix multiplication program,
wherein each chare receives an 𝐴-tile and a 𝐵-tile before computing a partial result for 𝐶 = 𝐴 × 𝐵. If we were
using parameter marshalled entry methods, a chare would have to copy the first tile it received, in order to save it for
when it has both the tiles it needs. Then, upon receiving the second tile, the chare would use the second tile and the
first (saved) tile to compute a partial result. However, using messages, we would just save a pointer to the message
encapsulating the tile received first, instead of the tile data itself.

Managing the memory buffer associated with a message. As suggested in the example above, the biggest difference
between marshalled parameters and messages is that an entry method invocation is assumed to keep the message that
it is passed. That is, the Charm++ runtime system assumes that code in the body of the invoked entry method will
explicitly manage the memory associated with the message that it is passed. Therefore, in order to avoid leaking
memory, the body of an entry method must either delete the message that it is receives, or save a pointer to it, and
delete it a later point in the execution of the code.

Moreover, in the Charm++ execution model, once you pass a message buffer to the runtime system (via an asyn-
chronous entry method invocation), you should not reuse the buffer. That is, after you have passed a message buffer
into an asynchronous entry method invocation, you shouldn’t access its fields, or pass that same buffer into a second
entry method invocation. Note that this rule doesn’t preclude the single reuse of an input message - consider an entry
method invocation 𝑖1, which receives as input the message buffer 𝑚1. Then, 𝑚1 may be passed to an asynchronous
entry method invocation 𝑖2. However, once 𝑖2 has been issued with 𝑚1 as its input parameter, 𝑚1 cannot be used in
any further entry method invocations.

Several kinds of message are available. Regular Charm++ messages are objects of fixed size. One can have messages
that contain pointers or variable length arrays (arrays with sizes specified at runtime) and still have these pointers
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as valid when messages are sent across processors, with some additional coding. Also available is a mechanism for
assigning priorities to a message regardless of its type. A detailed discussion of priorities appears later in this section.

Message Types

Fixed-Size Messages. The simplest type of message is a fixed-size message. The size of each data member of such
a message should be known at compile time. Therefore, such a message may encapsulate primitive data types, user-
defined data types that don’t maintain pointers to memory locations, and static arrays of the aforementioned types.

Variable-Size Messages. Very often, the size of the data contained in a message is not known until runtime. For such
scenarios, you can use variable-size (varsize) messages. A varsize message can encapsulate several arrays, each of
whose size is determined at run time. The space required for these encapsulated, variable length arrays is allocated
with the entire message comprises a contiguous buffer of memory.

Packed Messages. A packed message is used to communicate non-linear data structures via messages. However, we
defer a more detailed description of their use to Section 2.3.1.

Using Messages In Your Program

There are five steps to incorporating a (fixed or varsize) message type in your Charm++ program: (1) Declare message
type in .ci file; (2) Define message type in .h file; (3) Allocate message; (4) Pass message to asynchronous entry
method invocation and (5) Deallocate message to free associated memory resources.

Declaring Your Message Type. Like all other entities involved in asynchronous entry method invocation, messages
must be declared in the .ci file. This allows the Charm++ translator to generate support code for messages. Message
declaration is straightforward for fixed-size messages. Given a message of type MyFixedSizeMsg, simply include
the following in the .ci file:

message MyFixedSizeMsg;

For varsize messages, the .ci declaration must also include the names and types of the variable-length arrays
that the message will encapsulate. The following example illustrates this requirement. In it, a message of type
MyVarsizeMsg, which encapsulates three variable-length arrays of different types, is declared:

message MyVarsizeMsg {
int arr1[];
double arr2[];
MyPointerlessStruct arr3[];

};

Defining Your Message Type. Once a message type has been declared to the Charm++ translator, its type definition
must be provided. Your message type must inherit from a specific generated base class. If the type of your message is
T, then class T must inherit from CMessage_T. This is true for both fixed and varsize messages. As an example,
for our fixed size message type MyFixedSizeMsg above, we might write the following in the .h file:

class MyFixedSizeMsg : public CMessage_MyFixedSizeMsg {
int var1;
MyPointerlessStruct var2;
double arr3[10];

// Normal C++ methods, constructors, etc. go here
};
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In particular, note the inclusion of the static array of doubles, arr3, whose size is known at compile time to be that
of ten doubles. Similarly, for our example varsize message of type MyVarsizeMsg, we would write something
like:

class MyVarsizeMsg : public CMessage_MyVarsizeMsg {
// variable-length arrays
int *arr1;
double *arr2;
MyPointerlessStruct *arr3;

// members that are not variable-length arrays
int x,y;
double z;

// Normal C++ methods, constructors, etc. go here
};

Note that the .h definition of the class type must contain data members whose names and types match those specified
in the .ci declaration. In addition, if any of data members are private or protected, it should declare class CMes-
sage_MyVarsizeMsg to be a friend class. Finally, there are no limitations on the member methods of message classes,
except that the message class may not redefine operators new or delete.

Thus the mtype class declaration should be similar to:

Creating a Message. With the .ci declaration and .h definition in place, messages can be allocated and used in the
program. Messages are allocated using the C++ new operator:

MessageType *msgptr =
new [(int sz1, int sz2, ... , int priobits=0)] MessageType[(constructor arguments)];

The arguments enclosed within the square brackets are optional, and are used only when allocating messages with
variable length arrays or prioritized messages. These arguments are not specified for fixed size messages. For instance,
to allocate a message of our example message MyFixedSizeMsg, we write:

MyFixedSizeMsg *msg = new MyFixedSizeMsg(<constructor args>);

In order to allocate a varsize message, we must pass appropriate values to the arguments of the overloaded new operator
presented previously. Arguments sz1, sz2, . . . denote the size (in number of elements) of the memory blocks that need
to be allocated and assigned to the pointers (variable-length arrays) that the message contains. The priobits argument
denotes the size of a bitvector (number of bits) that will be used to store the message priority. So, if we wanted to
create MyVarsizeMsg whose arr1, arr2 and arr3 arrays contain 10, 20 and 7 elements of their respective types,
we would write:

MyVarsizeMsg *msg = new (10, 20, 7) MyVarsizeMsg(<constructor args>);

Further, to add a 32-bit priority bitvector to this message, we would write:

MyVarsizeMsg *msg = new (10, 20, 7, sizeof(uint32_t)*8) VarsizeMessage;

Notice the last argument to the overloaded new operator, which specifies the number of bits used to store message
priority. The section on prioritized execution (Section 2.3.1) describes how priorities can be employed in your program.

Another version of the overloaded new operator allows you to pass in an array containing the size of each variable-
length array, rather than specifying individual sizes as separate arguments. For example, we could create a message of
type MyVarsizeMsg in the following manner:
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int sizes[3];
sizes[0] = 10; // arr1 will have 10 elements
sizes[1] = 20; // arr2 will have 20 elements
sizes[2] = 7; // arr3 will have 7 elements

MyVarsizeMsg *msg = new(sizes, 0) MyVarsizeMsg(<constructor args>); // 0 priority bits

Sending a Message. Once we have a properly allocated message, we can set the various elements of the encapsulated
arrays in the following manner:

msg->arr1[13] = 1;
msg->arr2[5] = 32.82;
msg->arr3[2] = MyPointerlessStruct();
// etc.

And pass it to an asynchronous entry method invocation, thereby sending it to the corresponding chare:

myChareArray[someIndex].foo(msg);

When a message is sent, i.e. passed to an asynchronous entry method invocation, the programmer relinquishes control
of it; the space allocated for the message is freed by the runtime system. However, when a message is received at an
entry point, it is not freed by the runtime system. As mentioned at the start of this section, received messages may be
reused or deleted by the programmer. Finally, messages are deleted using the standard C++ delete operator.

Message Packing

The Charm++ interface translator generates implementation for three static methods for the message class CMes-
sage_mtype. These methods have the prototypes:

static void* alloc(int msgnum, size_t size, int* array, int priobits);
static void* pack(mtype*);
static mtype* unpack(void*);

One may choose not to use the translator-generated methods and may override these implementations with their own
alloc, pack and unpack static methods of the mtype class. The alloc method will be called when the message is
allocated using the C++ new operator. The programmer never needs to explicitly call it. Note that all elements of the
message are allocated when the message is created with new. There is no need to call new to allocate any of the fields
of the message. This differs from a packed message where each field requires individual allocation. The alloc method
should actually allocate the message using CkAllocMsg, whose signature is given below:

void *CkAllocMsg(int msgnum, int size, int priobits);

For varsize messages, these static methods alloc, pack, and unpack are generated by the interface translator. For
example, these methods for the VarsizeMessage class above would be similar to:

// allocate memory for varmessage so charm can keep track of memory
static void* alloc(int msgnum, size_t size, int* array, int priobits)
{

int totalsize, first_start, second_start;
// array is passed in when the message is allocated using new (see below).
// size is the amount of space needed for the part of the message known
// about at compile time. Depending on their values, sometimes a segfault
// will occur if memory addressing is not on 8-byte boundary, so altered
// with ALIGN8
first_start = ALIGN8(size); // 8-byte align with this macro

(continues on next page)
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second_start = ALIGN8(first_start + array[0]*sizeof(int));
totalsize = second_start + array[1]*sizeof(double);
VarsizeMessage* newMsg =
(VarsizeMessage*) CkAllocMsg(msgnum, totalsize, priobits);

// make firstArray point to end of newMsg in memory
newMsg->firstArray = (int*) ((char*)newMsg + first_start);
// make secondArray point to after end of firstArray in memory
newMsg->secondArray = (double*) ((char*)newMsg + second_start);

return (void*) newMsg;
}

// returns pointer to memory containing packed message
static void* pack(VarsizeMessage* in)
{

// set firstArray an offset from the start of in
in->firstArray = (int*) ((char*)in->firstArray - (char*)in);
// set secondArray to the appropriate offset
in->secondArray = (double*) ((char*)in->secondArray - (char*)in);
return in;

}

// returns new message from raw memory
static VarsizeMessage* VarsizeMessage::unpack(void* inbuf)
{

VarsizeMessage* me = (VarsizeMessage*)inbuf;
// return first array to absolute address in memory
me->firstArray = (int*) ((size_t)me->firstArray + (char*)me);
// likewise for secondArray
me->secondArray = (double*) ((size_t)me->secondArray + (char*)me);
return me;

}

The pointers in a varsize message can exist in two states. At creation, they are valid C++ pointers to the start of the
arrays. After packing, they become offsets from the address of the pointer variable to the start of the pointed-to data.
Unpacking restores them to pointers.

Custom Packed Messages

In many cases, a message must store a non-linear data structure using pointers. Examples of these are binary trees,
hash tables etc. Thus, the message itself contains only a pointer to the actual data. When the message is sent to the
same processor, these pointers point to the original locations, which are within the address space of the same processor.
However, when such a message is sent to other processors, these pointers will point to invalid locations.

Thus, the programmer needs a way to “serialize” these messages only if the message crosses the address-space bound-
ary. Charm++ provides a way to do this serialization by allowing the developer to override the default serialization
methods generated by the Charm++ interface translator. Note that this low-level serialization has nothing to do with
parameter marshalling or the PUP framework described later.

Packed messages are declared in the .ci file the same way as ordinary messages:

message PMessage;

Like all messages, the class PMessage needs to inherit from CMessage_PMessage and should provide two static meth-
ods: pack and unpack. These methods are called by the Charm++ runtime system, when the message is determined to
be crossing address-space boundary. The prototypes for these methods are as follows:
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static void *PMessage::pack(PMessage *in);
static PMessage *PMessage::unpack(void *in);

Typically, the following tasks are done in pack method:

• Determine size of the buffer needed to serialize message data.

• Allocate buffer using the CkAllocBuffer function. This function takes in two parameters: input message, and
size of the buffer needed, and returns the buffer.

• Serialize message data into buffer (along with any control information needed to de-serialize it on the receiving
side.

• Free resources occupied by message (including message itself.)

On the receiving processor, the unpack method is called. Typically, the following tasks are done in the unpack method:

• Allocate message using CkAllocBuffer function. Do not use new to allocate message here. If the message
constructor has to be called, it can be done using the in-place new operator.

• De-serialize message data from input buffer into the allocated message.

• Free the input buffer using CkFreeMsg.

Here is an example of a packed-message implementation:

// File: pgm.ci
mainmodule PackExample {

...
message PackedMessage;
...

};

// File: pgm.h
...
class PackedMessage : public CMessage_PackedMessage
{

public:
BinaryTree<char> btree; // A non-linear data structure
static void* pack(PackedMessage*);
static PackedMessage* unpack(void*);
...

};
...

// File: pgm.C
...
void*
PackedMessage::pack(PackedMessage* inmsg)
{

int treesize = inmsg->btree.getFlattenedSize();
int totalsize = treesize + sizeof(int);
char *buf = (char*)CkAllocBuffer(inmsg, totalsize);
// buf is now just raw memory to store the data structure
int num_nodes = inmsg->btree.getNumNodes();
memcpy(buf, &num_nodes, sizeof(int)); // copy numnodes into buffer
buf = buf + sizeof(int); // don't overwrite numnodes
// copies into buffer, give size of buffer minus header
inmsg->btree.Flatten((void*)buf, treesize);
buf = buf - sizeof(int); // don't lose numnodes

(continues on next page)
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delete inmsg;
return (void*) buf;

}

PackedMessage*
PackedMessage::unpack(void* inbuf)
{

// inbuf is the raw memory allocated and assigned in pack
char* buf = (char*) inbuf;
int num_nodes;
memcpy(&num_nodes, buf, sizeof(int));
buf = buf + sizeof(int);
// allocate the message through Charm RTS
PackedMessage* pmsg =
(PackedMessage*)CkAllocBuffer(inbuf, sizeof(PackedMessage));

// call "inplace" constructor of PackedMessage that calls constructor
// of PackedMessage using the memory allocated by CkAllocBuffer,
// takes a raw buffer inbuf, the number of nodes, and constructs the btree
pmsg = new ((void*)pmsg) PackedMessage(buf, num_nodes);
CkFreeMsg(inbuf);
return pmsg;

}
...
PackedMessage* pm = new PackedMessage(); // just like always
pm->btree.Insert('A');
...

While serializing an arbitrary data structure into a flat buffer, one must be very wary of any possible alignment prob-
lems. Thus, if possible, the buffer itself should be declared to be a flat struct. This will allow the C++ compiler to
ensure proper alignment of all its member fields.

Entry Method Attributes

Charm++ provides a handful of special attributes that entry methods may have. In order to give a particular entry
method an attribute, you must specify the keyword for the desired attribute in the attribute list of that entry method’s
.ci file declaration. The syntax for this is as follows:

entry [attribute1, ..., attributeN] void EntryMethod(parameters);

Charm++ currently offers the following attributes that one may assign to an entry method: threaded, sync, exclusive,
nokeep, notrace, appwork, immediate, expedited, inline, local, python, reductiontarget, aggregate.

threaded entry methods run in their own non-preemptible threads. These entry methods may perform blocking
operations, such as calls to a sync entry method, or explicitly suspending themselves. For more details, refer to
section 2.3.3.

sync entry methods are special in that calls to them are blocking-they do not return control to the caller until the
method finishes execution completely. Sync methods may have return values; however, they may only return
messages or data types that have the PUP method implemented. Callers must run in a thread separate from the
runtime scheduler, e.g. a threaded entry methods. Calls expecting a return value will receive it as the return
from the proxy invocation:

ReturnMsg* m;
m = A[i].foo(a, b, c);

For more details, refer to section 2.3.3.
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exclusive entry methods should only exist on NodeGroup objects. One such entry method will not execute while
some other exclusive entry methods belonging to the same NodeGroup object are executing on the same node.
In other words, if one exclusive method of a NodeGroup object is executing on node N, and another one is
scheduled to run on the same node, the second exclusive method will wait to execute until the first one finishes.
An example can be found in benchmarks/charm++/pingpong.

nokeep entry methods take only a message as their lone argument, and the memory buffer for this message is managed
by the Charm++ runtime system rather than by the user. This means that the user has to guarantee that the
message will not be buffered for later usage or be freed in the user code. Additionally, users are not allowed to
modify the contents of a nokeep message, since for a broadcast the same message can be reused for all entry
method invocations on each PE. If a user frees the message or modifies its contents, a runtime error may result.
An example can be found in examples/charm++/histogram_group.

notrace entry methods will not be traced during execution. As a result, they will not be considered and displayed in
Projections for performance analysis. Additionally, immediate entry methods are by default notrace and
will not be traced during execution.

appwork this entry method will be marked as executing application work. It will be used for performance analysis.

immediate entry methods are executed in an “immediate” fashion as they skip the message scheduling while other
normal entry methods do not. Immediate entry methods can only be associated with NodeGroup objects, other-
wise a compilation error will result. If the destination of such entry method is on the local node, then the method
will be executed in the context of the regular PE regardless the execution mode of Charm++ runtime. However,
in the SMP mode, if the destination of the method is on the remote node, then the method will be executed in
the context of the communication thread. For that reason, immediate entry methods should be used for code
that is performance critical and does not take too long in terms of execution time because long running entry
methods can delay communication by occupying the communication thread for entry method execution rather
than remote communication.

Such entry methods can be useful for implementing multicasts/reductions as well as data lookup when such oper-
ations are on the performance critical path. On a certain Charm++ PE, skipping the normal message scheduling
prevents the execution of immediate entry methods from being delayed by entry functions that could take a long
time to finish. Immediate entry methods are implicitly “exclusive” on each node, meaning that one execution
of immediate message will not be interrupted by another. Function CmiProbeImmediateMsg() can be called in
user codes to probe and process immediate messages periodically. Also note that immediate entry methods
are by default notrace and are not traced during execution. An example of immediate entry method can
be found in examples/charm++/immediateEntryMethod.

expedited entry methods skip the priority-based message queue in Charm++ runtime. It is useful for messages that
require prompt processing when adding the immediate attribute to the message does not apply. Compared with
the immediate attribute, the expedited attribute provides a more general solution that works for all types of
Charm++ objects, i.e. Chare, Group, NodeGroup and Chare Array. However, expedited entry methods will
still be scheduled in the lower-level Converse message queue, and be processed in the order of message arrival.
Therefore, they may still suffer from delays caused by long running entry methods. An example can be found
in examples/charm++/satisfiability.

inline entry methods will be called as a normal C++ member function if the message recipient happens to be on the
same PE. The call to the function will happen inline, and control will return to the calling function after the inline
method completes. Because of this, these entry methods need to be re-entrant as they could be called multiple
times recursively. Parameters to the inline method will be passed by reference to avoid any copying, packing, or
unpacking of the parameters. This makes inline calls effective when large amounts of data are being passed, and
copying or packing the data would be an expensive operation. Perfect forwarding has been implemented to allow
for seamless passing of both lvalue and rvalue references. Note that calls with rvalue references must take place
in the same translation unit as the .decl.h file to allow for the appropriate template instantiations. Alternatively,
the method can be made templated and referenced from multiple translation units via CK_TEMPLATES_ONLY.
An explicit instantiation of all lvalue references is provided for compatibility with existing code. If the recipient
resides on a different PE, a regular message is sent with the message arguments packed up using PUP, and inline
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has no effect. An example “inlineem” can be found in tests/charm++/megatest.

local entry methods are equivalent to normal function calls: the entry method is always executed immediately. This
feature is available only for Group objects and Chare Array objects. The user has to guarantee that the recipient
chare element resides on the same PE. Otherwise, the application will abort with a failure. If the local entry
method uses parameter marshalling, instead of marshalling input parameters into a message, it will pass them
directly to the callee. This implies that the callee can modify the caller data if method parameters are passed by
pointer or reference. The above description of perfect forwarding for inline entry methods also applies to local
entry methods. Furthermore, input parameters are not required to be PUPable. Considering that these entry
methods always execute immediately, they are allowed to have a non-void return value. An example can be
found in examples/charm++/hello/local.

python entry methods are enabled to be called from python scripts as explained in chapter 2.4.2. Note that the object
owning the method must also be declared with the keyword python. Refer to chapter 2.4.2 for more details.

reductiontarget entry methods can be used as the target of reductions while taking arguments of the same type
specified in the contribute call rather than a message of type CkReductionMsg. See section 2.2.3 for more
information.

aggregate data sent to this entry method will be aggregated into larger messages before being sent, to reduce fine-
grained overhead. The aggregation is handled by the Topological Routing and Aggregation Module (TRAM).
The argument to this entry method must be a single fixed-size object. More details on TRAM are given in the
TRAM section of the libraries manual.

Controlling Delivery Order

By default, Charm++ processes the messages sent in roughly FIFO order when they arrive at a PE. For most programs,
this behavior is fine. However, for optimal performance, some programs need more explicit control over the order in
which messages are processed. Charm++ allows you to adjust delivery order on a per-message basis.

An example program demonstrating how to modify delivery order for messages and parameter marshaling can be
found in examples/charm++/prio.

Queueing Strategies

The order in which messages are processed in the recipient’s queue can be set by explicitly setting the queuing strategy
using one the following constants. These constants can be applied when sending a message or invoking an entry
method using parameter marshaling:

• CK_QUEUEING_FIFO: FIFO ordering

• CK_QUEUEING_LIFO: LIFO ordering

• CK_QUEUEING_IFIFO: FIFO ordering with integer priority

• CK_QUEUEING_ILIFO: LIFO ordering with integer priority

• CK_QUEUEING_BFIFO: FIFO ordering with bitvector priority

• CK_QUEUEING_BLIFO: LIFO ordering with bitvector priority

• CK_QUEUEING_LFIFO: FIFO ordering with long integer priority

• CK_QUEUEING_LLIFO: FIFO ordering with long integer priority
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Parameter Marshaling

For parameter marshaling, the queueingtype can be set for CkEntryOptions, which is passed to an entry method
invocation as the optional last parameter.

CkEntryOptions opts1, opts2;
opts1.setQueueing(CK_QUEUEING_FIFO);
opts2.setQueueing(CK_QUEUEING_LIFO);

chare.entry_name(arg1, arg2, opts1);
chare.entry_name(arg1, arg2, opts2);

When the message with opts1 arrives at its destination, it will be pushed onto the end of the message queue as usual.
However, when the message with opts2 arrives, it will be pushed onto the front of the message queue.

Messages

For messages, the CkSetQueueing function can be used to change the order in which messages are processed, where
queueingtype is one of the above constants.
void CkSetQueueing(MsgType message, int queueingtype)

The first two options, CK_QUEUEING_FIFO and CK_QUEUEING_LIFO, are used as follows:

MsgType *msg1 = new MsgType ;
CkSetQueueing(msg1, CK_QUEUEING_FIFO);

MsgType *msg2 = new MsgType ;
CkSetQueueing(msg2, CK_QUEUEING_LIFO);

Similar to the parameter marshalled case described above, msg1 will be pushed onto the end of the message queue,
while msg2 will be pushed onto the front of the message queue.

Prioritized Execution

The basic FIFO and LIFO strategies are sufficient to approximate parallel breadth-first and depth-first explorations of
a problem space, but they do not allow more fine-grained control. To provide that degree of control, Charm++ also
allows explicit prioritization of messages.

The other six queueing strategies involve the use of priorities . There are two kinds of priorities which can be attached
to a message: integer priorities and bitvector priorities . These correspond to the I and B queueing strategies, respec-
tively. In both cases, numerically lower priorities will be dequeued and delivered before numerically greater priorities.
The FIFO and LIFO queueing strategies then control the relative order in which messages of the same priority will be
delivered.

To attach a priority field to a message, one needs to set aside space in the message’s buffer while allocating the message
. To achieve this, the size of the priority field in bits should be specified as a placement argument to the new operator,
as described in section 2.3.1. Although the size of the priority field is specified in bits, it is always padded to an
integral number of ints. A pointer to the priority part of the message buffer can be obtained with this call: void
*CkPriorityPtr(MsgType msg).

Integer priorities are quite straightforward. One allocates a message with an extra integer parameter to “new” (see the
first line of the example below), which sets aside enough space (in bits) in the message to hold the priority. One then
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stores the priority in the message. Finally, one informs the system that the message contains an integer priority using
CkSetQueueing:

MsgType *msg = new (8*sizeof(int)) MsgType;

*(int*)CkPriorityPtr(msg) = prio;
CkSetQueueing(msg, CK_QUEUEING_IFIFO);

Bitvector Prioritization

Bitvector priorities are arbitrary-length bit-strings representing fixed-point numbers in the range 0 to 1. For example,
the bit-string “001001” represents the number .001001. As with integer priorities, higher numbers represent lower
priorities. However, bitvectors can be of arbitrary length, and hence the priority numbers they represent can be of
arbitrary precision.

Arbitrary-precision priorities are often useful in AI search-tree applications. Suppose we have a heuristic suggesting
that tree node 𝑁1 should be searched before tree node 𝑁2. We therefore designate that node 𝑁1 and its descendants
will use high priorities, and that node 𝑁2 and its descendants will use lower priorities. We have effectively split the
range of possible priorities in two. If several such heuristics fire in sequence, we can easily split the priority range
in two enough times that no significant bits remain, and the search begins to fail for lack of meaningful priorities to
assign. The solution is to use arbitrary-precision priorities, i.e. bitvector priorities.

To assign a bitvector priority, two methods are available. The first is to obtain a pointer to the priority field using
CkPriorityPtr, and then manually set the bits using the bit-setting operations inherent to C. To achieve this, one must
know the format of the bitvector, which is as follows: the bitvector is represented as an array of unsigned integers.
The most significant bit of the first integer contains the first bit of the bitvector. The remaining bits of the first integer
contain the next 31 bits of the bitvector. Subsequent integers contain 32 bits each. If the size of the bitvector is not a
multiple of 32, then the last integer contains 0 bits for padding in the least-significant bits of the integer.

The second way to assign priorities is only useful for those who are using the priority range-splitting described above.
The root of the tree is assigned the null priority-string. Each child is assigned its parent’s priority with some number
of bits concatenated. The net effect is that the entire priority of a branch is within a small epsilon of the priority of its
root.

It is possible to utilize unprioritized messages, integer priorities, and bitvector priorities in the same program. The
messages will be processed in roughly the following order :

• Among messages enqueued with bitvector priorities, the messages are dequeued according to their priority. The
priority “0000. . . ” is dequeued first, and “1111. . . ” is dequeued last.

• Unprioritized messages are treated as if they had the priority “1000. . . ” (which is the “middle” priority, it lies
exactly halfway between “0000. . . ” and “1111. . . ”).

• Integer priorities are converted to bitvector priorities. They are normalized so that the integer priority of zero
is converted to “1000. . . ” (the “middle” priority). To be more specific, the conversion is performed by adding
0x80000000 to the integer, and then treating the resulting 32-bit quantity as a 32-bit bitvector priority.

• Among messages with the same priority, messages are dequeued in FIFO order or LIFO order, depending upon
which queuing strategy was used.

Additionally, long integer priorities can be specified by the L strategy.

A final reminder about prioritized execution: Charm++ processes messages in roughly the order you specify; it never
guarantees that it will deliver the messages in precisely the order you specify. Thus, the correctness of your program
should never depend on the order in which the runtime delivers messages. However, it makes a serious attempt to be
“close”, so priorities can strongly affect the efficiency of your program.
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Skipping the Queue

Some operations that one might want to perform are sufficiently latency-sensitive that they should never wait in line
behind other messages. The Charm++ runtime offers two attributes for entry methods, expedited and immediate, to
serve these needs. For more information on these attributes, see Section 2.3.1 and the example in tests/charm++/
megatest/immediatering.ci.

Zero Copy Messaging API

Apart from using messages, Charm++ also provides APIs to avoid sender and receiver side copies. On RDMA en-
abled networks like GNI, Verbs, PAMI, OFI, and UCX these internally make use of one-sided communication by
using the underlying Remote Direct Memory Access (RDMA) enabled network. For large arrays (few 100 KBs or
more), the cost of copying during marshalling the message can be quite high. Using these APIs can help not only
save the expensive copy operation but also reduce the application’s memory footprint by avoiding data duplication.
Saving these costs for large arrays proves to be a significant optimization in achieving faster message send and receive
times in addition to overall improvement in performance because of lower memory consumption. On the other hand,
using these APIs for small arrays can lead to a drop in performance due to the overhead associated with one-sided
communication. The overhead is mainly due to additional small messages required for sending the metadata message
and the acknowledgment message on completion.

For within process data-transfers, this API uses regular memcpy to achieve zero copy semantics. Similarly, on CMA-
enabled machines, in a few cases, this API takes advantage of CMA to perform inter-process intra-physical host data
transfers. This API is also functional on non-RDMA enabled networks like regular ethernet, except that it does not
avoid copies and behaves like a regular Charm++ entry method invocation.

There are three APIs that provide zero copy semantics in Charm++:

• Zero Copy Direct API

• Zero Copy Entry Method Send API

• Zero Copy Entry Method Post API

Zero Copy Direct API

The Zero Copy Direct API allows users to explicitly invoke a standard set of methods on predefined buffer information
objects to avoid copies. Unlike the Entry Method API which calls the zero copy operation for every zero copy entry
method invocation, the direct API provides a more flexible interface by allowing the user to exploit the persistent
nature of iterative applications to perform zero copy operations using the same buffer information objects across
iteration boundaries. It is also more beneficial than the Zero Copy Entry Method Send API because unlike the entry
method Send API, which avoids just the sender side copy, the Zero Copy Direct API avoids both sender and receiver
side copies.

To send an array using the Zero Copy Direct API, define a CkNcpyBuffer object on the sender chare specifying the
pointer, size, a CkCallback object and optional reg-mode and dereg-mode parameters.

CkCallback srcCb(CkIndex_Ping1::sourceDone, thisProxy[thisIndex]);
// CkNcpyBuffer object representing the source buffer
CkNcpyBuffer source(arr1, arr1Size * sizeof(int), srcCb);
// ^ is equivalent to CkNcpyBuffer source(arr1, arr1Size * sizeof(int), srcCb, CK_
→˓BUFFER_REG, CK_BUFFER_DEREG);

When used inside a CkNcpyBuffer object that represents the source buffer information, the callback is specified to no-
tify about the safety of reusing the buffer and indicates that the get or put call has been completed. In those cases where
the application can determine the safety of reusing the buffer through other synchronization mechanisms, the callback
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is not entirely useful and in such cases, CkCallback::ignore can be passed as the callback parameter. The op-
tional reg-mode and dereg-mode parameters are used to determine the network registration mode and de-registration
mode for the buffer. They are only relevant on networks requiring explicit memory registration for performing RDMA
operations. These networks include GNI, OFI, UCX and Verbs. When the reg-mode is not specified by the user, the
default reg-mode is considered to be CK_BUFFER_REG and similarly, when the dereg-mode is not specified by the
user, the default dereg-mode is considered to be CK_BUFFER_DEREG.

Similarly, to receive an array using the Zero Copy Direct API, define another CkNcpyBuffer object on the receiver
chare object specifying the pointer, the size, a CkCallback object and the optional reg-mode and dereg-mode parame-
ters. When used inside a CkNcpyBuffer object that represents the destination buffer, the callback is specified to notify
the completion of data transfer into the CkNcpyBuffer buffer. In those cases where the application can determine data
transfer completion through other synchronization mechanisms, the callback is not entirely useful and in such cases,
CkCallback::ignore can be passed as the callback parameter.

CkCallback destCb(CkIndex_Ping1::destinationDone, thisProxy[thisIndex]);
// CkNcpyBuffer object representing the destination buffer
CkNcpyBuffer dest(arr2, arr2Size * sizeof(int), destCb);
// is equivalent to CkNcpyBuffer dest(arr2, arr2Size * sizeof(int), destCb, CK_BUFFER_
→˓REG, CK_BUFFER_DEREG);

Once the source CkNcpyBuffer and destination CkNcpyBuffer objects have been defined on the sender and receiver
chares, to perform a get operation, send the source CkNcpyBuffer object to the receiver chare. This can be done using
a regular entry method invocation as shown in the following code snippet, where the sender, arrProxy[0] sends its
source object to the receiver chare, arrProxy[1].

// On Index 0 of arrProxy chare array
arrProxy[1].recvNcpySrcObj(source);

After receiving the sender’s source CkNcpyBuffer object, the receiver can perform a get operation on its destination
CkNcpyBuffer object by passing the source object as an argument to the runtime defined get method as shown in the
following code snippet.

// On Index 1 of arrProxy chare array
// Call get on the local destination object passing the source object
dest.get(source);

This call performs a get operation, reading the remote source buffer into the local destination buffer.

Similarly, a receiver’s destination CkNcpyBuffer object can be sent to the sender for the sender to perform a put on its
source object by passing the source CkNcpyBuffer object as an argument to the runtime defined put method as shown
in the code snippet.

// On Index 1 of arrProxy chare array
arrProxy[0].recvNcpyDestObj(dest);

// On Index 0 of arrProxy chare array
// Call put on the local source object passing the destination object
source.put(dest);

After the completion of either a get or a put, the callbacks specified in both the objects are invoked. Within the
CkNcpyBuffer source callback, sourceDone(), the buffer can be safely modified or freed as shown in the following
code snippet.

// Invoked by the runtime on source (Index 0)
void sourceDone() {

// update the buffer to the next pointer

(continues on next page)
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updateBuffer();
}

Similarly, inside the CkNcpyBuffer destination callback, destinationDone(), the user is guaranteed that the data
transfer is complete into the destination buffer and the user can begin operating on the newly available data as shown
in the following code snippet.

// Invoked by the runtime on destination (Index 1)
void destinationDone() {

// received data, begin computing
computeValues();

}

The callback methods can also take a pointer to a CkDataMsg message. This message can be used to access the
original buffer information object i.e. the CkNcpyBuffer objects used for the zero copy transfer. The buffer infor-
mation object available in the callback allows access to all its information including the buffer pointer and the arbitrary
reference pointer set using the method setRef. It is important to note that only the source CkNcpyBuffer object
is accessible using the CkDataMsg in the source callback and similarly, the destination CkNcpyBuffer object is
accessible using the CkDataMsg in the destination callback. The following code snippet illustrates the accessing
of the original buffer pointer in the callback method by casting the data field of the CkDataMsg object into a
CkNcpyBuffer object.

// Invoked by the runtime on source (Index 0)
void sourceDone(CkDataMsg *msg) {

// Cast msg->data to a CkNcpyBuffer to get the source buffer information object
CkNcpyBuffer *source = (CkNcpyBuffer *)(msg->data);

// access buffer pointer and free it
free(source->ptr);

delete msg;
}

The following code snippet illustrates the usage of the setRef method.

const void *refPtr = &index;
CkNcpyBuffer source(arr1, arr1Size * sizeof(int), srcCb, CK_BUFFER_REG);
source.setRef(refPtr);

Similar to the buffer pointer, the user set arbitrary reference pointer can be also accessed in the callback method. This
is shown in the next code snippet.

// Invoked by the runtime on source (Index 0)
void sourceDone(CkDataMsg *msg) {

// update the buffer to the next pointer
updateBuffer();

// Cast msg->data to a CkNcpyBuffer
CkNcpyBuffer *src = (CkNcpyBuffer *)(msg->data);

// access buffer pointer and free it
free(src->ptr);

// get reference pointer
const void *refPtr = src->ref;

(continues on next page)
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delete msg;
}

The usage of CkDataMsg and setRef in order to access the original pointer and the arbitrary reference pointer is
illustrated in examples/charm++/zerocopy/direct_api/unreg/simple_get

Both the source and destination buffers are of the same type i.e. CkNcpyBuffer. What distinguishes a source buffer
from a destination buffer is the way the get or put call is made. A valid get call using two CkNcpyBuffer objects obj1
and obj2 is performed as obj1.get(obj2), where obj1 is the local destination buffer object and obj2 is the
remote source buffer object that was passed to this PE. Similarly, a valid put call using two CkNcpyBuffer objects
obj1 and obj2 is performed as obj1.put(obj2), where obj1 is the local source buffer object and obj2 is the
remote destination buffer object that was passed to this PE.

In addition to the callbacks, the return values of get and put also indicate the completion of data transfer between the
buffers. When the source and destination buffers are within the same process or on different processes within the same
CMA-enabled physical node, the zerocopy data transfer happens immediately without an asynchronous RDMA call.
In such cases, both the methods, get and put return an enum value of CkNcpyStatus::complete. This value of the API
indicates the completion of the zerocopy data transfer. On the other hand, in the case of an asynchronous RDMA call,
the data transfer is not immediate and the return enum value of the get and put methods is CkNcpyStatus::incomplete.
This indicates that the data transfer is in-progress and not necessarily complete. Use of CkNcpyStatus in an application
is illustrated in examples/charm++/zerocopy/direct_api/reg/simple_get.

Since callbacks in Charm++ allow to store a reference number, these callbacks passed into CkNcpyBuffer can be
set with a reference number using the method cb.setRefNum(num). Upon callback invocation, these reference
numbers can be used to identify the buffers that were passed into the CkNcpyBuffer objects. Upon callback invocation,
the reference number of the callback can be accessed using the CkDataMsg argument of the callback function. For a
callback using a CkDataMsg *msg, the reference number is obtained by using the method CkGetRefNum(msg);
. This is illustrated in examples/charm++/zerocopy/direct_api/unreg/simple_get. specifically
useful where there is an indexed collection of buffers, where the reference number can be used to index the collection.

Note that the CkNcpyBuffer objects can be either statically declared or be dynamically allocated. Additionally, the
objects are also reusable across iteration boundaries i.e. after sending the CkNcpyBuffer object, the remote PE can
use the same object to perform get or put. This pattern of using the same objects across iterations is demonstrated in
benchmarks/charm++/zerocopy/direct_api/reg/pingpong.

This API is demonstrated in examples/charm++/zerocopy/direct_api

Memory Registration and Registration Modes

There are four modes of memory registration for the Zero Copy API. These registration modes act as control switches
on networks that require memory registration like GNI, OFI, UCX and Verbs, in order to perform RDMA operations
. They dictate the functioning of the API providing flexible options based on user requirement. On other networks,
where network memory management is not necessary (Netlrts) or is internally handled by the lower layer networking
API (PAMI, MPI), these switches are still supported to maintain API consistency by all behaving in the similar default
mode of operation.

CK_BUFFER_REG:

CK_BUFFER_REG is the default mode that is used when no mode is passed. This mode doesn’t distinguish between
non-network and network data transfers. When this mode is passed, the buffer is registered immediately and this
can be used for both non-network sends (memcpy) and network sends without requiring an extra message being
sent by the runtime system for the latter case. This mode is demonstrated in examples/charm++/zerocopy/
direct_api/reg

CK_BUFFER_UNREG:

2.3. Advanced Programming Techniques 69



Charm++ Documentation

When this mode is passed, the buffer is initially unregistered and it is registered only for network transfers where
registration is absolutely required. For example, if the target buffer is on the same PE or same logical node (or
process), since the get internally performs a memcpy, registration is avoided for non-network transfers. On the other
hand, if the target buffer resides on a remote PE on a different logical node, the get is implemented through an RDMA
call requiring registration. In such a case, there is a small message sent by the RTS to register and perform the RDMA
operation. This mode is demonstrated in examples/charm++/zerocopy/direct_api/unreg

CK_BUFFER_PREREG:

This mode is only beneficial by implementations that use pre-registered memory pools. In Charm++, GNI and Verbs
machine layers use pre-registered memory pools for avoiding registration costs. On other machine layers, this mode is
supported, but it behaves similar to CK_BUFFER_REG. A custom allocator, CkRdmaAlloc can be used to allocate
a buffer from a pool of pre-registered memory to avoid the expensive malloc and memory registration costs. For
a buffer allocated through CkRdmaAlloc, the mode CK_BUFFER_PREREG should be passed to indicate the use
of a mempooled buffer to the RTS. A buffer allocated with CkRdmaAlloc can be deallocated by calling a custom
deallocator, CkRdmaFree. Although the allocator CkRdmaAlloc and deallocator, CkRdmaFree are beneficial on
GNI and Verbs, the allocators are functional on other networks and allocate regular memory similar to a malloc
call. Importantly, it should be noted that with the CK_BUFFER_PREREG mode, the allocated buffer’s pointer should
be used without any offsets. Using a buffer pointer with an offset will cause a segmentation fault. This mode is
demonstrated in examples/charm++/zerocopy/direct_api/prereg

CK_BUFFER_NOREG:

This mode is used for just storing pointer information without any actual networking or registration information. It
cannot be used for performing any zerocopy operations. This mode was added as it was useful for implementing a
runtime system feature.

Memory De-registration and De-registration Modes

On network layers that require explicit memory registration, it is important to de-register the registered memory. Since
networks are limited by the maximum registered or pinned memory, not de-registering pinned memory can lead to a
pinned memory leak, which could potentially reduce application performance because it limits the amount of pinned
memory available to the process.

Similar to memory registration modes, the ZC API also provides two de-registration modes.

CK_BUFFER_DEREG:

CK_BUFFER_DEREG is the default mode that is used when no dereg-mode is specified. This mode signals to the
RTS that all the memory registered by the CkNcpyBuffer object should be de-registered by the RTS. Hence, when
CK_BUFFER_DEREG is specified by the user, it is the runtime system’s responsibility to de-register the buffer reg-
istered by the CkNcpyBuffer object. This dereg-mode is used when the user is not likely to reuse the buffer and
wants the de-registration responsibility transferred to the RTS.

CK_BUFFER_NODEREG:

This mode is specified when the user doesn’t want the RTS to de-register the buffer after the completion of the zero
copy operation. It is beneficial when the user wants to reuse the same buffer (and reuse the CkNcpyBuffer object)
by avoiding the cost of de-registration and registration.

Important Methods

The Zero Copy API provides important methods that offer utilities that can be used by the user.

The deregisterMem method is used by the user to de-register memory after the completion of the zero copy oper-
ations. This allows for other buffers to use the registered memory as machines/networks are limited by the maximum

70 Chapter 2. The Charm++ Parallel Programming System



Charm++ Documentation

amount of registered or pinned memory. Registered memory can be de-registered by calling the deregisterMem()
method on the CkNcpyBuffer object.

// de-register previously registered buffer
dest.registerMem();

In addition to deregisterMem(), there are other methods in a CkNcpyBuffer object that offer other
utilities. The init(const void *ptr, size_t cnt, CkCallback &cb, unsigned short int
mode=CK_BUFFER_UNREG) method can be used to re-initialize the CkNcpyBuffer object to new values similar
to the ones that were passed in the constructor. For example, after using a CkNcpyBuffer object called srcInfo, the
user can re-initialize the same object with other values. This is shown in the following code snippet.

// initialize src with new values
src.init(ptr, 200, newCb, CK_BUFFER_REG);

Additionally, the user can use another method registerMem in order to register a buffer that has been de-registered.
Note that it is not required to call registerMem after a new initialization using init as registerMem is in-
ternally called on every new initialization. The usage of registerMem is illustrated in the following code snippet.
Additionally, also note that following de-registration, if intended to register again, it is required to call registerMem
even in the CK_BUFFER_PREREG mode when the buffer is allocated from a preregistered mempool. This is required
to set the registration memory handles and will not incur any registration costs.

// register previously de-registered buffer
src.registerMem();

It should be noted that the Zero Copy Direct API is optimized only for point to point communication. Although it
can be used for use cases where a single buffer needs to be broadcasted to multiple recipients, it is very likely that
the API will currently perform suboptimally. This is primarily because of the implementation which assumes point
to point communication for the Zero Copy Direct API. Having the same source buffer information (CkNcpyBuffer)
being passed to a large number of processes, with each process performing a get call from the same source process
will cause network congestion at the source process by slowing down each get operation because of competing get
calls.

We are currently working on optimizing the Zero Copy Direct API for broadcast operations. Currently, the Zero Copy
Entry Method Send API and the Zero Copy Entry Method Post API handle optimized broadcast operations by using a
spanning tree as explained in the following sections.

Zero Copy Entry Method Send API

The Zero Copy Entry Method Send API allows the user to only avoid the sender side copy. On the receiver side,
the buffer is allocated by the runtime system and a pointer to the Readonly buffer is provided to the user as an entry
method parameter. For a broadcast operation, there is only one buffer allocated by the runtime system for each recipient
process and a pointer to the same buffer is passed to all the recipient objects on that process (or logical node).

This API offloads the user from the responsibility of making additional calls to support zero copy semantics. It extends
the capability of the existing entry methods with slight modifications in order to send large buffers without a copy.

To send an array using the Zero Copy Message Send API, specify the array parameter in the .ci file with the nocopy
specifier.

// same .ci specification is used for p2p and bcast operations
entry void foo (int size, nocopy int arr[size]);

While calling the entry method from the .C file, wrap the array i.e the pointer in a CkSendBuffer wrapper. The
CkSendBuffer wrapper is essentially a method that constructs a CkNcpyBuffer around the passed pointer.
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// for point to point send
arrayProxy[0].foo(500000, CkSendBuffer(arrPtr));

// for readonly broadcast send
arrayProxy.foo(500000, CkSendBuffer(arrPtr));

Until the RDMA operation is completed, it is not safe to modify the buffer. To be notified on completion of the RDMA
operation, pass an optional callback object in the CkSendBuffer wrapper associated with the specific nocopy array.

CkCallback cb1(CkIndex_Foo::zerocopySent(), thisProxy[thisIndex]);

// for point to point send
arrayProxy[0].foo(500000, CkSendBuffer(arrPtr, cb1));

// for readonly broadcast send
arrayProxy.foo(500000, CkSendBuffer(arrPtr, cb1));

The CkSendBuffer wrapper also allows users to specify two optional mode parameters. These are used to determine
the network registration mode and network de-registration mode for the buffer. It is only relevant on networks requiring
explicit memory registration for performing RDMA operations. These networks include GNI, OFI, and Verbs. When
the registration mode is not specified by the user, the default mode is considered to be CK_BUFFER_REG. Similarly,
when the de-registration mode is not specified by the user, the default mode is considered to be CK_BUFFER_DEREG.
Note that in order to specify a de-registration mode, the registration mode has to be specified in the constructor because
of how default parameters work with constructors.

/* Specifying registration modes only, without any de-registration mode (uses default
→˓de-reg mode) */

// for point to point send
arrayProxy[0].foo(500000, CkSendBuffer(arrPtr, cb1, CK_BUFFER_REG));

// or arrayProxy[0].foo(500000, CkSendBuffer(arrPtr, cb1)); for REG reg-mode because
→˓of REG being the default
// or arrayProxy[0].foo(500000, CkSendBuffer(arrPtr, cb1, CK_BUFFER_UNREG)); for
→˓UNREG reg-mode
// or arrayProxy[0].foo(500000, CkSendBuffer(arrPtr, cb1, CK_BUFFER_PREREG)); for
→˓PREREG reg-mode

// for bcast send
arrayProxy.foo(500000, CkSendBuffer(arrPtr, cb1, CK_BUFFER_REG));

// or arrayProxy.foo(500000, CkSendBuffer(arrPtr, cb1)); for REG reg-mode because of
→˓REG being the default
// or arrayProxy.foo(500000, CkSendBuffer(arrPtr, cb1, CK_BUFFER_UNREG)); for UNREG
→˓reg-mode
// or arrayProxy.foo(500000, CkSendBuffer(arrPtr, cb1, CK_BUFFER_PREREG)); for PREREG
→˓reg-mode

/* Specifying de-registration modes */

// for point to point send
arrayProxy[0].foo(500000, CkSendBuffer(arrPtr, cb1, CK_BUFFER_REG, CK_BUFFER_DEREG));

// or arrayProxy[0].foo(500000, CkSendBuffer(arrPtr, cb1, CK_BUFFER_REG)); for DEREG
→˓dereg-mode because of DEREG being the default
// or arrayProxy[0].foo(500000, CkSendBuffer(arrPtr, cb1, CK_BUFFER_REG, CK_BUFFER_
→˓NODEREG)); for NODEREG dereg-mode

(continues on next page)
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// for bcast send
arrayProxy.foo(500000, CkSendBuffer(arrPtr, cb1, CK_BUFFER_REG, CK_BUFFER_DEREG));

// or arrayProxy.foo(500000, CkSendBuffer(arrPtr, cb1, CK_BUFFER_REG)); for DEREG
→˓dereg-mode because of DEREG being the default
// or arrayProxy.foo(500000, CkSendBuffer(arrPtr, cb1, CK_BUFFER_REG, CK_BUFFER_
→˓NODEREG)); for NODEREG dereg-mode

The memory registration mode and de-registration mode can also be specified without a callback, as shown below:

/* Specifying registration modes only, without any de-registration mode (uses default
→˓de-reg mode) */

// for point to point send
arrayProxy[0].foo(500000, CkSendBuffer(arrPtr, CK_BUFFER_REG));

// or arrayProxy[0].foo(500000, CkSendBuffer(arrPtr)); for REG reg-mode because of
→˓REG being the default
// or arrayProxy[0].foo(500000, CkSendBuffer(arrPtr, CK_BUFFER_UNREG)); for UNREG reg-
→˓mode
// or arrayProxy[0].foo(500000, CkSendBuffer(arrPtr, CK_BUFFER_PREREG)); for PREREG
→˓reg-mode

// for bcast send
arrayProxy.foo(500000, CkSendBuffer(arrPtr, CK_BUFFER_REG));

// or arrayProxy.foo(500000, CkSendBuffer(arrPtr)); for REG reg-mode because of REG
→˓being the default
// or arrayProxy.foo(500000, CkSendBuffer(arrPtr, CK_BUFFER_UNREG)); for UNREG reg-
→˓mode
// or arrayProxy.foo(500000, CkSendBuffer(arrPtr, CK_BUFFER_PREREG)); for PREREG reg-
→˓mode

/* Specifying de-registration modes */

// for point to point send
arrayProxy[0].foo(500000, CkSendBuffer(arrPtr, CK_BUFFER_REG, CK_BUFFER_DEREG));

// or arrayProxy[0].foo(500000, CkSendBuffer(arrPtr, CK_BUFFER_REG)); for DEREG dereg-
→˓mode because of DEREG being the default
// or arrayProxy[0].foo(500000, CkSendBuffer(arrPtr, CK_BUFFER_REG, CK_BUFFER_
→˓NODEREG)); for NODEREG dereg-mode

// for bcast send
arrayProxy.foo(500000, CkSendBuffer(arrPtr, CK_BUFFER_REG, CK_BUFFER_DEREG));

// or arrayProxy.foo(500000, CkSendBuffer(arrPtr, CK_BUFFER_REG)); for DEREG dereg-
→˓mode because of DEREG being the default
// or arrayProxy.foo(500000, CkSendBuffer(arrPtr, CK_BUFFER_REG, CK_BUFFER_NODEREG));
→˓for NODEREG dereg-mode

In the case of point to point communication, the callback will be invoked on completion of the RDMA operation
associated with the corresponding array.

For zero copy broadcast operations, the callback will be invoked when all the broadcast recipient processes have
successfully received the broadcasted array. Note that this does not necessarily mean that the recipient objects have
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received the data i.e. it is possible that the process (or the logical node) has received the data, but the individual entry
methods are still waiting in the scheduler (and are scheduled to run) and hence have not received the data.

Inside the callback, it is safe to overwrite the buffer sent via the Zero Copy Entry Method Send API.

//called when RDMA operation is completed
void zerocopySent() {

// update the buffer to the next pointer
updateBuffer();

}

The callback methods can also take a pointer to a CkDataMsg message. This message can be used to access the
original buffer information object i.e. the CkNcpyBuffer object constructed by CkSendBuffer and used for the zero
copy transfer. The buffer information object available in the callback allows access to all its information including the
buffer pointer.

//called when RDMA operation is completed
void zerocopySent(CkDataMsg *msg)
{

// Cast msg->data to a CkNcpyBuffer to get the source buffer information object
CkNcpyBuffer *source = (CkNcpyBuffer *)(msg->data));

// access buffer pointer and free it
free(ptr); // if the callback is executed on the source process
delete msg;

}

The RDMA call is associated with a nocopy array rather than the entry method. In the case of sending multiple nocopy
arrays, each RDMA call is independent of the other. Hence, the callback applies to only the array it is attached to and
not to all the nocopy arrays passed in an entry method invocation. On completion of the RDMA call for each array,
the corresponding callback is separately invoked.

On the receiver side, the entry method is defined as a regular entry method in the .C file, with the nocopy parameter
being received as a pointer as shown below:

void foo (int size, int *arr) {
// data received in runtime system buffer pointed by arr
// Note that 'arr' buffer is Readonly

computeValues();
}

As an example, for an entry method with two nocopy array parameters, each called with the same callback, the callback
will be invoked twice: on completing the transfer of each of the two nocopy parameters.

For multiple arrays to be sent via RDMA, declare the entry method in the .ci file as:

entry void foo (int size1, nocopy int arr1[size1], int size2, nocopy double
→˓arr2[size2]);

In the .C file, it is also possible to have different callbacks associated with each nocopy array.

CkCallback cb1(CkIndex_Foo::zerocopySent1(NULL), thisProxy[thisIndex]);
CkCallback cb2(CkIndex_Foo::zerocopySent2(NULL), thisProxy[thisIndex]);
arrayProxy[0].foo(500000, CkSendBuffer(arrPtr1, cb1), 1024000, CkSendBuffer(arrPtr2,
→˓cb2));

This API for point to point communication is demonstrated in examples/charm++/zerocopy/
entry_method_api and benchmarks/charm++/pingpong. For broadcast operations, the usage of this API
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is demonstrated in examples/charm++/zerocopy/entry_method_bcast_api.

It should be noted that calls to entry methods with nocopy specified parameters is currently supported for point to
point operations and only collection-wide broadcast operations like broadcasts across an entire chare array or group
or nodegroup. It is yet to be supported for section broadcasts. Additionally, there is also no support for migration of
chares that have pending RDMA transfer requests.

It should also be noted that the benefit of this API can be seen for large arrays on only RDMA enabled networks.
On networks which do not support RDMA, and, for within process sends (which uses shared memory), the API is
functional but doesn’t show any performance benefit as it behaves like a regular entry method that copies its arguments.

Table 1 displays the message size thresholds for the Zero Copy Entry Method Send API on popular sys-
tems and build architectures. These results were obtained by running benchmarks/charm++/zerocopy/
entry_method_api/pingpong in non-SMP mode on production builds. For message sizes greater than or
equal to the displayed thresholds, the Zero Copy API is found to perform better than the regular message send API.
For network layers that are not pamilrts, gni, verbs, ofi or mpi, the generic implementation is used.

1: Message Size Thresholds for which Zero Copy Entry API performs
better than Regular API

Machine Network Build Architecture Intra Proces-
sor

Intra
Host

Inter
Host

Blue Gene/Q (Vesta) PAMI pamilrts-bluegeneq4 MB 32 KB 256 KB
Cray XC30 (Edison) Aries gni-crayxc 1 MB 2 MB 2 MB
Cray XC30 (Edison) Aries mpi-crayxc 256 KB 8 KB 32 KB
Dell Cluster (Golub) Infiniband verbs-linux-x86_64128 KB 2 MB 1 MB
Dell Cluster (Golub) Infiniband mpi-linux-x86_64 128 KB 32 KB 64 KB
Intel Cluster (Bridges) Intel Omni-

Path
ofi-linux-x86_64 64 KB 32 KB 32 KB

Intel KNL Cluster (Stam-
pede2)

Intel Omni-
Path

ofi-linux-x86_64 1 MB 64 KB 64 KB

Zero Copy Entry Method Post API

The Zero Copy Entry Method Post API is an extension of the Zero Copy Entry Method Send API. This API allows
users to receive the sent data in a user posted buffer. In addition to saving the sender side copy, it also avoids the
receiver side copy by not using any intermediate buffers and directly receiving the data in the user posted buffer.
Unlike the Zero Copy Entry Method Send API, this API should be used when the user wishes to receive the data in a
user posted buffer, which is allocated and managed by the user.

The posting of the receiver buffer happens at an object level, where each recipient object, for example, a chare array
element or a group element or nodegroup element posts a receiver buffer using a special version of the entry method.

To send an array using the Zero Copy Post API, specify the array parameter in the .ci file with the nocopypost specifier.

// same .ci specification is used for p2p and bcast operations
entry void foo (int size, nocopypost int arr[size]);

// ^ note that the nocopypost specifier is different from nocopy and
// indicates the usage of the post API for the array arr

The sender side code for the Zero Copy Entry Method Post API is exactly the same as Zero Copy Entry Method Send
API and can be referenced from the previous section. In this section, we will highlight the differences between the
two APIs and demonstrate the usage of the Post API on the receiver side.

As previously mentioned, the Zero Copy Entry Method Post API posts user buffers to receive the data sent by the
sender. This is done using a special overloaded version of the recipient entry method, called Post entry method. The
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overloaded function has all the entry method parameters and an additional CkNcpyBufferPost array parameter
at the end of the signature. Additionally, the entry method parameters are specified as references instead of values.
Inside this post entry method, the received references can be initialized by the user. The pointer reference is assigned
to a user allocated buffer, i.e. the buffer in which the user wishes to receive the data. The size variable reference could
be assigned to a value (or variable) that represents the size of the data of that type that needs to be received. If this
reference variable is not assigned inside the post entry method, the size specified at the sender in the CkSendBuffer
wrapper will be used as the default size. The post entry method also allows the receiver to specify the memory
registration mode and the memory de-registration mode. This is done by indexing the ncpyPost array and assigning
the regMode and deregMode parameters present inside each array element of the CkNcpyBufferPost array.
When the network memory registration mode is unassigned by the user, the default CK_BUFFER_REG regMode is
used. Similarly, when the de-registration mode is unassigned by the user, the default CK_BUFFER_DEREG deregMode
is used.

For the entry method foo specified with a nocopypost specifier, the resulting post function defined in the .C file will
be:

void foo (int &size, int *& arr, CkNcpyBufferPost *ncpyPost) {
arr = myBuffer; // myBuffer is a user allocated buffer

size = 2000; // 2000 ints need to be received.

ncpyPost[0].regMode = CK_BUFFER_REG; // specify the regMode for the 0th pointer

ncpyPost[0].deregMode = CK_BUFFER_DEREG; // specify the deregMode for the 0th
→˓pointer
}

In addition to the post entry method, the regular entry method also needs to be defined as in the case of the Entry
Method Send API, where the nocopypost parameter is being received as a pointer as shown below:

void foo (int size, int *arr) {
// arr points to myBuffer and the data sent is received in myBuffer
// Note that 'arr' buffer is the same as myBuffer, which is user allocated and

→˓managed

computeValues();
}

Similarly, for sending and receiving multiple arrays, the .ci file specification will be:

entry void foo(nocopypost int arr1[size1], int size1, nocopypost char arr2[size2],
→˓int size2);

In the .C file, we define a post entry method and a regular entry method:

// post entry method
void foo(int *& arr1, int & size1, char *& arr2, int & size2, CkNcpyBufferPost
→˓*ncpyPost) {

arr1 = myBuffer1;
ncpyPost[0].regMode = CK_BUFFER_UNREG;
ncpyPost[0].deregMode = CK_BUFFER_DEREG;

arr2 = myBuffer2; // myBuffer2 is allocated using CkRdmaAlloc
ncpyPost[1].regMode = CK_BUFFER_PREREG;
ncpyPost[1].deregMode = CK_BUFFER_NODEREG;

}

(continues on next page)
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// regular entry method
void foo(int *arr1, int size1, char *arr2, int size2) {

// sent buffer is received in myBuffer1, same as arr1

// sent buffer is received in myBuffer2, same as arr2
}

It is important to note that the CkNcpyBufferPost array has as many elements as the number of nocopypost
parameters in the entry method declaration in the .ci file. For n nocopypost parameters, the CkNcpyBufferPost
array is indexed by 0 to n-1.

This API for point to point communication is demonstrated in examples/charm++/zerocopy/
entry_method_post_api and for broadcast operations, the usage of this API is demonstrated in examples/
charm++/zerocopy/entry_method_bcast_post_api.

Similar to the Zero Copy Entry Method Send API, it should be noted that calls to entry methods with nocopypost spec-
ified parameters are currently supported for point to point operations and only collection-wide broadcast operations
like broadcasts across an entire chare array or group or nodegroup. It is yet to be supported for section broadcasts.
Additionally, there is also no support for migration of chares that have pending RDMA transfer requests.

Using Zerocopy Post API in iterative applications

In iterative applications, when using the Zerocopy Post API, it is important to post different buffers for each iteration
in order to receive each iteration’s sent data in a separate buffer. Posting the same buffer across iterations could lead
to overwriting the buffer when the receiver receives a message for that entry method. An example illustrating the
use of the Zerocopy Post API to post different buffers in an iterative program, which uses SDAG is examples/
charm++/zerocopy/entry_method_post_api/reg/multiplePostedBuffers. It is also important
to post different buffers for each unique sender in order to receive each sender’s data in a separate buffer. Posting
the same buffer for different senders would overwrite the buffer when the receiver receives a message for that entry
method.

Additionally, in iterative applications which use load balancing, for the load balancing iterations, it is required to
ensure that the Zerocopy sends are performed only after all chare array elements have completed migration. This
can be achieved by a chare array wide reduction after ResumeFromSync has been reached. This programming
construct has the same effect as that of a barrier, enforced after array elements have completed load balancing. This
is required to avoid cases where it is possible that the buffer is posted on receiving a send and is then freed by
the destructor or the unpacking pup method, which is invoked by the RTS because of migration due to load bal-
ancing. This scheme of using a reduction following ResumeFromSync is illustrated in examples/charm++/
zerocopy/entry_method_post_api/reg/simpleZeroCopy and examples/charm++/zerocopy/
entry_method_post_api/reg/multiplePostedBuffers.

2.3.2 Callbacks

Callbacks provide a generic way to store the information required to invoke a communication target, such as a chare’s
entry method, at a future time. Callbacks are often encountered when writing library code, where they provide a simple
way to transfer control back to a client after the library has finished. For example, after finishing a reduction, you may
want the results passed to some chare’s entry method. To do this, you would create an object of type CkCallback with
the chare’s CkChareID and entry method index, and pass this callback object to the reduction library.
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Creating a CkCallback Object

There are several different types of CkCallback objects; the type of the callback specifies the intended behavior upon
invocation of the callback. Callbacks must be invoked with the Charm++ message of the type specified when creating
the callback. If the callback is being passed into a library which will return its result through the callback, it is the
user’s responsibility to ensure that the type of the message delivered by the library is the same as that specified in the
callback. Messages delivered through a callback are not automatically freed by the Charm RTS. They should be freed
or stored for future use by the user.

Callbacks that target chares require an “entry method index”, an integer that identifies which entry method will be
called. An entry method index is the Charm++ version of a function pointer. The entry method index can be obtained
using the syntax:

int myIdx = CkIndex_ChareName::EntryMethod(parameters);

Here, ChareName is the name of the chare (group, or array) containing the desired entry method, EntryMethod is the
name of that entry method, and parameters are the parameters taken by the method. These parameters are only used
to resolve the proper EntryMethod; they are otherwise ignored.

Under most circumstances, entry methods to be invoked through a CkCallback must take a single message pointer
as argument. As such, if the entry method specified in the callback is not overloaded, using NULL in place of
parameters will suffice in fully specifying the intended target. If the entry method is overloaded, a message pointer of
the appropriate type should be defined and passed in as a parameter when specifying the entry method. The pointer
does not need to be initialized as the argument is only used to resolve the target entry method.

The intended behavior upon a callback’s invocation is specified through the choice of callback constructor used when
creating the callback. Possible constructors are:

1. CkCallback(int ep, const CkChareID &id) - When invoked, the callback will send its message to the given entry
method (specified by the entry point index - ep) of the given Chare (specified by the chare id). Note that a chare
proxy will also work in place of a chare id:

CkCallback(CkIndex_Foo::bar(NULL), thisProxy[thisIndex])

2. CkCallback(void (*CallbackFn)(void *, void *), void *param) - When invoked, the callback will pass param
and the result message to the given C function, which should have a prototype like:

void myCallbackFn(void *param, void *message)

This function will be called on the processor where the callback was created, so param is allowed to point to
heap-allocated data. Hence, this constructor should be used only when it is known that the callback target (which
by definition here is just a C-like function) will be on the same processor as from where the constructor was
called. Of course, you are required to free any storage referenced by param.

3. CkCallback(CkCallback::ignore) - When invoked, the callback will do nothing. This can be useful if a Charm++
library requires a callback, but you don’t care when it finishes, or will find out some other way.

4. CkCallback(CkCallback::ckExit) - When invoked, the callback will call CkExit(), ending the Charm++ program.

5. CkCallback(int ep, const CkArrayID &id) - When invoked, the callback will broadcast its message to the given
entry method of the given array. An array proxy will work in the place of an array id.

6. CkCallback(int ep, const CkArrayIndex &idx, const CkArrayID &id) - When invoked, the callback will send its
message to the given entry method of the given array element.

7. CkCallback(int ep, const CkGroupID &id) - When invoked, the callback will broadcast its message to the given
entry method of the given group.

8. CkCallback(int ep, int onPE, const CkGroupID &id) - When invoked, the callback will send its message to the
given entry method of the given group member.
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One final type of callback, CkCallbackResumeThread(), can only be used from within threaded entry methods. This
callback type is discussed in section 2.3.2.

CkCallback Invocation

A properly initialized CkCallback object stores a global destination identifier, and as such can be freely copied, mar-
shalled, and sent in messages. Invocation of a CkCallback is done by calling the function send on the callback with
the result message as an argument. As an example, a library which accepts a CkCallback object from the user and then
invokes it to return a result may have the following interface:

//Main library entry point, called by asynchronous users:
void myLibrary(...library parameters...,const CkCallback &cb)
{

..start some parallel computation, store cb to be passed to myLibraryDone later...
}

//Internal library routine, called when computation is done
void myLibraryDone(...parameters...,const CkCallback &cb)
{

...prepare a return message...
cb.send(msg);

}

A CkCallback will accept any message type, or even NULL. The message is immediately sent to the user’s client
function or entry point. A library which returns its result through a callback should have a clearly documented return
message type. The type of the message returned by the library must be the same as the type accepted by the entry
method specified in the callback.

As an alternative to “send”, the callback can be used in a contribute collective operation. This will internally invoke
the “send” method on the callback when the contribute operation has finished.

For examples of how to use the various callback types, please see tests/charm++/megatest/callback.C

Synchronous Execution with CkCallbackResumeThread

Threaded entry methods can be suspended and resumed through the CkCallbackResumeThread class. CkCallbackRe-
sumeThread is derived from CkCallback and has specific functionality for threads. This class automatically suspends
the thread when the destructor of the callback is called. A suspended threaded client will resume when the “send”
method is invoked on the associated callback. It can be used in situations when the return value is not needed, and
only the synchronization is important. For example:

// Call the "doWork" method and wait until it has completed
void mainControlFlow() {

...perform some work...
// call a library
doWork(...,CkCallbackResumeThread());
// or send a broadcast to a chare collection
myProxy.doWork(...,CkCallbackResumeThread());
// callback goes out of scope; the thread is suspended until doWork calls 'send' on

→˓the callback

...some more work...
}

Alternatively, if doWork returns a value of interest, this can be retrieved by passing a pointer to CkCallbackRe-
sumeThread. This pointer will be modified by CkCallbackResumeThread to point to the incoming message. Notice
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that the input pointer has to be cast to (void*&):

// Call the "doWork" method and wait until it has completed
void mainControlFlow() {

...perform some work...
MyMessage *mymsg;
myProxy.doWork(...,CkCallbackResumeThread((void*&)mymsg));
// The thread is suspended until doWork calls send on the callback

...some more work using "mymsg"...
}

Notice that the instance of CkCallbackResumeThread is constructed as an anonymous parameter to the “doWork” call.
This insures that the callback is destroyed as soon as the function returns, thereby suspending the thread.

It is also possible to allocate a CkCallbackResumeThread on the heap or on the stack. We suggest that programmers
avoid such usage, and favor the anonymous instance construction shown above. For completeness, we still present the
code for heap and stack allocation of CkCallbackResumeThread callbacks below.

For heap allocation, the user must explicitly “delete” the callback in order to suspend the thread.

// Call the "doWork" method and wait until it has completed
void mainControlFlow() {

...perform some work...
CkCallbackResumeThread cb = new CkCallbackResumeThread();
myProxy.doWork(...,cb);
...do not suspend yet, continue some more work...
delete cb;
// The thread suspends now

...some more work after the thread resumes...
}

For a callback that is allocated on the stack, its destructor will be called only when the callback variable goes out of
scope. In this situation, the function “thread_delay” can be invoked on the callback to force the thread to suspend.
This also works for heap allocated callbacks.

// Call the "doWork" method and wait until it has completed
void mainControlFlow() {

...perform some work...
CkCallbackResumeThread cb;
myProxy.doWork(...,cb);
...do not suspend yet, continue some more work...
cb.thread_delay();
// The thread suspends now

...some more work after the thread is resumed...
}

In all cases a CkCallbackResumeThread can be used to suspend a thread only once. (See Main.cpp of Barnes-Hut
MiniApp for a complete example). Deprecated usage: in the past, “thread_delay” was used to retrieve the incoming
message from the callback. While that is still allowed for backward compatibility, its usage is deprecated. The old
usage is subject to memory leaks and dangling pointers.

Callbacks can also be tagged with reference numbers which can be matched inside SDAG code. When the callback is
created, the creator can set the refnum and the runtime system will ensure that the message invoked on the callback’s
destination will have that refnum. This allows the receiver of the final callback to match the messages based on the
refnum value. (See examples/charm++/examples/charm++/ckcallback for a complete example).
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2.3.3 Waiting for Completion

Threaded Entry Methods

Typically, entry methods run in the same thread of execution as the Charm++ scheduler. This prevents them from
undertaking any actions that would cause their thread to block, as blocking would prevent the receiving and processing
of incoming messages.

However, entry methods with the threaded attribute run in their own user-level nonpreemptible thread, and are therefore
able to block without interrupting the runtime system. This allows them to undertake blocking operations or explicitly
suspend themselves, which is necessary to use some Charm++ features, such as sync entry methods and futures.

For details on the threads API available to threaded entry methods, see chapter 3 of the Converse programming man-
ual. The use of threaded entry methods is demonstrated in an example program located in examples/charm++/
threaded_ring.

Sync Entry Methods

Generally, entry methods are invoked asynchronously and return void. Therefore, while an entry method may send
data back to its invoker, it can only do so by invoking another asynchronous entry method on the chare object that
invoked it.

However, it is possible to use sync entry methods, which have blocking semantics. The data returned by the invocation
of such an entry method is available at the call site when it returns from blocking. This returned data can either be in
the form of a Charm++ message or any type that has the PUP method implemented. Because the caller of a sync entry
method will block, it must execute in a thread separate from the scheduler; that is, it must be a threaded entry method
(cf. Section 2.3.3, above). If a sync entry method returns a value, it is provided as the return value from the invocation
on the proxy object:

ReturnMsg* m;
m = A[i].foo(a, b, c);

An example of the use of sync entry methods is given in tests/charm++/sync_square.

Futures

Similar to Multilisp and other functional programming languages, Charm++ provides the abstraction of futures. In
simple terms, a future is a contract with the runtime system to evaluate an expression asynchronously with the calling
program. This mechanism promotes the evaluation of expressions in parallel as several threads concurrently evaluate
the futures created by a program.

In some ways, a future resembles lazy evaluation. Each future is assigned to a particular thread (or to a chare, in
Charm++) and, eventually, its value is delivered to the calling program. Once a future is created, a reference is
returned immediately. However, if the value calculated by the future is needed, the calling program blocks until the
value is available.

Charm++ provides all the necessary infrastructure to use futures by means of the following functions:

CkFuture CkCreateFuture(void)
void CkReleaseFuture(CkFuture fut)
int CkProbeFuture(CkFuture fut)
void *CkWaitFuture(CkFuture fut)
void CkSendToFuture(CkFuture fut, void *msg)

To illustrate the use of all these functions, a Fibonacci example in Charm++ using futures in presented below:
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chare fib {
entry fib(bool amIroot, int n, CkFuture f);
entry [threaded] void run(bool amIroot, int n, CkFuture f);

};

void fib::run(bool amIRoot, int n, CkFuture f) {
if (n < THRESHOLD)
result = seqFib(n);

else {
CkFuture f1 = CkCreateFuture();
CkFuture f2 = CkCreateFuture();
CProxy_fib::ckNew(0, n-1, f1);
CProxy_fib::ckNew(0, n-2, f2);
ValueMsg * m1 = (ValueMsg *) CkWaitFuture(f1);
ValueMsg * m2 = (ValueMsg *) CkWaitFuture(f2);
result = m1->value + m2->value;
delete m1; delete m2;

}
if (amIRoot) {
CkPrintf("The requested Fibonacci number is : %d\n", result);
CkExit();

} else {
ValueMsg *m = new ValueMsg();
m->value = result;
CkSendToFuture(f, m);

}
}

The constant THRESHOLD sets a limit value for computing the Fibonacci number with futures or just with the se-
quential procedure. Given value n, the program creates two futures using CkCreateFuture. Those futures are used to
create two new chares that will carry out the computation. Next, the program blocks until the two component values
of the recurrence have been evaluated. Function CkWaitFuture is used for that purpose. Finally, the program checks
whether or not it is the root of the recursive evaluation. The very first chare created with a future is the root. If a chare
is not the root, it must indicate that its future has finished computing the value. CkSendToFuture is meant to return the
value for the current future.

Other functions complete the API for futures. CkReleaseFuture destroys a future. CkProbeFuture tests whether the
future has already finished computing the value of the expression.

The Converse version of future functions can be found in the Futures section.

Completion Detection

Completion detection is a method for automatically detecting completion of a distributed process within an application.
This functionality is helpful when the exact number of messages expected by individual objects is not known. In such
cases, the process must achieve global consensus as to the number of messages produced and the number of messages
consumed. Completion is reached within a distributed process when the participating objects have produced and
consumed an equal number of events globally. The number of global events that will be produced and consumed does
not need to be known, just the number of producers is required.

The completion detection feature is implemented in Charm++ as a module, and therefore is only included when
-module completion is specified when linking your application.

First, the detector should be constructed. This call would typically belong in application startup code (it initializes the
group that keeps track of completion):
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CProxy_CompletionDetector detector = CProxy_CompletionDetector::ckNew();

When it is time to start completion detection, invoke the following method of the library on all branches of the
completion detection group:

void start_detection(int num_producers,
CkCallback start,
CkCallback all_produced,
CkCallback finish,
int prio);

The num_producers parameter is the number of objects (chares) that will produce elements. So if every chare
array element will produce one event, then it would be the size of the array.

The start callback notifies your program that it is safe to begin producing and consuming (this state is reached when
the module has finished its internal initialization).

The all_produced callback notifies your program when the client has called done with arguments summing to
num_producers.

The finish callback is invoked when completion has been detected (all objects participating have produced and
consumed an equal number of elements globally).

The prio parameter is the priority with which the completion detector will run. This feature is still under develop-
ment, but it should be set below the application’s priority if possible.

For example, the call

detector.start_detection(10,
CkCallback(CkIndex_chare1::start_test(), thisProxy),
CkCallback(CkIndex_chare1::produced_test(), thisProxy),
CkCallback(CkIndex_chare1::finish_test(), thisProxy),
0);

sets up completion detection for 10 producers. Once initialization is done, the callback associated with the
start_test method will be invoked. Once all 10 producers have called done on the completion detector, the
produced_test method will be invoked. Furthermore, when the system detects completion, the callback associ-
ated with finish_test will be invoked. Finally, the priority given to the completion detection library is set to 0 in
this case.

Once initialization is complete (the “start” callback is triggered), make the following call to the library:

void CompletionDetector::produce(int events_produced)
void CompletionDetector::produce() // 1 by default

For example, within the code for a chare array object, you might make the following call:

detector.ckLocalBranch()->produce(4);

Once all the “events” that this chare is going to produce have been sent out, make the following call:

void CompletionDetector::done(int producers_done)
void CompletionDetector::done() // 1 by default

detector.ckLocalBranch()->done();

At the same time, objects can also consume produced elements, using the following calls:
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void CompletionDetector::consume(int events_consumed)
void CompletionDetector::consume() // 1 by default

detector.ckLocalBranch()->consume();

Note that an object may interleave calls to produce() and consume(), i.e. it could produce a few elements,
consume a few, etc. When it is done producing its elements, it should call done(), after which cannot produce()
any more elements. However, it can continue to consume() elements even after calling done(). When the library
detects that, globally, the number of produced elements equals the number of consumed elements, and all producers
have finished producing (i.e. called done()), it will invoke the finish callback. Thereafter, start_detection
can be called again to restart the process.

Quiescence Detection

In Charm++, quiescence is defined as the state in which no processor is executing an entry point, no messages are
awaiting processing, and there are no messages in-flight. Charm++ provides two facilities for detecting quiescence:
CkStartQD and CkWaitQD. CkStartQD registers with the system a callback that is to be invoked the next time quies-
cence is detected. Note that if immediate messages are used, QD cannot be used. CkStartQD has two variants which
expect the following arguments:

1. A CkCallback object. The syntax of this call looks like:

CkStartQD(const CkCallback& cb);

Upon quiescence detection, the specified callback is called with no parameters. Note that using this variant, you
could have your program terminate after quiescence is detected, by supplying the above method with a CkExit
callback (Section 2.3.2).

2. An index corresponding to the entry function that is to be called, and a handle to the chare on which that entry
function should be called. The syntax of this call looks like this:

CkStartQD(int Index,const CkChareID* chareID);

To retrieve the corresponding index of a particular entry method, you must use a static method contained within
the (charmc-generated) CkIndex object corresponding to the chare containing that entry method. The syntax of
this call is as follows:

myIdx=CkIndex_ChareClass::entryMethod(parameters);

where ChareClass is the C++ class of the chare containing the desired entry method, entryMethod is the name
of that entry method, and parameters are the parameters taken by the method. These parameters are only used
to resolve the proper entryMethod; they are otherwise ignored.

CkWaitQD, by contrast, does not register a callback. Rather, CkWaitQD blocks and does not return until quiescence
is detected. It takes no parameters and returns no value. A call to CkWaitQD simply looks like this:

CkWaitQD();

Note that CkWaitQD should only be called from a threaded entry method because a call to CkWaitQD suspends the
current thread of execution (cf. Section 2.3.3).

2.3.4 More Chare Array Features

The basic array features described previously (creation, messaging, broadcasts, and reductions) are needed in almost
every Charm++ program. The more advanced techniques that follow are not universally needed, but represent many
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useful optimizations.

Local Access

It is possible to get direct access to a local array element using the proxy’s ckLocal method, which returns an ordinary
C++ pointer to the element if it exists on the local processor, and NULL if the element does not exist or is on another
processor.

A1 *a=a1[i].ckLocal();
if (a==NULL) // ...is remote -- send message
else // ...is local -- directly use members and methods of a

Note that if the element migrates or is deleted, any pointers obtained with ckLocal are no longer valid. It is best, then,
to either avoid ckLocal or else call ckLocal each time the element may have migrated; e.g., at the start of each entry
method.

An example of this usage is available in examples/charm++/topology/matmul3d.

Advanced Array Creation

There are several ways to control the array creation process. You can adjust the map and bindings before creation,
change the way the initial array elements are created, create elements explicitly during the computation, and create
elements implicitly, “on demand”.

You can create all of an arrays elements using any one of these methods, or create different elements using different
methods. An array element has the same syntax and semantics no matter how it was created.

Configuring Array Characteristics Using CkArrayOptions

The array creation method ckNew actually takes a parameter of type CkArrayOptions. This object describes several
optional attributes of the new array.

The most common form of CkArrayOptions is to set the number of initial array elements. A CkArrayOptions object
will be constructed automatically in this special common case. Thus the following code segments all do exactly the
same thing:

// Implicit CkArrayOptions
a1=CProxy_A1::ckNew(parameters,nElements);

// Explicit CkArrayOptions
a1=CProxy_A1::ckNew(parameters,CkArrayOptions(nElements));

// Separate CkArrayOptions
CkArrayOptions opts(nElements);
a1=CProxy_A1::ckNew(parameters,opts);

Note that the “numElements” in an array element is simply the numElements passed in when the array was created.
The true number of array elements may grow or shrink during the course of the computation, so numElements can
become out of date. This “bulk” constructor approach should be preferred where possible, especially for large arrays.
Bulk construction is handled via a broadcast which will be significantly more efficient in the number of messages
required than inserting each element individually, which will require one message send per element.

Examples of bulk construction are commonplace, see examples/charm++/jacobi3d-sdag for a demonstra-
tion of the slightly more complicated case of multidimensional chare array bulk construction.
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CkArrayOptions can also be used for bulk creation of sparse arrays when the sparsity of the array can be described
in terms of a start index, an end index, and a step index. The start, end, and step can either be passed into the
CkArrayOptions constructor, or set one at a time. The following shows two different ways to create CkArrayOptions
for a 2D array with only the odd indices from (1,1) to (10,10) being populated:

// Set at construction
CkArrayOptions options(CkArrayIndex2D(1,1),

CkArrayIndex2D(10,10),
CkArrayIndex(2,2));

// Set one at a time
CkArrayOptions options;
options.setStart(CkArrayIndex2D(1,1))

.setEnd(CkArrayIndex2D(10,10))

.setStep(CkArrayIndex2D(2,2));

The default for start is 0𝑑 and the default for step is 1𝑑 (where 𝑑 is the dimension of the array), so the following are
equivalent:

// Specify just the number of elements
CkArrayOptions options(nElements);

// Specify just the end index
CkArrayOptions options;
options.setEnd(CkArrayIndex1D(nElements));

// Specify all three indices
CkArrayOptions options;
options.setStart(CkArrayIndex1D(0))

.setEnd(CkArrayIndex1D(nElements))

.setStep(CkArrayIndex1D(1));

In addition to controlling how many elements and at which indices to create them, CkArrayOptions contains a
few flags that the runtime can use to optimize handling of a given array. If the array elements will only migrate
at controlled points (such as periodic load balancing with AtASync()), this is signaled to the runtime by call-
ing opts.setAnytimeMigration(false)11. If all array elements will be inserted by bulk creation or by
fooArray[x].insert() calls, signal this by calling opts.setStaticInsertion(true)12.

Initial Placement Using Map Objects

You can use CkArrayOptions to specify a “map object” for an array. The map object is used by the array manager to
determine the “home” PE of each element. The home PE is the PE upon which it is initially placed, which will retain
responsibility for maintaining the location of the element.

There is a default map object, which maps 1D array indices in a block fashion to processors, and maps other array
indices based on a hash function. Some other mappings such as round-robin (RRMap) also exist, which can be used
similar to custom ones described below.

A custom map object is implemented as a group which inherits from CkArrayMap and defines these virtual methods:

class CkArrayMap : public Group {
public:

// ...

(continues on next page)

11 At present, this optimizes broadcasts to not save old messages for immigrating chares.
12 This can enable a slightly faster default mapping scheme.
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(continued from previous page)

// Return an arrayHdl, given some information about the array
virtual int registerArray(CkArrayIndex& numElements,CkArrayID aid);
// Return the home processor number for this element of this array
virtual int procNum(int arrayHdl,const CkArrayIndex &element);

};

For example, a simple 1D blockmapping scheme. Actual mapping is handled in the procNum function.

// In the .ci file:
group BlockMap : CkArrayMap {
entry BlockMap();

};

// In the .C/.h files
class BlockMap : public CkArrayMap {
public:

BlockMap(void) {}
BlockMap(CkMigrateMessage* m){}
int registerArray(CkArrayIndex& numElements,CkArrayID aid) {
return 0;

}
int procNum(int /*arrayHdl*/,const CkArrayIndex &idx) {
int elem = *(int*)idx.data();
int penum = (elem/(32/CkNumPes()));
return penum;

}
};

Note that the first argument to the procNum method exists for reasons internal to the runtime system and is not used
in the calculation of processor numbers.

Once you’ve instantiated a custom map object, you can use it to control the location of a new array’s elements using
the setMap method of the CkArrayOptions object described above. For example, if you’ve declared a map object
named BlockMap:

// Create the map group
CProxy_BlockMap myMap=CProxy_BlockMap::ckNew();

// Make a new array using that map
CkArrayOptions opts(nElements);
opts.setMap(myMap);
a1=CProxy_A1::ckNew(parameters,opts);

A very basic example which also demonstrates how initial elements are created may be found in examples/
charm++/array_map

An example which constructs one element per physical node may be found in examples/charm++/PUP/
pupDisk.

Other 3D Torus network oriented map examples are in examples/charm++/topology.

Initial Elements

The map object described above can also be used to create the initial set of array elements in a distributed fashion.
An array’s initial elements are created by its map object, by making a call to populateInitial on each processor. This
function is defined in the CkArrayMap class to iterate through the index space of the initial elements (defined as a start
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index, end index, and step index) and call procNum for each index. If the PE returned by procNum is the same as the
calling PE, then an object is created on that PE.

If there is a more direct way to determine the elements to create on each PE, the populateInitial function can be
overridden by using the following signature:

virtual void populateInitial(int arrayHdl, CkArrayOptions& options,
void* ctorMsg,CkArray* mgr)

In this call, arrayHdl is the value returned by registerArray, options contains the CkArrayOptions passed into
the array at construction, ctorMsg is the constructor message to pass, and mgr is the array manager which creates
the elements.

To create an element, call void CkArray::insertInitial(CkArrayIndex idx, void* ctorMsg)
on mgr, passing in the index and a copy of the constructor message. For example, to insert a 2D element (x,y), call:

mgr->insertInitial(CkArrayIndex2D(x,y), CkCopyMsg(&msg));

After inserting elements, inform the array manager that all elements have been created, and free the constructor
message:

mgr->doneInserting();
CkFreeMsg(msg);

A simple example using populateInitial can be found in examples/charm++/array_map

Bound Arrays

You can “bind” a new array to an existing array using the bindTo method of CkArrayOptions. Bound arrays act like
separate arrays in all ways except for migration- corresponding elements of bound arrays always migrate together. For
example, this code creates two arrays A and B which are bound together- A[i] and B[i] will always be on the same
processor.

// Create the first array normally
aProxy=CProxy_A::ckNew(parameters,nElements);
// Create the second array bound to the first
CkArrayOptions opts(nElements);
opts.bindTo(aProxy);
bProxy=CProxy_B::ckNew(parameters,opts);

An arbitrary number of arrays can be bound together- in the example above, we could create yet another array C and
bind it to A or B. The result would be the same in either case- A[i], B[i], and C[i] will always be on the same processor.

There is no relationship between the types of bound arrays- it is permissible to bind arrays of different types or of the
same type. It is also permissible to have different numbers of elements in the arrays, although elements of A which
have no corresponding element in B obey no special semantics. Any method may be used to create the elements of
any bound array.

Bound arrays are often useful if A[i] and B[i] perform different aspects of the same computation, and thus will run
most efficiently if they lie on the same processor. Bound array elements are guaranteed to always be able to interact
using ckLocal (see section 2.3.4), although the local pointer must be refreshed after any migration. This should be
done during the pup routine. When migrated, all elements that are bound together will be created at the new processor
before pup is called on any of them, ensuring that a valid local pointer to any of the bound objects can be obtained
during the pup routine of any of the others.

For example, an array Alibrary is implemented as a library module. It implements a certain functionality by operating
on a data array dest which is just a pointer to some user provided data. A user defined array UserArray is created and

88 Chapter 2. The Charm++ Parallel Programming System



Charm++ Documentation

bound to the array Alibrary to take advantage of the functionality provided by the library. When bound array element
migrated, the data pointer in UserArray is re-allocated in pup(), thus UserArray is responsible to refresh the pointer
dest stored in Alibrary.

class Alibrary: public CProxy_Alibrary {
public:

...
void set_ptr(double *ptr) { dest = ptr; }
virtual void pup(PUP::er &p);

private:
double *dest; // point to user data in user defined bound array

};

class UserArray: public CProxy_UserArray {
public:

virtual void pup(PUP::er &p) {
p|len;
if(p.isUnpacking()) {

data = new double[len];
Alibrary *myfellow = AlibraryProxy(thisIndex).ckLocal();
myfellow->set_ptr(data); // refresh data in bound array

}
p(data, len);

}
private:

CProxy_Alibrary AlibraryProxy; // proxy to my bound array
double *data; // user allocated data pointer
int len;

};

A demonstration of bound arrays can be found in tests/charm++/startupTest

Note that if any bound array element sets usesAtSync=true in its constructor, then users must ensure that AtSync() is
called on all of those array elements. If a bound array element does not have the usesAtSync flag set to true, then it
will migrate along with any elements it is bound to when they migrate. In this case, such an array element does not
need to call AtSync() itself.

Dynamic Insertion

In addition to creating initial array elements using ckNew, you can also create array elements during the computation.

You insert elements into the array by indexing the proxy and calling insert. The insert call optionally takes parameters,
which are passed to the constructor; and a processor number, where the element will be created. Array elements can
be inserted in any order from any processor at any time. Array elements need not be contiguous.

If using insert to create all the elements of the array, you must call CProxy_Array::doneInserting before using the
array.

// In the .C file:
int x,y,z;
CProxy_A1 a1=CProxy_A1::ckNew(); // Creates a new, empty 1D array
for (x=...) {

a1[x ].insert(parameters); // Bracket syntax
a1(x+1).insert(parameters); // or equivalent parenthesis syntax

}
a1.doneInserting();

(continues on next page)
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CProxy_A2 a2=CProxy_A2::ckNew(); // Creates 2D array
for (x=...) for (y=...)

a2(x,y).insert(parameters); // Can't use brackets!
a2.doneInserting();

CProxy_A3 a3=CProxy_A3::ckNew(); // Creates 3D array
for (x=...) for (y=...) for (z=...)

a3(x,y,z).insert(parameters);
a3.doneInserting();

CProxy_AF aF=CProxy_AF::ckNew(); // Creates user-defined index array
for (...) {

aF[CkArrayIndexFoo(...)].insert(parameters); // Use brackets...
aF(CkArrayIndexFoo(...)).insert(parameters); // ...or parenthesis

}
aF.doneInserting();

The doneInserting call starts the reduction manager (see “Array Reductions”) and load balancer (see 2.2.6)- since these
objects need to know about all the array’s elements, they must be started after the initial elements are inserted. You
may call doneInserting multiple times, but only the first call actually does anything. You may even insert or destroy
elements after a call to doneInserting, with different semantics- see the reduction manager and load balancer sections
for details.

If you do not specify one, the system will choose a processor to create an array element on based on the current map
object.

A demonstration of dynamic insertion is available: examples/charm++/hello/fancyarray

Demand Creation

Demand Creation is a specialized form of dynamic insertion. Normally, invoking an entry method on a nonexistent
array element is an error. But if you add the attribute [createhere] or [createhome] to an entry method, the array
manager will “demand create” a new element to handle the message.

With [createhome], the new element will be created on the home processor, which is most efficient when messages for
the element may arrive from anywhere in the machine. With [createhere], the new element is created on the sending
processor, which is most efficient if when messages will often be sent from that same processor.

The new element is created by calling its default (taking no parameters) constructor, which must exist and be listed
in the .ci file. A single array can have a mix of demand-creation and classic entry methods; and demand-created and
normally created elements.

A simple example of demand creation tests/charm++/demand_creation.

Asynchronous Array Creation

Normally, CProxy_Array::ckNew call must always be made from PE 0. However, asynchronous array creation can be
used to lift this restriction and let the array creation be made from any PE. To do this, CkCallback must be given as an
argument for ckNew to provide the created chare array’s CkArrayID to the callback function.

CProxy_SomeProxy::ckNew(parameters, nElements, CkCallback(CkIndex_
→˓MyClass::someFunction(NULL), thisProxy));

void someFunction(CkArrayCreatedMsg *m) {

(continues on next page)
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CProxy_AnotherProxy(m->aid)[index].myFunction(); // m->aid is CkArrayID
delete m;

}

Similar to the standard array creation method, arguments to the array element constructor calls are taken first, followed
by the dimensions of the array. Note that the parameters field can be optional, if the default constructor is expected to
be used.

Alternatively, CkArrayOptions can be used in place of nElements to further configure array characteristics.

// Creating a 3-dimensional chare array with 2 parameters
CkArrayOptions options(dimX, dimY, dimZ);
CProxy_AnotherProxy::ckNew(param1, param2, options, CkCallback(CkIndex_
→˓SomeClass::anotherFunction(NULL), thisProxy));

A demonstration of asynchronous array creation can be found in examples/charm++/hello/darray.

User-defined Array Indices

Charm++ array indices are arbitrary collections of integers. To define a new array index type, you create an ordinary
C++ class which inherits from CkArrayIndex, allocates custom data in the space it has set aside for index data, and
sets the “nInts” member to the length, in integers, of the custom index data.

For example, if you have a structure or class named “Foo”, you can use a Foo object as an array index by defining the
class:

// Include to inherit from CkArrayIndex
#include <charm++.h>

class CkArrayIndexFoo : public CkArrayIndex {
private:
Foo* f;

public:
CkArrayIndexFoo(const Foo &in) {
f = new (index) Foo(in);
nInts = sizeof(Foo)/sizeof(int);

}
};

Note that Foo must be allocated using placement new pointing to the “index” member of CkArrayIndex. Further-
more, its size must be an integral number of integers- you must pad it with zero bytes if this is not the case.
Also, Foo must be a simple class- it cannot contain pointers, have virtual functions, or require a destructor. Fi-
nally, there is a Charm++ configuration-time option called CK_ARRAYINDEX_MAXLEN which is the largest al-
lowable number of integers in an array index. The default is 3; but you may override this to any value by passing
“-DCK_ARRAYINDEX_MAXLEN=n” to the Charm++ build script as well as all user code. Larger values will
increase the size of each message.

You can then declare an array indexed by Foo objects with

// in the .ci file:
array [Foo] AF { entry AF(); ... }

// in the .h file:
class AF : public CBase_AF
{ public: AF() {} ... }

(continues on next page)
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// in the .C file:
Foo f;
CProxy_AF a=CProxy_AF::ckNew();
a[CkArrayIndexFoo(f)].insert();
...

Note that since our CkArrayIndexFoo constructor is not declared with the explicit keyword, we can equivalently write
the last line as:

a[f].insert();

The array index (an object of type Foo) is then accessible as “thisIndex”. For example:

// in the .C file:
AF::AF() {

Foo myF=thisIndex;
functionTakingFoo(myF);

}

A demonstration of user defined indices can be seen in examples/charm++/hello/fancyarray.

2.3.5 Sections: Subsets of a Chare Array/Group

Charm++ supports defining and communicating with subsets of a chare array or group. This entity is called a chare
array section or a group section (section). Section elements are addressed via a section proxy. Charm++ also supports
sections which are a subset of elements of multiple chare arrays/groups of the same type (see 2.3.5).

Multicast operations (a broadcast to all members of a section) are directly supported by the section proxy. For array
sections, multicast operations by default use optimized spanning trees via the CkMulticast library in Charm++. For
group sections, multicast operations by default use an unoptimized direct-sending implementation. To optimize mes-
saging, group sections need to be manually delegated to CkMulticast (see 2.3.5). Reductions are also supported for
both arrays and group sections via the CkMulticast library.

Array and group sections work in mostly the same way. Check examples/charm++/groupsection for a group
section example and examples/charm++/arraysection for an array section example.

Section Creation

Array sections

For each chare array “A” declared in a ci file, a section proxy of type “CProxySection_A” is automatically generated
in the decl and def header files. You can create an array section in your application by invoking ckNew() function
of the CProxySection. The user will need to provide array indexes of all the array section members through either
explicit enumeration, or an index range expression. For example, for a 3D array:

std::vector<CkArrayIndex3D> elems; // add array indices
for (int i=0; i<10; i++)
for (int j=0; j<20; j+=2)
for (int k=0; k<30; k+=2)

elems.emplace_back(i, j, k);
CProxySection_Hello proxy = CProxySection_Hello::ckNew(helloArrayID, elems);

Alternatively, one can do the same thing by providing the index range [lbound:ubound:stride] for each dimension:
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CProxySection_Hello proxy = CProxySection_Hello::ckNew(helloArrayID, 0, 9, 1, 0, 19,
→˓2, 0, 29, 2);

The above code creates a section proxy that contains array elements [0:9, 0:19:2, 0:29:2].

For user-defined array index other than CkArrayIndex1D to CkArrayIndex6D, one needs to use the generic array index
type: CkArrayIndex.

std::vector<CkArrayIndex> elems; // add array indices
CProxySection_Hello proxy = CProxySection_Hello::ckNew(helloArrayID, elems);

Group sections

Group sections are created in the same way as array sections. A group “A” will have an associated “CProxySection_A”
type which is used to create a section and obtain a proxy. In this case, ckNew() will receive the list of PE IDs which
will form the section. See examples/charm++/groupsection for an example.

Important: It is important to note that Charm++ does not automatically delegate group sections to the internal
CkMulticast library, and instead defaults to a point-to-point implementation of multicasts. To use CkMulticast with
group sections, the user must manually delegate after invoking group creation. See 2.3.5 for information on how to do
this.

Creation order restrictions

Attention: Array sections should be created in post-constructor entry methods to avoid race conditions.

If the user wants to invoke section creation from a group, special care must be taken that the collection for which we
are creating a section (array or group) already exists.

For example, suppose a user wants to create a section of array “A” from an entry method in group “G”. Because
groups are created before arrays in Charm++, and there is no guarantee of creation order of groups, there is a risk that
array A’s internal structures have not been initialized yet on every PE, causing section creation to fail. As such, the
application must ensure that A has been created before attempting to create a section.

If the section is created from inside an array element there is no such risk.

Section Multicasts

Once the proxy is obtained at section creation time, the user can broadcast to all the section members, like this:

CProxySection_Hello proxy;
proxy.someEntry(...); // section broadcast

See examples/charm++/arraysection for examples on how sections are used.

You can send the section proxy in a message to another processor, and still safely invoke the entry functions on the
section proxy.
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Optimized multicast via CkMulticast

Charm++ has a built-in CkMulticast library that optimizes section communications. By default, the Charm++ runtime
system will use this library for array and cross-array sections. For group sections, the user must manually delegate the
section proxy to CkMulticast (see 2.3.5).

By default, CkMulticast builds a spanning tree for multicast/reduction with a factor of 2 (binary tree). One can specify
a different branching factor when creating the section.

CProxySection_Hello sectProxy = CProxySection_Hello::ckNew(..., 3); // factor is 3

Note that, to use CkMulticast library, all multicast messages must inherit from CkMcastBaseMsg, as the following
example shows.

class HiMsg : public CkMcastBaseMsg, public CMessage_HiMsg
{
public:

int *data;
};

Attention: CkMcastBaseMsg must come first, this is important for CkMulticast library to retrieve section infor-
mation from the message.

Due to this restriction, when using CkMulticast you must define messages explicitly for multicast entry functions and
no parameter marshalling can be used.

Section Reductions

Reductions over the elements of a section are supported through the CkMulticast library. As such, to perform reduc-
tions, the section must have been delegated to CkMulticast, either automatically (which is the default case for array
sections), or manually for group sections.

Since an array element can be a member of multiple array sections, it is necessary to disambiguate between which
array section reduction it is participating in each time it contributes to one. For this purpose, a data structure called
CkSectionInfo is created by CkMulticast library for each array section that the array element belongs to. Dur-
ing a section reduction, the array element must pass the CkSectionInfo as a parameter in the contribute().
The CkSectionInfo for a section can be retrieved from a message in a multicast entry point using function call
CkGetSectionInfo():

CkSectionInfo cookie;

void SayHi(HiMsg *msg)
{

CkGetSectionInfo(cookie, msg); // update section cookie every time
int data = thisIndex;
CProxySection_Hello::contribute(sizeof(int), &data, CkReduction::sum_int, cookie,

→˓cb);
}

Note that the cookie cannot be used as a one-time local variable in the function, the same cookie is needed for the
next contribute. This is because the cookie includes some context-sensitive information (e.g., the reduction counter).
Subsequent invocations of CkGetSectionInfo() only updates part of the data in the cookie, rather than creating a brand
new one.
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Similar to array reductions, to use section-based reductions, a reduction client CkCallback object must be created. You
may pass the client callback as an additional parameter to contribute. If different contribute calls to the same reduction
operation pass different callbacks, some (unspecified, unreliable) callback will be chosen for use.

See the following example:

CkCallback cb(CkIndex_myArrayType::myReductionEntry(NULL),thisProxy);
CProxySection_Hello::contribute(sizeof(int), &data, CkReduction::sum_int, cookie, cb);

As in an array reduction, users can use built-in reduction types (Section 2.2.3) or define his/her own reducer functions
(Section 2.3.8).

Section Operations with Migrating Elements

When using a section reduction, you don’t need to worry about migrations of array elements. When migration hap-
pens, an array element in the array section can still use the CkSectionInfo it stored previously for doing a reduction.
Reduction messages will be correctly delivered but may not be as efficient until a new multicast spanning tree is rebuilt
internally in the CkMulticast library. When a new spanning tree is rebuilt, an updated CkSectionInfo is passed along
with a multicast message, so it is recommended that CkGetSectionInfo() function is always called when a multicast
message arrives (as shown in the above SayHi example).

In the case where a multicast root migrates, the library must reconstruct the spanning tree to get optimal performance.
One will get the following warning message if this is not done: “Warning: Multicast not optimized after multicast root
migrated.” In the current implementation, the user needs to initiate the rebuilding process using resetSection.

void Foo::pup(PUP::er & p) {
// if I am multicast root and it is unpacking

if (ismcastroot && p.isUnpacking()) {
CProxySection_Foo fooProxy; // proxy for the section
fooProxy.resetSection(fooProxy);

// you may want to reset reduction client to root
CkCallback *cb = new CkCallback(...);

}
}

Cross Array Sections

Cross array sections contain elements from multiple arrays. Construction and use of cross array sections is similar to
normal array sections with the following restrictions.

• Arrays in a section must all be of the same type.

• Each array must be enumerated by array ID.

• The elements within each array must be enumerated explicitly.

Note: cross section logic also works for groups with analogous characteristics.

Given three arrays declared thusly:

std::vector<CkArrayID> aidArr(3);
for (int i=0; i<3; i++) {
CProxy_multisectiontest_array1d Aproxy = CProxy_multisectiontest_

→˓array1d::ckNew(masterproxy.ckGetGroupID(), ArraySize);
aidArr[i] = Aproxy.ckGetArrayID();

}
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One can make a section including the lower half elements of all three arrays as follows:

int aboundary = ArraySize/2;
int afloor = aboundary;
int aceiling = ArraySize-1;
int asectionSize = aceiling-afloor+1;
// cross section lower half of each array
std::vector<std::vector<CkArrayIndex> > aelems(3);
for (int k=0; k<3; k++) {
aelems[k].resize(asectionSize);
for (int i=afloor,j=0; i<=aceiling; i++,j++)
aelems[k][j] = CkArrayIndex1D(i);

}
CProxySection_multisectiontest_array1d arrayLowProxy(aidArr, aelems);

The resulting cross section proxy, as in the example arrayLowProxy, can then be used for multicasts in the same way
as a normal array section.

Note: For simplicity the above example has all arrays and sections of uniform size. The size of each array and the
number of elements in each array within a section can all be set independently. For a more concrete example on how
to use cross array section reduction, please refer to: examples/charm++/hello/xarraySection.

Manual Delegation

By default Charm++ uses the CkMulticast library for optimized broadcasts and reductions on array sections, but
advanced Charm++ users can choose to delegate13 sections to custom libraries (called delegation managers). Note that
group sections are not automatically delegated to CkMulticast and hence must be manually delegated to this library
to benefit from the optimized multicast tree implementation. This is explained here, and see examples/charm++/
groupsection for an example.

While creating a chare array one can set the auto delegation flag to false in CkArrayOptions and the runtime system
will not use the default CkMulticast library. A CkMulticastMgr (or any other delegation manager) group can then be
created by the user, and any section delegated to it.

One only needs to create one delegation manager group, and it can serve all multicast/reduction delegations for differ-
ent array/group sections in an application. In the following we show a manual delegation example using CkMulticast
(the same can be applied to custom delegation managers):

CkArrayOptions opts(...);
opts.setSectionAutoDelegate(false); // manual delegation
CProxy_Hello arrayProxy = CProxy_Hello::ckNew(opts,...);
CProxySection_Hello sectProxy = CProxySection_Hello::ckNew(...);
CkGroupID mCastGrpId = CProxy_CkMulticastMgr::ckNew();
CkMulticastMgr *mCastGrp = CProxy_CkMulticastMgr(mCastGrpId).ckLocalBranch();

sectProxy.ckSectionDelegate(mCastGrp); // initialize section proxy

sectProxy.someEntry(...); // multicast via delegation library as before

One can also set the default branching factor when creating a CkMulticastMgr group. Sections created via this manager
will use the specified branching factor for their multicast tree. For example:

CkGroupID mCastGrpId = CProxy_CkMulticastMgr::ckNew(3); // factor is 3

Contributing using a custom CkMulticastMgr group:
13 See chapter 2.4.3 for general information on message delegation in Charm++.
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CkSectionInfo cookie;

void SayHi(HiMsg *msg)
{

CkGetSectionInfo(cookie, msg); // update section cookie every time
int data = thisIndex;
CkCallback cb(CkIndex_myArrayType::myReductionEntry(NULL),thisProxy);
mcastGrp->contribute(sizeof(int), &data, CkReduction::sum_int, cookie, cb);

}

Setting default reduction client for a section when using manual delegation:

CProxySection_Hello sectProxy;
CkMulticastMgr *mcastGrp = CProxy_CkMulticastMgr(mCastGrpId).ckLocalBranch();
mcastGrp->setReductionClient(sectProxy, new CkCallback(...));

Writing the pup method:

void Foo::pup(PUP::er & p) {
// if I am multicast root and it is unpacking
if (ismcastroot && p.isUnpacking()) {
CProxySection_Foo fooProxy; // proxy for the section
CkMulticastMgr *mg = CProxy_CkMulticastMgr(mCastGrpId).ckLocalBranch();
mg->resetSection(fooProxy);

// you may want to reset reduction client to root
CkCallback *cb = new CkCallback(...);
mg->setReductionClient(mcp, cb);

}
}

2.3.6 Chare and Message Inheritance

Charm++ supports C++ like inheritance among Charm++ objects such as chares, groups, and messages, making it
easier to keep applications modular and allowing reuse of code.

Chare Inheritance

Chare inheritance makes it possible to remotely invoke methods of a base chare from a proxy of a derived chare.
Suppose a base chare is of type BaseChare, then the derived chare of type DerivedChare needs to be declared in the
Charm++ interface file to be explicitly derived from BaseChare. Thus, the constructs in the .ci file should look like:

chare BaseChare {
entry BaseChare(someMessage *);
entry void baseMethod(void);
...

}
chare DerivedChare : BaseChare {

entry DerivedChare(otherMessage *);
entry void derivedMethod(void);
...

}

Note that the access specifier public is omitted, because Charm++ interface translator only needs to know about the
public inheritance, and thus public is implicit. A Chare can inherit privately from other classes too, but the Charm++
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interface translator does not need to know about it, because it generates support classes (proxies) to remotely invoke
only public methods.

The class definitions of these chares should look like:

class BaseChare : public CBase_BaseChare {
// private or protected data
public:
BaseChare(someMessage *);
void baseMethod(void);

};
class DerivedChare : public CBase_DerivedChare {
// private or protected data
public:
DerivedChare(otherMessage *);
void derivedMethod(void);

};

It is possible to create a derived chare, and invoke methods of base chare from it, or to assign a derived chare proxy to
a base chare proxy as shown below:

...
otherMessage *msg = new otherMessage();
CProxy_DerivedChare pd = CProxy_DerivedChare::ckNew(msg);
pd.baseMethod(); // OK
pd.derivedMethod(); // OK
...
CProxy_BaseChare pb = pd;
pb.baseMethod(); // OK
pb.derivedMethod(); // COMPILE ERROR

To pass constructor arguments from DerivedChare::DerivedChare(someMessage*) to
BaseChare::BaseChare(someMessage*), they can be forwarded through the CBase type constructor as follows:

DerivedChare::DerivedChare(someMessage *msg)
: CBase_DerivedChare(msg) // Will forward all arguments to BaseChare::BaseChare
{ }

If no arguments are provided, the generated C++ code for the CBase_DerivedChare constructor calls the default
constructor of the base class BaseChare.

Entry methods are inherited in the same manner as methods of sequential C++ objects. To make an entry method
virtual, just add the keyword virtual to the corresponding chare method declaration in the class header- no change is
needed in the interface file. Pure virtual entry methods also require no special description in the interface file.

Inheritance for Messages

Messages cannot inherit from other messages. A message can, however, inherit from a regular C++ class. For example:

// In the .ci file:
message BaseMessage1;
message BaseMessage2;

// In the .h file:
class Base {

// ...
};

(continues on next page)
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class BaseMessage1 : public Base, public CMessage_BaseMessage1 {
// ...

};
class BaseMessage2 : public Base, public CMessage_BaseMessage2 {

// ...
};

Messages cannot contain virtual methods or virtual base classes unless you use a packed message. Parameter mar-
shalling has complete support for inheritance, virtual methods, and virtual base classes via the PUP::able framework.

2.3.7 Generic and Meta Programming with Templates

Templates are a mechanism provided by the C++ language to parametrize code over various types and constants with
compile-time code specialization for each instance. Charm++ allows developers to implement various entities using
C++ templates to gain their advantages in abstraction, flexibility, and performance. Because the Charm++ runtime
system requires some generated code for each entity type that is used in a program, template entities must each have a
declaration in a .ci file, a definition in a C++ header, and declarations of their instantiations in one or more .ci files.

The first step to implementing a templated Charm++ entity is declaring it as such in a .ci file. This declaration takes
the same form as any C++ template: the template keyword, a list of template parameters surrounded by angle
brackets, and the normal declaration of the entity with possible reference to the template parameters. The Charm++
interface translator will generate corresponding templated code for the entity, similar to what it would generate for a
non-templated entity of the same kind. Differences in how one uses this generated code are described below.

A message template might be declared as follows:

module A {
template <class DType, int N=3>
message TMessage;

};

Note that default template parameters are supported.

If one wished to include variable-length arrays in a message template, those can be accomodated as well:

module B {
template <class DType>
message TVarMessage {
DType payload[];

};
};

Similarly, chare class templates (for various kinds of chares) would be written:

module C {
template <typename T>
chare TChare {
entry TChare();
entry void doStuff(T t);

};

template <typename U>
group TGroup {
entry TGroup();
entry void doSomethingElse(U u, int n);

(continues on next page)
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};

template <typename V, int s>
array [2D] TArray {
entry TArray(V v);

};

template <typename W>
nodegroup TNodeGroup {
entry TNodeGroup();
entry void doAnotherThing(W w);

};
};

Entry method templates are declared like so:

module D {
array [1D] libArray {

entry libArray(int _dataSize);
template <typename T>
entry void doSomething(T t, CkCallback redCB);

};
};

The definition of templated Charm++ entities works almost identically to the definition of non-template entities, with
the addition of the expected template signature:

// A.h
#include "A.decl.h"

template <class DType, int N=3>
struct TMessage : public CMessage_TMessage<DType, N> {

DType d[N];
};

#define CK_TEMPLATES_ONLY
#include "A.def.h"
#undef CK_TEMPLATES_ONLY

The distinguishing change is the additional requirement to include parts of the generated .def.h file that relate to the
templates being defined. This exposes the generated code that provides registration and other supporting routines to
client code that will need to instantiate it. As with C++ template code in general, the entire definition of the templated
entity must be visible to the code that eventually references it to allow instantiation. In circumstances where module
A contains only template code, some source file including A.def.h without the template macro will still have to be
compiled and linked to incorporate module-level generated code.

Code that references particular templated entities needs to ask the interface translator to instantiate registration and
delivery code for those entities. This is accomplished by a declaration in a .ci file that names the entity and the actual
template arguments for which an instantiation is desired.

For the message and chare templates described above, a few instantiations might look like

module D {
extern module A;
message TMessage<float, 7>;
message TMessage<double>;

(continues on next page)
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message TMessage<int, 1>;

extern module C;
array [2D] TArray<std::string, 4>;
group TGroup<char>;

};

Instantiations of entry method templates are slightly more complex, because they must specify the chare class con-
taining them. The template arguments are also specified directly in the method’s parameters, rather than as distinct
template arguments.

module E {
extern module D;

// syntax: extern entry void chareClassName templateEntryMethodName(list, of,
→˓actual, arguments);
extern entry void libArray doSomething(int&, CkCallback redCB);

};

To enable generic programming using Charm++ entities, we define a number of type trait utilities. These can be used
to determine at compile-time if a type is a certain kind of Charm++ type:

#include "charm++_type_traits.h"

// Is T a chare array proxy?
using result = charmxx::is_array_proxy<T>;

// Is T a group proxy?
using result = charmxx::is_group_proxy<T>;

// Is T a node group proxy?
using result = charmxx::is_node_group_proxy<T>;

// Is T a chare proxy?
using result = charmxx::is_chare_proxy<T>;

// Is T a bound array?
using result = charmxx::is_bound_array<T>;

// Does T have a PUP routine defined for it?
using result = charmxx::is_pupable<T>;

2.3.8 Collectives

Reduction Clients

After the data is reduced, it is passed to you via a callback object, as described in section 2.3.2. The message passed to
the callback is of type CkReductionMsg. Unlike typed reductions briefed in Section 2.2.3, here we discuss callbacks
that take CkReductionMsg* argument. The important members of CkReductionMsg are getSize(), which returns the
number of bytes of reduction data; and getData(), which returns a “void *” to the actual reduced data.

The callback to be invoked when the reduction is complete is specified as an additional parameter to contribute. It is
an error for chare array elements to specify different callbacks to the same reduction contribution.
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double forces[2]=get_my_forces();
// When done, broadcast the CkReductionMsg to "myReductionEntry"
CkCallback cb(CkIndex_myArrayType::myReductionEntry(NULL), thisProxy);
contribute(2*sizeof(double), forces,CkReduction::sum_double, cb);

In the case of the reduced version used for synchronization purposes, the callback parameter will be the only input
parameter:

CkCallback cb(CkIndex_myArrayType::myReductionEntry(NULL), thisProxy);
contribute(cb);

and the corresponding callback function:

void myReductionEntry(CkReductionMsg *msg)
{

int reducedArrSize=msg->getSize() / sizeof(double);
double *output=(double *) msg->getData();
for(int i=0 ; i<reducedArrSize ; i++)
{
// Do something with the reduction results in each output[i] array element
.
.
.
}
delete msg;

}

(See examples/charm++/reductions/simple_reduction for a complete example).

If the target of a reduction is an entry method defined by a when clause in SDAG (Section 2.2.4), one may wish to set
a reference number (or tag) that SDAG can use to match the resulting reduction message. To set the tag on a reduction
message, call the CkCallback::setRefNum(CMK_REFNUM_TYPE refnum) method on the callback passed
to the contribute() call.

Defining a New Reduction Type

It is possible to define a new type of reduction, performing a user-defined operation on user-defined data. This is done
by creating a reduction function, which combines separate contributions into a single combined value.

The input to a reduction function is a list of CkReductionMsgs. A CkReductionMsg is a thin wrapper around a buffer
of untyped data to be reduced. The output of a reduction function is a single CkReductionMsg containing the reduced
data, which you should create using the CkReductionMsg::buildNew(int nBytes,const void *data) method.

Thus every reduction function has the prototype:

CkReductionMsg *reductionFn(int nMsg,CkReductionMsg **msgs);

For example, a reduction function to add up contributions consisting of two machine short ints would be:

CkReductionMsg *sumTwoShorts(int nMsg,CkReductionMsg **msgs)
{

// Sum starts off at zero
short ret[2]={0,0};
for (int i=0;i<nMsg;i++) {
// Sanity check:
CkAssert(msgs[i]->getSize()==2*sizeof(short));

(continues on next page)
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// Extract this message's data
short *m=(short *)msgs[i]->getData();
ret[0]+=m[0];
ret[1]+=m[1];

}
return CkReductionMsg::buildNew(2*sizeof(short),ret);

}

The reduction function must be registered with Charm++ using CkReduction::addReducer(reducerFn fn=NULL, bool
streamable=false, const char* name=NULL) from an initnode routine (see section 2.2.8 for details on the initnode
mechanism). It takes a required parameter, reducerFn fn, a function pointer to the reduction function, and an optional
parameter bool streamable, which indicates if the function is streamable or not (see section 2.3.8 for more information).
CkReduction::addReducer returns a CkReduction::reducerType which you can later pass to contribute. Since initnode
routines are executed once on every node, you can safely store the CkReduction::reducerType in a global or class-static
variable. For the example above, the reduction function is registered and used in the following manner:

// In the .ci file:
initnode void registerSumTwoShorts(void);

// In some .C file:
/*global*/ CkReduction::reducerType sumTwoShortsType;
/*initnode*/ void registerSumTwoShorts(void)
{

sumTwoShortsType=CkReduction::addReducer(sumTwoShorts);
}

// In some member function, contribute data to the customized reduction:
short data[2]=...;
contribute(2*sizeof(short),data,sumTwoShortsType);

Note that typed reductions briefed in Section 2.2.3 can also be used for custom reductions. The target reduction client
can be declared as in Section 2.2.3 but the reduction functions will be defined as explained above.
Note that you cannot call CkReduction::addReducer from anywhere but an initnode routine.
(See Reduction.cpp of Barnes-Hut MiniApp for a complete example).

Streamable Reductions

For custom reductions over fixed sized messages, it is often desirable that the runtime process each contribution in a
streaming fashion, i.e. as soon as a contribution is received from a chare array element, that data should be combined
with the current aggregation of other contributions on that PE. This results in a smaller memory footprint because
contributions are immediately combined as they come in rather than waiting for all contributions to be received. Users
can write their own custom streamable reducers by reusing the message memory of the zeroth message in their reducer
function by passing it as the last argument to CkReduction::buildNew:

CkReductionMsg *sumTwoShorts(int nMsg,CkReductionMsg **msgs)
{

// reuse msgs[0]'s memory:
short *retData = (short*)msgs[0]->getData();
for (int i=1;i<nMsg;i++) {
// Sanity check:
CkAssert(msgs[i]->getSize()==2*sizeof(short));

(continues on next page)
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// Extract this message's data
short *m=(short *)msgs[i]->getData();
retData[0]+=m[0];
retData[1]+=m[1];

}
return CkReductionMsg::buildNew(2*sizeof(short), retData, sumTwoShortsReducer,

→˓msgs[0]);
}

Note that only message zero is allowed to be reused. For reducer functions that do not operate on fixed sized messages,
such as set and concat, streaming would result in quadratic memory allocation and so is not desirable. Users can
specify that a custom reducer is streamable when calling CkReduction::addReducer by specifying an optional boolean
parameter (default is false). They can also provide a name string for their reducer to aid in debugging (default is
NULL).

static void initNodeFn(void) {
sumTwoShorts = CkReduction::addReducer(sumTwoShorts, /* streamable = */ true, /*

→˓name = */ "sumTwoShorts");
}

2.3.9 Serializing Complex Types

This section describes advanced functionality in the PUP framework. The first subsections describe features supporting
complex objects, with multiple levels of inheritance, or with dynamic changes in heap usage. The latter subsections
describe additional language bindings, and features supporting PUP modes which can be used to copy object state
from and to long-term storage for checkpointing, or other application level purposes.

Dynamic Allocation

If your class has fields that are dynamically allocated, when unpacking, these need to be allocated in the usual way
before you pup them. Deallocation should be left to the class destructor as usual.

No allocation

The simplest case is when there is no dynamic allocation. Example:

class keepsFoo : public mySuperclass {
private:

foo f; /* simple foo object */
public:

keepsFoo(void) { }
void pup(PUP::er &p) {

mySuperclass::pup(p);
p|f; // pup f's fields (calls f.pup(p);)

}
~keepsFoo() { }

};
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Allocation outside pup

The next simplest case is when we contain a class that is always allocated during our constructor, and deallocated
during our destructor. Then no allocation is needed within the pup routine.

class keepsHeapFoo : public mySuperclass {
private:

foo *f; /* Heap-allocated foo object */
public:

keepsHeapFoo(void) {
f=new foo;

}
void pup(PUP::er &p) {

mySuperclass::pup(p);
p|*f; // pup f's fields (calls f->pup(p))

}
~keepsHeapFoo() { delete f; }

};

Allocation during pup

If we need values obtained during the pup routine before we can allocate the class, we must allocate the class inside
the pup routine. Be sure to protect the allocation with if (p.isUnpacking()).

class keepsOneFoo : public mySuperclass {
private:

foo *f; /* Heap-allocated foo object */
public:

keepsOneFoo(...) { f=new foo(...); }
keepsOneFoo() { f=NULL; } /* pup constructor */
void pup(PUP::er &p) {

mySuperclass::pup(p);
// ...
if (p.isUnpacking()) /* must allocate foo now */

f=new foo(...);
p|*f; // pup f's fields

}
~keepsOneFoo() { delete f; }

};

Allocatable array

For example, if we keep an array of doubles, we need to know how many doubles there are before we can allocate
the array. Hence we must first pup the array length, do our allocation, and then pup the array data. We could allocate
memory using malloc/free or other allocators in exactly the same way.

class keepsDoubles : public mySuperclass {
private:

int n;
double *arr; /* new'd array of n doubles */

public:
keepsDoubles(int n_) {

n=n_;

(continues on next page)

2.3. Advanced Programming Techniques 105



Charm++ Documentation

(continued from previous page)

arr=new double[n];
}
keepsDoubles() { }

void pup(PUP::er &p) {
mySuperclass::pup(p);
p|n; // pup the array length n
if (p.isUnpacking()) arr=new double[n];
PUParray(p,arr,n); // pup data in the array

}

~keepsDoubles() { delete[] arr; }
};

NULL object pointer

If our allocated object may be NULL, our allocation becomes much more complicated. We must first check and pup a
flag to indicate whether the object exists, then depending on the flag, pup the object.

class keepsNullFoo : public mySuperclass {
private:

foo *f; /*Heap-allocated foo object, or NULL*/
public:

keepsNullFoo(...) { if (...) f=new foo(...); }
keepsNullFoo() { f=NULL; }
void pup(PUP::er &p) {

mySuperclass::pup(p);
int has_f = (f!=NULL);
p|has_f;
if (has_f) {

if (p.isUnpacking()) f=new foo;
p|*f;

} else {
f=NULL;

}
}
~keepsNullFoo() { delete f; }

};

This sort of code is normally much longer and more error-prone if split into the various packing/unpacking cases.

Array of classes

An array of actual classes can be treated exactly the same way as an array of basic types. PUParray will pup each
element of the array properly, calling the appropriate operator|.

class keepsFoos : public mySuperclass {
private:

int n;
foo *arr; /* new'd array of n foos */

public:
keepsFoos(int n_) {

n=n_;

(continues on next page)
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arr=new foo[n];
}
keepsFoos() { arr=NULL; }

void pup(PUP::er &p) {
mySuperclass::pup(p);
p|n; // pup the array length n
if (p.isUnpacking()) arr=new foo[n];
PUParray(p,arr,n); // pup each foo in the array

}

~keepsFoos() { delete[] arr; }
};

Array of pointers to classes

An array of pointers to classes must handle each element separately, since the PUParray routine does not work with
pointers. An “allocate” routine to set up the array could simplify this code. More ambitious is to construct a “smart
pointer” class that includes a pup routine.

class keepsFooPtrs : public mySuperclass {
private:

int n;
foo **arr; /* new'd array of n pointer-to-foos */

public:
keepsFooPtrs(int n_) {

n=n_;
arr=new foo*[n]; // allocate array
for (int i=0; i<n; i++) arr[i]=new foo(...); // allocate i'th foo

}
keepsFooPtrs() { arr=NULL; }

void pup(PUP::er &p) {
mySuperclass::pup(p);
p|n; // pup the array length n
if (p.isUnpacking()) arr=new foo*[n]; // allocate array
for (int i=0; i<n; i++) {
if (p.isUnpacking()) arr[i]=new foo(...); // allocate i'th foo
p|*arr[i]; // pup the i'th foo

}
}

~keepsFooPtrs() {
for (int i=0; i<n; i++) delete arr[i];
delete[] arr;

}
};

Note that this will not properly handle the case where some elements of the array are actually subclasses of foo, with
virtual methods. The PUP::able framework described in the next section can be helpful in this case.
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Subclass allocation via PUP::able

If the class foo above might have been a subclass, instead of simply using new foo above we would have had
to allocate an object of the appropriate subclass. Since determining the proper subclass and calling the appropri-
ate constructor yourself can be difficult, the PUP framework provides a scheme for automatically determining and
dynamically allocating subobjects of the appropriate type.

Your superclass must inherit from PUP::able, which provides the basic machinery used to move the class. A
concrete superclass and all its concrete subclasses require these four features:

• A line declaring PUPable className; in the .ci file. This registers the class’ constructor. If className
is a templated class, each concrete instantiation should have its own fully specified PUPable declaration in the
.ci file.

• A call to the macro PUPable_decl(className) in the class’ declaration, in the header file. This adds
a virtual method to your class to allow PUP::able to determine your class’ type. If className is a tem-
plated class, instead use PUPable_decl_base_template(baseClassName, className), where
baseClassName is the name of the base class. Both class names should include template specifications if
necessary.

• A migration constructor — a constructor that takes CkMigrateMessage *. This is used to create the new
object on the receive side, immediately before calling the new object’s pup routine. Users should not free the
CkMigrateMessage.

• A working, virtual pup method. You can omit this if your class has no data that needs to be packed.

As an added note for PUP::able classes which are templated: just as with templated chares, you will also need to
include the .def.h surrounded by CK_TEMPLATES_ONLY preprocessor guards in an appropriate location, as described
in Section 2.3.7.

An abstract superclass — a superclass that will never actually be packed — only needs to inherit from PUP::able
and include a PUPable_abstract(className) macro in their body. For these abstract classes, the .ci file,
PUPable_decl macro, and constructor are not needed.

For example, if parent is a concrete superclass, and child and tchild are its subclasses:

// --------- In the .ci file ---------
PUPable parent;
PUPable child; // Could also have said `PUPable parent, child;`
// One PUPable declaration per concrete intantiantion of tchild
PUPable tchild<int, double>;
PUPable tchild<char, Foo>;

// --------- In the .h file ---------
class parent : public PUP::able {

// ... data members ...
public:

// ... other methods ...
parent() {...}

// PUP::able support: decl, migration constructor, and pup
PUPable_decl(parent);
parent(CkMigrateMessage *m) : PUP::able(m) {}
virtual void pup(PUP::er &p) {

PUP::able::pup(p); // Call base class
// ... pup data members as usual ...

}
};

(continues on next page)
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class child : public parent {
// ... more data members ...

public:
// ... more methods, possibly virtual ...
child() {...}

// PUP::able support: decl, migration constructor, and pup
PUPable_decl(child);
child(CkMigrateMessage *m) : parent(m) {}
virtual void pup(PUP::er &p) {

parent::pup(p); // Call base class
// ... pup child's data members as usual ...

}
};

template <typename T1, typename T2>
class tchild : public parent {

// ... more data members ...
public:

// ... more methods, possibly virtual ...
tchild() { ... }

// PUP::able support for templated classes
// If parent were templated, we'd also include template args for parent
PUPable_decl_base_template(parent, tchild<T1,T2>);
tchild(CkMigrateMessage* m) : parent(m) {}
virtual void pup(PUP::er &p) {

parent::pup(p); // Call base class
// ... pup tchild's data memebers as usual ...

}
};

// Because tchild is a templated class with PUPable decls in the .ci file ...
#define CK_TEMPLATES_ONLY
#include "module_name.def.h"
#undef CK_TEMPLATES_ONLY

With these declarations, we can automatically allocate and pup a pointer to a parent or child using the vertical bar
PUP::er syntax, which on the receive side will create a new object of the appropriate type:

class keepsParent {
parent *obj; // May actually point to a child class (or be NULL)

public:
// ...
~keepsParent() {

delete obj;
}
void pup(PUP::er &p)
{

p|obj;
}

};

This will properly pack, allocate, and unpack obj whether it is actually a parent or child object. The child class can
use all the usual C++ features, such as virtual functions and extra private data.

If obj is NULL when packed, it will be restored to NULL when unpacked. For example, if the nodes of a binary tree
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are PUP::able, one may write a recursive pup routine for the tree quite easily:

// --------- In the .ci file ---------
PUPable treeNode;

// --------- In the .h file ---------
class treeNode : public PUP::able {

treeNode *left; // Left subtree
treeNode *right; // Right subtree
// ... other fields ...

public:
treeNode(treeNode *l=NULL, treeNode *r=NULL);
~treeNode() { delete left; delete right; }

// The usual PUP::able support:
PUPable_decl(treeNode);
treeNode(CkMigrateMessage *m) : PUP::able(m) { left = right = NULL; }
void pup(PUP::er &p) {

PUP::able::pup(p); // Call base class
p|left;
p|right;
// ... pup other fields as usual ...

}
};

This same implementation will also work properly even if the tree’s internal nodes are actually subclasses of
treeNode.

You may prefer to use the macros PUPable_def(className) and PUPable_reg(className) rather than
using PUPable in the .ci file. PUPable_def provides routine definitions used by the PUP::able machinery, and
should be included in exactly one source file at file scope. PUPable_reg registers this class with the runtime system,
and should be executed exactly once per node during program startup.

Finally, a PUP::able superclass like parent above must normally be passed around via a pointer or reference,
because the object might actually be some subclass like child. Because pointers and references cannot be passed
across processors, for parameter marshalling you must use the special templated smart pointer classes CkPointer
and CkReference, which only need to be listed in the .ci file.

A CkReference is a read-only reference to a PUP::able object — it is only valid for the duration of the method
call. A CkPointer transfers ownership of the unmarshalled PUP::able to the method, so the pointer can be kept
and the object used indefinitely.

For example, if the entry method bar needs a PUP::able parent object for in-call processing, you would use a
CkReference like this:

// --------- In the .ci file ---------
entry void barRef(int x, CkReference<parent> p);

// --------- In the .h file ---------
void barRef(int x, parent &p) {
// can use p here, but only during this method invocation

}

If the entry method needs to keep its parameter, use a CkPointer like this:

// --------- In the .ci file ---------
entry void barPtr(int x, CkPointer<parent> p);

(continues on next page)

110 Chapter 2. The Charm++ Parallel Programming System



Charm++ Documentation

(continued from previous page)

// --------- In the .h file ---------
void barPtr(int x, parent *p) {

// can keep this pointer indefinitely, but must eventually delete it
}

Both CkReference and CkPointer are read-only from the send side — unlike messages, which are consumed
when sent, the same object can be passed to several parameter marshalled entry methods. In the example above, we
could do:

parent *p = new child;
someProxy.barRef(x, *p);
someProxy.barPtr(x, p); // Makes a copy of p
delete p; // We allocated p, so we destroy it.

C and Fortran bindings

C and Fortran programmers can use a limited subset of the PUP::er capability. The routines all take a handle named
pup_er. The routines have the prototype:

void pup_type(pup_er p, type *val);
void pup_types(pup_er p, type *vals, int nVals);

The first call is for use with a single element; the second call is for use with an array. The supported types are char,
short, int, long, uchar, ushort, uint, ulong, float, and double, which all have the usual C meanings.

A byte-packing routine

void pup_bytes(pup_er p, void *data, int nBytes);

is also provided, but its use is discouraged for cross-platform puping.

pup_isSizing, pup_isPacking, pup_isUnpacking, and pup_isDeleting calls are also available.
Since C and Fortran have no destructors, you should actually deallocate all data when passed a deleting pup_er.

C and Fortran users cannot use PUP::able objects, seeking, or write custom PUP::ers. Using the C++ interface
is recommended.

Common PUP::ers

The most common PUP::ers used are PUP::sizer, PUP::toMem, and PUP::fromMem. These are sizing, pack-
ing, and unpacking PUP::ers, respectively.

PUP::sizer simply sums up the sizes of the native binary representation of the objects it is passed. PUP::toMem
copies the binary representation of the objects passed into a preallocated contiguous memory buffer. PUP::fromMem
copies binary data from a contiguous memory buffer into the objects passed. All three support the size method, which
returns the number of bytes used by the objects seen so far.

Other common PUP::ers are PUP::toDisk, PUP::fromDisk, and PUP::xlater. The first two are simple
filesystem variants of the PUP::toMem and PUP::fromMem classes; PUP::xlater translates binary data from
an unpacking PUP::er into the machine’s native binary format, based on a machineInfo structure that describes the
format used by the source machine.

An example of PUP::toDisk is available in examples/charm++/PUP/pupDisk.
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PUP::seekBlock

It may rarely occur that you require items to be unpacked in a different order than they are packed. That is, you want
a seek capability. PUP::ers support a limited form of seeking.

To begin a seek block, create a PUP::seekBlock object with your current PUP::er and the number of “sections”
to create. Seek to a (0-based) section number with the seek method, and end the seeking with the endBlock
method. For example, if we have two objects A and B, where A’s pup depends on and affects some object B, we can
pup the two with:

void pupAB(PUP::er &p)
{

// ... other fields ...
PUP::seekBlock s(p,2); // 2 seek sections
if (p.isUnpacking())
{ // In this case, pup B first
s.seek(1);
B.pup(p);

}
s.seek(0);
A.pup(p,B);

if (!p.isUnpacking())
{ // In this case, pup B last
s.seek(1);
B.pup(p);

}
s.endBlock(); // End of seeking block
// ... other fields ...

};

Note that without the seek block, A’s fields would be unpacked over B’s memory, with disastrous consequences. The
packing or sizing path must traverse the seek sections in numerical order; the unpack path may traverse them in any
order. There is currently a small fixed limit of 3 on the maximum number of seek sections.

Writing a PUP::er

System-level programmers may occasionally find it useful to define their own PUP::er objects. The system
PUP::er class is an abstract base class that funnels all incoming pup requests to a single subroutine:

virtual void bytes(void *p, int n, size_t itemSize, dataType t);

The parameters are, in order, the field address, the number of items, the size of each item, and the type of the items.
The PUP::er is allowed to use these fields in any way. However, an isSizing or isPacking PUP::er may not
modify the referenced user data; while an isUnpacking PUP::er may not read the original values of the user data.
If your PUP::er is not clearly packing (saving values to some format) or unpacking (restoring values), declare it as
sizing PUP::er.

2.3.10 Querying Network Topology

The following calls provide information about the machine upon which the parallel program is executed. A processing
element (PE) is a unit of mapping and scheduling, which takes the form of an OS thread in SMP mode and an OS
process in non-SMP mode. A node (specifically, a logical node) refers to an OS process: a set of one or more PEs that
share memory (i.e. an address space). PEs and nodes are ranked separately starting from zero: PEs are ranked from 0
to CmiNumPes(), and nodes are ranked from 0 to CmiNumNodes().
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Charm++ provides a unified abstraction for querying topology information of IBM’s BG/Q and Cray’s XE6. The
TopoManager singleton object, which can be used by including TopoManager.h, contains the following meth-
ods:

getDimNX(), getDimNY(), getDimNZ(): Returns the length of X, Y and Z dimensions (except BG/Q).

getDimNA(), getDimNB(), getDimNC(), getDimND(), getDimNE(): Returns the length of A, B, C, D and E dimen-
sions on BG/Q.

getDimNT(): Returns the length of T dimension. TopoManager uses the T dimension to represent different cores that
reside within a physical node.

rankToCoordinates(int pe, int &x, int &y, int &z, int &t): Get the coordinates of PE with rank pe (except BG/Q).

rankToCoordinates(int pe, int &a, int &b, int &c, int &d, int &e, int &t): Get the coordinates of PE with rank pe
on BG/Q.

coordinatesToRank(int x, int y, int z, int t): Returns the rank of PE with given coordinates (except BG/Q).

coordinatesToRank(int a, int b, int c, int d, int e, int t): Returns the rank of PE with given coordinates on BG/Q.

getHopsBetweenRanks(int pe1, int pe2): Returns the distance between the given PEs in terms of the hops count on
the network between the two PEs.

printAllocation(FILE *fp): Outputs the allocation for a particular execution to the given file.

For example, one can obtain the rank of a processor, whose coordinates are known, on Cray XE6 using the following
code:

TopoManager *tmgr = TopoManager::getTopoManager();
int rank, x, y, z, t;
x = y = z = t = 2;
rank = tmgr->coordinatesToRank(x, y, z, t);

For more examples, please refer to examples/charm++/topology.

2.3.11 Physical Node API

The following calls provide information about the division and mapping of physical hardware in Charm++. A pro-
cessing element (PE) is a unit of mapping and scheduling, which takes the form of an OS thread in SMP mode and an
OS process in non-SMP mode. A logical node (often shortened to node) refers to an OS process: a set of one or more
PEs that share memory (i.e. an address space). A physical node refers to an individual hardware machine (or, more
precisely, an operating system instance on which Charm++ processes execute, or, in networking terminology, a host).

Communication between PEs on the same logical node is faster than communication between different logical nodes
because OS threads share the same address space and can directly interact through shared memory. Communication
between PEs on the same physical node may also be faster than between different physical nodes depending on the
availability of OS features such as POSIX shared memory and Cross Memory Attach, the abilities of the network
interconnect in use, and the speed of network loopback.

PEs are ranked in the range 0 to CmiNumPes(). Likewise, logical nodes are ranked from 0 to CmiNumNodes(),
and physical nodes are ranked from 0 to CmiNumPhysicalNodes().

Charm++ provides a set of functions for querying information about the mapping of PE’s to physical nodes. The
cputopology.C module, contains the following globally accessible functions:

int CmiPeOnSamePhysicalNode(int pe1, int pe2) Returns 1 if PEs pe1 and pe2 are on the same physical node
and 0 otherwise.

int CmiNumPhysicalNodes() Returns the number of physical nodes that the program is running on.

int CmiNumPesOnPhysicalNode(int node) Returns the number of PEs that reside within a physical node.
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void CmiGetPesOnPhysicalNode(int node, int **pelist, int *num) After execution pelist will point to a list of
all PEs that reside within a physical node and num will point to the length of the list. One should be careful to
not free or alter pelist since it points to reserved memory.

int CmiPhysicalRank(int pe) Returns the rank of a PE among all PEs running on the same physical node.

int CmiPhysicalNodeID(int pe) Returns the node ID of the physical node in which a PE resides.

int CmiGetFirstPeOnPhysicalNode(int node) Returns the lowest numbered processor on a physical node.

2.3.12 Checkpoint/Restart-Based Fault Tolerance

Charm++ offers two checkpoint/restart mechanisms. Each of these targets a specific need in parallel programming.
However, both of them are based on the same infrastructure.

Traditional chare-array-based Charm++ applications, including AMPI applications, can be checkpointed to storage
buffers (either files or memory regions) and be restarted later from those buffers. The basic idea behind this is straight-
forward: checkpointing an application is like migrating its parallel objects from the processors onto buffers, and
restarting is the reverse. Thanks to the migration utilities like PUP methods (Section 2.2.5), users can decide what data
to save in checkpoints and how to save them. However, unlike migration (where certain objects do not need a PUP
method), checkpoint requires all the objects to implement the PUP method.

The two checkpoint/restart schemes implemented are:

• Shared filesystem: provides support for split execution, where the execution of an application is interrupted and
later resumed.

• Double local-storage: offers an online fault tolerance mechanism for applications running on unreliable ma-
chines.

Split Execution

There are several reasons for having to split the execution of an application. These include protection against job fail-
ure, a single execution needing to run beyond a machine’s job time limit, and resuming execution from an intermediate
point with different parameters. All of these scenarios are supported by a mechanism to record execution state, and
resume execution from it later.

Parallel machines are assembled from many complicated components, each of which can potentially fail and interrupt
execution unexpectedly. Thus, parallel applications that take long enough to run from start to completion need to
protect themselves from losing work and having to start over. They can achieve this by periodically taking a checkpoint
of their execution state from which they can later resume.

Another use of checkpoint/restart is where the total execution time of the application exceeds the maximum allocation
time for a job in a supercomputer. For that case, an application may checkpoint before the allocation time expires and
then restart from the checkpoint in a subsequent allocation.

A third reason for having a split execution is when an application consists of phases and each phase may be run a
different number of times with varying parameters. Consider, for instance, an application with two phases where the
first phase only has a possible configuration (it is run only once). The second phase may have several configuration
(for testing various algorithms). In that case, once the first phase is complete, the application checkpoints the result.
Further executions of the second phase may just resume from that checkpoint.

An example of Charm++’s support for split execution can be seen in tests/charm++/chkpt/hello.

Checkpointing

The API to checkpoint the application is:
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void CkStartCheckpoint(char* dirname, const CkCallback& cb);

The string dirname is the destination directory where the checkpoint files will be stored, and cb is the callback
function which will be invoked after the checkpoint is done, as well as when the restart is complete. Here is an
example of a typical use:

/* ... */ CkCallback cb(CkIndex_Hello::SayHi(), helloProxy);
CkStartCheckpoint("log", cb);

A chare array usually has a PUP routine for the sake of migration. The PUP routine is also used in the checkpointing
and restarting process. Therefore, it is up to the programmer what to save and restore for the application. One
illustration of this flexibility is a complicated scientific computation application with 9 matrices, 8 of which hold
intermediate results and 1 that holds the final results of each timestep. To save resources, the PUP routine can well
omit the 8 intermediate matrices and checkpoint the matrix with the final results of each timestep.

Group, nodegroup (Section 2.2.7) and singleton chare objects are normally not meant to be migrated. In order to check-
point them, however, the user has to write PUP routines for the groups and chare and declare them as [migratable]
in the .ci file. Some programs use mainchares to hold key control data like global object counts, and thus mainchares
need to be checkpointed too. To do this, the programmer should write a PUP routine for the mainchare and declare
them as [migratable] in the .ci file, just as in the case of Group and NodeGroup.

The checkpoint must be recorded at a synchronization point in the application, to ensure a consistent state upon restart.
One easy way to achieve this is to synchronize through a reduction to a single chare (such as the mainchare used at
startup) and have that chare make the call to initiate the checkpoint.

After CkStartCheckpoint is executed, a directory of the designated name is created and a collection of checkpoint
files are written into it.

Restarting

The user can choose to run the Charm++ application in restart mode, i.e., restarting execution from a previously-created
checkpoint. The command line option +restart DIRNAME is required to invoke this mode. For example:

$ ./charmrun hello +p4 +restart log

Restarting is the reverse process of checkpointing. Charm++ allows restarting the old checkpoint on a different number
of physical processors. This provides the flexibility to expand or shrink your application when the availability of
computing resources changes.

Note that on restart, if an array or group reduction client was set to a static function, the function pointer might be lost
and the user needs to register it again. A better alternative is to always use an entry method of a chare object. Since all
the entry methods are registered inside Charm++ system, in the restart phase, the reduction client will be automatically
restored.

After a failure, the system may contain fewer or more processors. Once the failed components have been repaired,
some processors may become available again. Therefore, the user may need the flexibility to restart on a different
number of processors than in the checkpointing phase. This is allowable by giving a different +pN option at runtime.
One thing to note is that the new load distribution might differ from the previous one at checkpoint time, so running a
load balancer (see Section 2.2.6) after restart is suggested.

If restart is not done on the same number of processors, the processor-specific data in a group/nodegroup branch cannot
(and usually should not) be restored individually. A copy from processor 0 will be propagated to all the processors.
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Choosing What to Save

In your programs, you may use chare groups for different types of purposes. For example, groups holding read-only
data can avoid excessive data copying, while groups maintaining processor-specific information are used as a local
manager of the processor. In the latter situation, the data is sometimes too complicated to save and restore but easy
to re-compute. For the read-only data, you want to save and restore it in the PUP’er routine and leave empty the
migration constructor, via which the new object is created during restart. For the easy-to-recompute type of data, we
just omit the PUP’er routine and do the data reconstruction in the group’s migration constructor.

A similar example is the program mentioned above, where there are two types of chare arrays, one maintaining
intermediate results while the other type holds the final result for each timestep. The programmer can take advantage
of the flexibility by leaving PUP’er routine empty for intermediate objects, and do save/restore only for the important
objects.

Online Fault Tolerance

As supercomputers grow in size, their reliability decreases correspondingly. This is due to the fact that the ability to
assemble components in a machine surpasses the increase in reliability per component. What we can expect in the
future is that applications will run on unreliable hardware.

The previous disk-based checkpoint/restart can be used as a fault tolerance scheme. However, it would be a very basic
scheme in that when a failure occurs, the whole program gets killed and the user has to manually restart the application
from the checkpoint files. The double local-storage checkpoint/restart protocol described in this subsection provides
an automatic fault tolerance solution. When a failure occurs, the program can automatically detect the failure and
restart from the checkpoint. Further, this fault-tolerance protocol does not rely on any reliable external storage (as
needed in the previous method). Instead, it stores two copies of checkpoint data to two different locations (can be
memory or local disk). This double checkpointing ensures the availability of one checkpoint in case the other is lost.
The double in-memory checkpoint/restart scheme is useful and efficient for applications with small memory footprint
at the checkpoint state. The double in-disk variant stores checkpoints into local disk, thus can be useful for applications
with large memory footprint.

Checkpointing

The function that application developers can call to record a checkpoint in a chare-array-based application is:

void CkStartMemCheckpoint(CkCallback &cb)

where cb has the same meaning as in section 2.3.12. Just like the above disk checkpoint described, it is up to the
programmer to decide what to save. The programmer is responsible for choosing when to activate checkpointing so
that the size of a global checkpoint state, and consequently the time to record it, is minimized.

In AMPI applications, the user just needs to create an MPI_Info object with the key "ampi_checkpoint" and
a value of either "in_memory" (for a double in-memory checkpoint) or "to_file=file_name" (to checkpoint
to disk), and pass that object to the function AMPI_Migrate() as in the following:

// Setup
MPI_Info in_memory, to_file;

MPI_Info_create(&in_memory);
MPI_Info_set(in_memory, "ampi_checkpoint", "in_memory");

MPI_Info_create(&to_file);
MPI_Info_set(to_file, "ampi_checkpoint", "to_file=chkpt_dir");

(continues on next page)
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(continued from previous page)

...

// Main time-stepping loop
for (int iter=0; iter < max_iters; iter++) {

// Time step work ...

if (iter % chkpt_freq == 0)
AMPI_Migrate(in_memory);

}

Restarting

When a processor crashes, the restart protocol will be automatically invoked to recover all objects using the last
checkpoints. The program will continue to run on the surviving processors. This is based on the assumption that there
are no extra processors to replace the crashed ones.

However, if there are a pool of extra processors to replace the crashed ones, the fault-tolerance protocol can also take
advantage of this to grab one free processor and let the program run on the same number of processors as before the
crash. In order to achieve this, Charm++ needs to be compiled with the macro option CK_NO_PROC_POOL turned
on.

Double in-disk checkpoint/restart

A variant of double memory checkpoint/restart, double in-disk checkpoint/restart, can be applied to applications with
large memory footprint. In this scheme, instead of storing checkpoints in the memory, it stores them in the local disk.
The checkpoint files are named ckpt[CkMyPe]-[idx]-XXXXX and are stored under the /tmp directory.

Users can pass the runtime option +ftc_disk to activate this mode. For example:

./charmrun hello +p8 +ftc_disk

Building Instructions

In order to have the double local-storage checkpoint/restart functionality available, the parameter syncft must be
provided at build time:

./build charm++ netlrts-linux-x86_64 syncft

At present, only a few of the machine layers underlying the Charm++ runtime system support resilient execution.
These include the TCP-based net builds on Linux and Mac OS X. For clusters overbearing job-schedulers that kill a
job if a node goes down, the way to demonstrate the killing of a process is show in Section 2.3.12 . Charm++ runtime
system can automatically detect failures and restart from checkpoint.

Failure Injection

To test that your application is able to successfully recover from failures using the double local-storage mechanism,
we provide a failure injection mechanism that lets you specify which PEs will fail at what point in time. You must
create a text file with two columns. The first colum will store the PEs that will fail. The second column will store the
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time at which the corresponding PE will fail. Make sure all the failures occur after the first checkpoint. The runtime
parameter kill_file has to be added to the command line along with the file name:

$ ./charmrun hello +p8 +kill_file <file>

An example of this usage can be found in the syncfttest targets in tests/charm++/jacobi3d.

Failure Demonstration

For HPC clusters, the job-schedulers usually kills a job if a node goes down. To demonstrate restarting after failures
on such clusters, CkDieNow() function can be used. You just need to place it at any place in the code. When it
is called by a processor, the processor will hang and stop responding to any communication. A spare processor will
replace the crashed processor and continue execution after getting the checkpoint of the crashed processor. To make it
work, you need to add the command line option +wp, the number following that option is the working processors and
the remaining are the spare processors in the system.

2.3.13 Support for Loop-level Parallelism

To better utilize the multicore chip, it has become increasingly popular to adopt shared-memory multithreading pro-
gramming methods to exploit parallelism on a node. For example, in hybrid MPI programs, OpenMP is the most pop-
ular choice. When launching such hybrid programs, users have to make sure there are spare physical cores allocated
to the shared-memory multithreading runtime. Otherwise, the runtime that handles distributed-memory programming
may interfere with resource contention because the two independent runtime systems are not coordinated. If spare
cores are allocated, in the same way of launching a MPI+OpenMP hybrid program, Charm++ will work perfectly
with any shared-memory parallel programming languages (e.g. OpenMP). As with ordinary OpenMP applications,
the number of threads used in the OpenMP parts of the program can be controlled with the OMP_NUM_THREADS
environment variable. See Section 2.6.3 for details on how to propagate such environment variables.

If there are no spare cores allocated, to avoid resource contention, a unified runtime is needed to support both intra-
node shared-memory multithreading parallelism and inter-node distributed-memory message-passing parallelism. Ad-
ditionally, considering that a parallel application may have only a small fraction of its critical computation be suitable
for porting to shared-memory parallelism (the savings on critical computation may also reduce the communication
cost, thus leading to more performance improvement), dedicating physical cores on every node to the shared-memory
multithreading runtime will waste computational power because those dedicated cores are not utilized at all during
most of the application’s execution time. This case indicates the necessity of a unified runtime supporting both types
of parallelism.

CkLoop library

The CkLoop library is an add-on to the Charm++ runtime to achieve such a unified runtime. The library implements a
simple OpenMP-like shared-memory multithreading runtime that reuses Charm++ PEs to perform tasks spawned by
the multithreading runtime. This library targets the SMP mode of Charm++.

The CkLoop library is built in $CHARM_DIR/$MACH_LAYER/tmp/libs/ck-libs/ckloop by executing
make. To use it for user applications, one has to include CkLoopAPI.h in the source code. The interface func-
tions of this library are as follows:

• CProxy_FuncCkLoop CkLoop_Init(int numThreads=0): This function initializes the CkLoop library, and it
only needs to be called once on a single PE during the initialization phase of the application. The argument
numThreads is only used in non-SMP mode, specifying the number of threads to be created for the single-
node shared-memory parallelism. It will be ignored in SMP mode.

• void CkLoop_SetSchedPolicy(CkLoop_sched schedPolicy=CKLOOP_NODE_QUEUE) : This function sets
the scheduling policy of CkLoop work, three options available: CKLOOP_NODE_QUEUE, CKLOOP_TREE and
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CKLOOP_LIST. The default policy, CKLOOP_NODE_QUEUE on supported environments is to use node_queue
message so that master or another idle PE delievers the CkLoop work to all other PEs. CKLOOP_TREE policy
is set by default for builds not supporting a node queue. This policy delivers CkLoop messages on the implicit
tree. CKLOOP_LIST uses list to deliver the messages.

• void CkLoop_Exit(CProxy_FuncCkLoop ckLoop): This function is intended to be used in non-SMP mode, as
it frees the resources (e.g. terminating the spawned threads) used by the CkLoop library. It should be called on
just one PE.

• void CkLoop_Parallelize(
HelperFn func, /* the function that finishes partial work on another thread */
int paramNum, /* the number of parameters for func */
void * param, /* the input parameters for the above func */
int numChunks, /* number of chunks to be partitioned */
int lowerRange, /* lower range of the loop-like parallelization [lowerRange, upperRange] */
int upperRange, /* upper range of the loop-like parallelization [lowerRange, upperRange] */
int sync=1, /* toggle implicit barrier after each parallelized loop */
void *redResult=NULL, /* the reduction result, ONLY SUPPORT SINGLE VAR of TYPE int/float/double */
REDUCTION_TYPE type=CKLOOP_NONE /* type of the reduction result */
CallerFn cfunc=NULL, /* caller PE will call this function before ckloop is done and before starting to work on
its chunks */
int cparamNum=0, void *cparam=NULL /* the input parameters to the above function */
)
The “HelperFn” is defined as “typedef void (*HelperFn)(int first,int last, void *result, int paramNum, void
*param);” and the “result” is the buffer for reduction result on a single simple-type variable. The “CallerFn” is
defined as “typedef void (*CallerFn)(int paramNum, void *param);”

Lambda syntax for CkLoop is also supported. The interface for using lambda syntax is as follows:

void CkLoop_Parallelize(
int numChunks, int lowerRange, int upperRange,

[=](int first, int last, void *result) {
for (int i = first; i <= last; ++i ) {

// work to parallelize goes here
}

}, void *redResult=NULL, REDUCTION_TYPE type=CKLOOP_NONE,
std::function<void()> cfunc=NULL
}

);

Examples using this library can be found in examples/charm++/ckloop and the widely used molecular dynam-
ics simulation application NAMD14.

The CkLoop Hybrid library

The CkLoop_Hybrid library is a mode of CkLoop that incorporates specific adaptive scheduling strategies aimed at
providing a tradeoff between dynamic load balance and spatial locality. It is used in a build of Charm++ where all
chares are placed on core 0 of each node (called the drone-mode, or all-drones-mode). It incorporates a strategy called
staggered static-dynamic scheduling (from dissertation work of Vivek Kale). The iteration space is first tentatively
divided approximately equally to all available PEs. Each PE’s share of the iteration space is divided into a static
portion, specified by the staticFraction parameter below, and the remaining dynamic portion. The dynamic portion of
a PE is divided into chunks of specified chunksize, and enqueued in the task-queue associated with that PE. Each PE

14 http://www.ks.uiuc.edu/Research/namd
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works on its static portion, and then on its own task queue (thus preserving spatial locality, as well as persistence of
allocations across outer iterations), and after finishing that, steals work from other PE’s task queues.

CkLoopHybrid support requires the SMP mode of Charm++ and the additional flags -enable-drone-mode and
-enable-task-queue to be passed as build options when Charm++ is built.

The changes to the CkLoop API call are the following:

• CkLoop_Init does not need to be called

• CkLoop_SetSchedPolicy is not supported

• CkLoop_Exit does not need to be called

• CkLoop_Parallelize call is similar to CkLoop but has an additional variable that provides the fraction of itera-
tions that are statically scheduled:

void CkLoop_ParallelizeHybrid(
float staticFraction,
HelperFn func, /* the function that finishes partial work on another thread */
int paramNum, /* the number of parameters for func */
void * param, /* the input parameters for the above func */
int numChunks, /* number of chunks to be partitioned */
int lowerRange, /* lower range of the loop-like parallelization [lowerRange,
→˓upperRange] */
int upperRange, /* upper range of the loop-like parallelization [lowerRange,
→˓upperRange] */
int sync=1, /* toggle implicit barrier after each parallelized loop */
void *redResult=NULL, /* the reduction result, ONLY SUPPORT SINGLE VAR of TYPE
→˓int/float/double */
REDUCTION_TYPE type=CKLOOP_NONE /* type of the reduction result */
CallerFn cfunc=NULL, /* caller PE will call this function before ckloop is done
→˓and before starting to work on its chunks */
int cparamNum=0, void *cparam=NULL /* the input parameters to the above function
→˓*/
)

Reduction is supported for type CKLOOP_INT_SUM, CKLOOP_FLOAT_SUM, CKLOOP_DOUBLE_SUM. It is recom-
mended to use this mode without reduction.

Charm++/Converse Runtime Scheduler Integrated OpenMP

The compiler-provided OpenMP runtime library can work with Charm++ but it creates its own thread pool so that
Charm++ and OpenMP can have oversubscription problem. The integrated OpenMP runtime library parallelizes
OpenMP regions in each chare and runs on the Charm++ runtime without oversubscription. The integrated runtime
creates OpenMP user-level threads, which can migrate among PEs within a node. This fine-grained parallelism by the
integrated runtime helps resolve load imbalance within a node easily. When PEs become idle, they help other busy
PEs within a node via work-stealing.

Instructions to build and use the integrated OpenMP library

Instructions to build

The OpenMP library can be built with omp keyword on any smp version of Charm++ including multicore build when
you build Charm++ or AMPI, for example:
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$ $CHARM_DIR/build charm++ multicore-linux64 omp
$ $CHARM_DIR/build charm++ netlrts-linux-x86_64 smp omp

This library is based on the LLVM OpenMP runtime library. So it supports the ABI used by clang, intel and gcc
compilers. The following is the list of compilers which are verified to support this integrated library on Linux.

• GCC: 4.8 or newer

• ICC: 15.0 or newer

• Clang: 3.7 or newer

You can use this integrated OpenMP with clang on IBM Blue Gene machines without special compilation flags (don’t
need to add -fopenmp or -openmp on Blue Gene clang).

On Linux, the OpenMP supported version of clang has been installed in default recently. For example, Ubuntu has
been released with clang higher than 3.7 since 15.10. Depending on which version of clang is installed in your working
environments, you should follow additional instructions to use this integrated OpenMP with Clang. The following is
the instruction to use clang on Ubuntu where the default clang is older than 3.7. If you want to use clang on other
Linux distributions, you can use package managers on those Linux distributions to install clang and OpenMP library.
This installation of clang will add headers for OpenMP environmental routines and allow you to parse the OpenMP
directives. However, on Ubuntu, the installation of clang doesn’t come with its OpenMP runtime library so it results
in an error message saying that it fails to link the compiler provided OpenMP library. This library is not needed to use
the integrated OpenMP runtime but you need to avoid this error to succeed compiling your codes. The following are
the instructions to avoid the error:

# When you want to compile Integrated OpenMP on Ubuntu where the pre-installed clang
# is older than 3.7, you can use integrated openmp with the following instructions.
# e.g.) Ubuntu 14.04, the version of default clang is 3.4.
$ sudo apt-get install clang-3.8 //you can use any version of clang higher than 3.8
$ sudo ln -svT /usr/bin/clang-3.8 /usr/bin/clang
$ sudo ln -svT /usr/bin/clang++-3.8 /usr/bin/clang

$ $CHARM_DIR/build charm++ multicore-linux64 clang omp --with-production -j8
$ echo '!<arch>' > $(CHARM_DIR)/lib/libomp.a # Dummy library. This will make you
→˓avoid the error message.

On Mac, the Apple-provided clang installed in default doesn’t have OpenMP feature. We’re working on the support
of this library on Mac with OpenMP enabled clang which can be downloaded and installed through Homebrew or
MacPorts. Currently, this integrated library is built and compiled on Mac with the normal GCC which can be down-
loaded and installed via Homebrew and MacPorts. If installed globally, GCC will be accessible by appending the
major version number and adding it to the invocation of the Charm++ build script. For example:

$ $CHARM_DIR/build charm++ multicore-linux64 omp gcc-7
$ $CHARM_DIR/build charm++ netlrts-linux-x86_64 smp omp gcc-7

If this does not work, you should set environment variables so that the Charm++ build script uses the normal gcc
installed from Homebrew or MacPorts. The following is an example using Homebrew on Mac OS X 10.12.5:

# Install Homebrew from https://brew.sh
# Install gcc using 'brew' */
$ brew install gcc

# gcc, g++ and other binaries are installed at /usr/local/Cellar/gcc/<version>/bin
# You need to make symbolic links to the gcc binaries at /usr/local/bin
# In this example, gcc 7.1.0 is installed at the directory.
$ cd /usr/local/bin
$ ln -sv /usr/local/Cellar/gcc/7.1.0/bin/gcc-7 gcc

(continues on next page)
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$ ln -sv /usr/local/Cellar/gcc/7.1.0/bin/g++-7 g++
$ ln -sv /usr/local/Cellar/gcc/7.1.0/bin/gcc-nm-7 gcc-nm
$ ln -sv /usr/local/Cellar/gcc/7.1.0/bin/gcc-ranlib-7 gcc-ranlib
$ ln -sv /usr/local/Cellar/gcc/7.1.0/bin/gcc-ar-7 gcc-ar

# Finally, you should set PATH variable so that these binaries are accessed first in
→˓the build script.
$ export PATH=/usr/local/bin:$PATH

In addition, this library will be supported on Windows in the next release of Charm++.

How to use the integrated OpenMP on Charm++

To use this library on your applications, you have to add -module OmpCharm in compile flags to link this library
instead of the compiler-provided library in compilers. Without -module OmpCharm, your application will use the
compiler-provided OpenMP library which running on its own separate runtime (you don’t need to add -fopenmp or
-openmp with gcc and icc. These flags are included in the predefined compile options when you build Charm++ with
omp).

This integrated OpenMP adjusts the number of OpenMP instances on each chare so the number of OpenMP
instances can be changed for each OpenMP region over execution. If your code shares some data structures
among OpenMP instances in a parallel region, you can set the size of the data structures before the start of the
OpenMP region with omp_get_max_threads() and use the data structure within each OpenMP instance with
omp_get_thread_num(). After the OpenMP region, you can iterate over the data structure to combine par-
tial results with CmiGetCurKnownOmpThreads(). CmiGetCurKnownOmpThreads() returns the number of
OpenMP threads for the latest OpenMP region on the PE where a chare is running. The following is an example to
describe how you can use shared data structures for OpenMP regions on the integrated OpenMP with Charm++:

/* Maximum possible number of OpenMP threads in the upcoming OpenMP region.
Users can restrict this number with 'omp_set_num_threads()' for each chare
and the environmental variable, 'OMP_NUM_THREADS' for all chares.
By default, omp_get_max_threads() returns the number of PEs for each logical node.

*/
int maxAvailableThreads = omp_get_max_threads();
int *partialResult = new int[maxAvailableThreads]{0};

/* Partial sum for subsets of iterations assigned to each OpenMP thread.
The integrated OpenMP runtime decides how many OpenMP threads to create
with some heuristics internally.

*/
#pragma omp parallel for
for (int i = 0; i < 128; i++) {
partialResult[omp_get_thread_num()] +=i;

}
/* We can know how many OpenMP threads are created in the latest OpenMP region

by CmiCurKnownOmpthreads().
You can get partial results each OpenMP thread generated */

for (int j = 0; j < CmiCurKnownOmpThreads(); j++)
CkPrintf("partial sum of thread %d: %d \n", j, partialResult[j]);
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The list of supported pragmas

This library is forked from LLVM OpenMP Library supporting OpenMP 4.0. Among many number of directives
specified in OpenMP 4.0, limited set of directives are supported. The following list of supported pragmas is verified
from the OpenMP conformance test suite which forked from LLVM OpenMP library and ported to Charm++ program
running multiple OpenMP instances on chares. The test suite can be found in tests/converse/openmp_test.

/* omp_<directive>_<clauses> */
omp_atomic
omp_barrier
omp_critical
omp_flush

/* the following directives means they work within omp parallel region */
omp_for_firstprivate
omp_for_lastprivate
omp_for_nowait
omp_for_private
omp_for_reduction
omp_for_schedule_dynamic
omp_for_schedule_guided
omp_for_schedule_static
omp_section_firstprivate
omp_section_lastprivate
omp_section_private
omp_sections_nowait
omp_sections_reduction

omp_get_num_threads
omp_get_wtick
omp_get_wtime
omp_in_parallel
omp_master
omp_master_3
omp_parallel_default
omp_parallel_firstprivate

/* the following directives means the combination of 'omp parallel and omp for/section
→˓' works */
omp_parallel_for_firstprivate
omp_parallel_for_if
omp_parallel_for_lastprivate
omp_parallel_for_private
omp_parallel_for_reduction
omp_parallel_sections_firstprivate
omp_parallel_sections_lastprivate
omp_parallel_sections_private
omp_parallel_sections_reduction

omp_parallel_if
omp_parallel_private
omp_parallel_reduction
omp_parallel_shared
omp_single
omp_single_nowait
omp_single_private

The other directives in OpenMP standard will be supported in the next version.
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A simple example using this library can be found in examples/charm++/openmp. You can compare CkLoop and
the integrated OpenMP with this example. You can see that the total execution time of this example with enough big
size of problem is faster with OpenMP than CkLoop thanks to load balancing through work-stealing between threads
within a node while the execution time of each chare can be slower on OpenMP because idle PEs helping busy PEs.

API to control which PEs participating in CkLoop/OpenMP work

User may want certain PE not to be involved in other PE’s loop-level parallelization for some cases because it may add
latency to works in the PE by helping other PEs. User can enable or disable each PE to participate in the loop-level
parallelization through the following API:

void CkSetPeHelpsOtherThreads (int value)

value can be 0 or 1, 0 means this API disable the current PE to help other PEs. value 1 or others can enable the current
PE for loop-level parallelization. By default, all the PEs are enabled for the loop-level parallelization by CkLoop and
OpenMP. User should explicitly enable the PE again by calling this API with value 1 after they disable it during certain
procedure so that the PE can help others after that. The following example shows how this API can be used.

CkSetPeHelpsOtherThreads(0);

/* codes which can run without the current PE
interuppted by loop-level work from other PEs */

CkSetPeHelpsOtherThreads(1);

2.3.14 Charm-MPI Interoperation

Codes and libraries written in Charm++ and MPI can also be used in an interoperable manner. Currently, this func-
tionality is supported only if Charm++ is built using MPI, PAMILRTS, or GNI as the network layer (e.g. mpi-
linux-x86_64 build). An example program to demonstrate the interoperation is available in examples/charm++/
mpi-coexist. In the following text, we will refer to this example program for the ease of understanding.

Control Flow and Memory Structure

The control flow and memory structure of a Charm++-MPI interoperable program is similar to that of a pure MPI
program that uses external MPI libraries. The execution of program begins with pure MPI code’s main. At some point
after MPI_Init() has been invoked, the following function call should be made to initialize Charm++:

void CharmLibInit(MPI_Comm newComm, int argc, char **argv)

If Charm++ is build on top of MPI, newComm is the MPI communicator that Charm++ will use for the setup and
communication. All the MPI ranks that belong to newComm should call this function collectively. A collection of
MPI ranks that make the CharmLibInit call defines a new Charm++ instance. Different MPI ranks that belong
to different communicators can make this call independently, and separate Charm++ instances that are not aware of
each other will be created. This results in a space division. As of now, a particular MPI rank can only be part of one
unique Charm++ instance. For PAMILRTS and GNI, the newComm argument is ignored. These layers do not support
the space division of given processors, but require all processors to make the CharmLibInit call. The mode of
interoperating here is called time division, and can be used with MPI-based Charm++ also if the size of newComm is
same as MPI_COMM_WORLD. Arguments argc and argv should contain the information required by Charm++ such
as the load balancing strategy, etc.

During initialization, control is transferred from MPI to the Charm++ RTS on the MPI ranks that made the call.
Along with basic setup, the Charm++ RTS also invokes the constructors of all mainchares during initialization. Once
the initial set up is done, control is transferred back to MPI as if returning from a function call. Since Charm++

124 Chapter 2. The Charm++ Parallel Programming System



Charm++ Documentation

initialization is made via a function call from the pure MPI program, Charm++ resides in the same memory space as
the pure MPI program. This makes transfer of data to/from MPI from/to Charm++ convenient (using pointers).

Writing Interoperable Charm++ Libraries

Minor modifications are required to make a Charm++ program interoperable with a pure MPI program:

• If the interoperable Charm++ library does not contain a main module, the Charm++ RTS provides a main module
and the control is returned back to MPI after the initialization is complete. In the other case, the library should
explicitly call CkExit to mark the end of initialization and the user should provide -nomain-module link
time flag when building the final executable.

• CkExit should be used the same way a return statement is used for returning back from a function call.
CkExit should be called only once from one of the processors. This unique call marks the transfer of control
from Charm++ RTS to MPI.

• Include mpi-interoperate.h - if not included in the files that call CkExit, invoking CkExit will result
in unspecified behavior.

• Since the CharmLibInit call invokes the constructors of mainchares, the constructors of mainchares should
only perform basic set up such as creation of chare arrays etc, i.e. the set up should not result in invocation
of actual work, which should be done using interface functions (when desired from the pure MPI program).
However, if the main module is provided by the library, CharmLibInit behaves like a regular Charm++
startup and execution which is stopped when CkExit is explicitly called by the library. One can also avoid
use of mainchares, and perform the necessary initializations in an interface function as demonstrated in the
interoperable library examples/charm++/mpi-coexist/libs/hello.

• Interface functions - Every library needs to define interface function(s) that can be invoked from pure MPI
programs, and transfers the control to the Charm++ RTS. The interface functions are simple functions whose
task is to start work for the Charm++ libraries. Here is an example interface function for the hello library.

void HelloStart(int elems)
{
if(CkMyPe() == 0) {

CkPrintf("HelloStart - Starting lib by calling constructor of MainHello\n");
CProxy_MainHello mainhello = CProxy_MainHello::ckNew(elems);

}
StartCharmScheduler(-1);

}

This function creates a new chare (mainHello) defined in the hello library which subsequently results in
work being done in hello library. More examples of such interface functions can be found in hi (HiStart) and
kNeighbor (kNeighbor) directories in examples/charm++/mpi-coexist/libs. Note that a scheduler
call StartCharmScheduler() should be made from the interface functions to start the message reception
by Charm++ RTS.

Writing Interoperable MPI Programs

An MPI program that invokes Charm++ libraries should include mpi-interoperate.h. As mentioned earlier, an
initialization call, CharmLibInit is required after invoking MPI_Init to perform the initial set up of Charm++.
It is advisable to call an MPI_Barrier after a control transfer between Charm++ and MPI to avoid any side effects.
Thereafter, a Charm++ library can be invoked at any point using the interface functions. One may look at examples/
charm++/mpi-coexist/multirun.cpp for a working example. Based on the way interfaces are defined, a
library can be invoked multiple times. In the end, one should call CharmLibExit to free resources reserved by
Charm++.
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Compilation and Execution

An interoperable Charm++ library can be compiled as usual using charmc. Instead of producing an executable in the
end, one should create a library (*.a) as shown in examples/charm++/mpi-coexist/libs/hi/Makefile.
The compilation process of the MPI program, however, needs modification. One has to include the charm directory
(-I$(CHARMDIR)/include) to help the compiler find the location of included mpi-interoperate.h. The
linking step to create the executable should be done using charmc, which in turn uses the compiler used to build
charm. In the linking step, it is required to pass -mpi as an argument because of which charmc performs the linking
for interoperation. The charm libraries, which one wants to be linked, should be passed using -module option. Refer
to examples/charm++/mpi-coexist/Makefile to view a working example. For execution on BG/Q sys-
tems, the following additional argument should be added to the launch command: -envs PAMI_CLIENTS=MPI,
Converse.

User Driven Mode

In addition to the above technique for interoperation, one can also interoperate with Charm++ in user driven mode.
User driven mode is intended for cases where the developer has direct control over the both the Charm++ code and the
non-Charm++ code, and would like a more tightly coupled relation between the two. When executing in user driven
mode, main is called on every rank as in the above example. To initialize the Charm++ runtime, a call to CharmInit
should be called on every rank:

void CharmInit(int argc, char **argv)

CharmInit starts the Charm++ runtime in user driven mode, and executes the constructor of any main chares, and
sends out messages for readonly variables and group creation. Control returns to user code after this initialization
completes. Once control is returned, user code can do other work as needed, including creating chares, and invoking
entry methods on proxies. Any messages created by the user code will be sent/received the next time the user calls
StartCharmScheduler. Calls to StartCharmScheduler allow the Charm++ runtime to resume sending and
processing messages, and control returns to user code when CkExit is called. The Charm++ scheduler can be started
and stopped in this fashion as many times as necessary. CharmLibExit should be called by the user code at the end
of execution to exit the entire application.

Applications which wish to use readonlies, and/or create groups before the rest of the application runs without using
a mainchare can do a split initialization. CharmBeginInit initializes the runtime system and immediately returns
control to the user after any mainchares are created. At this point, user code can create groups, and set readonly
variables on PE 0. Then, a call to CharmFinishInit does the rest of the initialization by sending out messages
from PE 0 to the rest of the PEs for creating groups and setting readonlies. CharmInit is just a shortcut for calling
these two functions one after another.

void CharmBeginInit(int argc, char **argv) void CharmFinishInit()

A small example of user driven interoperation can be found in examples/charm++/user-driven-interop.

2.3.15 Interoperation with Kokkos

Kokkos is a shared-memory parallel programming model in C++ developed by Sandia National Laboratories (https:
//github.com/kokkos/kokkos). It aims to provide ‘performance portability’ to HPC applications through abstractions
for parallel execution and data management. For execution in distributed memory environments, however, other
frameworks such as MPI must be used in conjunction, to enable multiple Kokkos processes running on potentially
different physical nodes to communicate with each other.

In this section, we explore the basic interoperability of Kokkos with Charm++. Currently there is no sophisticated in-
tegration scheme, Charm++ only manages the communication between different Kokkos instances with each instance
individually managing the parallel execution underneath. Example programs can be found in examples/charm++/
shared_runtimes/kokkos/hello and examples/charm++/shared_runtimes/kokkos/vecadd.
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Compiling the Kokkos Library

Kokkos supports multiple backends for parallel execution. We recommend OpenMP for multicore CPUs and CUDA
for machines with GPUs. Because Kokkos can be built with more than one backend, it is preferrable to build both
OpenMP and CUDA backends on GPU machines.

To build Kokkos with the OpenMP backend, run the following commands from the Kokkos source folder:

$ mkdir build-omp
$ cd build-omp
$ ../generate_makefile.bash --prefix=<absolute path to build-omp> --with-openmp

--arch=<CPU architecture>
$ make -j kokkoslib
$ make install

To build Kokkos with both OpenMP and CUDA backends (required for vecadd example), use the following com-
mands:

$ mkdir build-cuda
$ cd build-cuda
$ generate_makefile.bash --prefix=<absolute path to build-cuda>

--with-cuda=<path to CUDA toolkit>
--with-cuda-options=enable_lambda
--with-openmp --arch=<CPU arch>,<GPU arch>
--compiler=<path to included NVCC wrapper>

$ make -j kokkoslib
$ make install

For more compilation options, please refer to https://github.com/kokkos/kokkos/wiki/Compiling.

Program Structure and Flow

The basic programming pattern using Kokkos and Charm++ together for parallel execution in distributed memory envi-
ronments is the following. We use a Charm++ nodegroup (which corresponds to a OS process) to encapsulate a Kokkos
instance that will manage the parallel execution underneath. We initialize Kokkos using Kokkos::initialize()
in the constructor of the nodegroup, and finalize it using Kokkos::finalize(). Calls to the Kokkos parallel
API such as Kokkos::parallel_for() can be made between these calls. Communication between the different
Kokkos instances can be done via messages and entry method invocation among the nodegroup chares as in regular
Charm++.

2.3.16 Interoperation with RAJA

RAJA is a shared-memory parallel programming model in C++ developed by Lawrence Livermore National Labora-
tory (https://github.com/LLNL/RAJA). RAJA shares similar goals and concepts with Kokkos (Section 2.3.15).

In this section, we explore the basic interoperability of RAJA with Charm++. Currently there is no sophisticated
integration scheme, Charm++ only manages the communication between different RAJA instances with each instance
individually managing the parallel execution underneath. Example programs can be found in examples/charm++/
shared_runtimes/raja/hello and examples/charm++/shared_runtimes/raja/vecadd.

Compiling the RAJA Library

RAJA supports multiple backends for parallel execution. We recommend OpenMP for multicore CPUs and CUDA for
machines with GPUs. Because RAJA can be built with more than one backend, it is preferable to build both OpenMP
and CUDA backends on GPU machines.
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To build RAJA with both OpenMP and CUDA backends (required for vecadd example), use the following com-
mands:

$ mkdir build && install
$ cd build
$ cmake -DENABLE_CUDA=On -DCMAKE_INSTALL_PREFIX=<path to RAJA install folder> ../
$ make -j
$ make install

For more compilation options and assistance, please refer to the RAJA User Guide.

Program Structure and Flow

The basic programming pattern using RAJA and Charm++ together for parallel execution in distributed memory
environments is the following. We use a Charm++ nodegroup (which corresponds to a OS process) to encapsu-
late a RAJA instance that will manage the parallel execution underneath. Calls to the RAJA parallel API such as
RAJA::forall() can be made in a method of the nodegroup to perform parallel computation in shared memory.
Communication between the different RAJA instances can be performed via messages and entry method invocation
among the nodegroup chares as in regular Charm++.

2.3.17 Partitioning in Charm++

Starting with the 6.5.0 release, Charm++ was augmented with support for partitioning. The key idea is to divide
the allocated set of nodes into subsets that run independent Charm++ instances. These Charm++ instances (called
partitions from now on) have a unique identifier, can be programmed to do different tasks, and can interact with
each other. Addition of the partitioning scheme does not affect the existing code base or codes that do not want to
use partitioning. Some of the use cases of partitioning are replicated NAMD, replica-based fault tolerance, studying
mapping performance etc. In some aspects, partitioning is similar to disjoint communicator creation in MPI.

Overview

The Charm++ stack has three components - Charm++, Converse and a machine layer. In general, machine layer
handles the exchange of messages among nodes, and interacts with the next layer in the stack - Converse. Converse
is responsible for scheduling of tasks (including user code) and is used by Charm++ to execute the user application.
Charm++ is the top-most level in which the applications are written. During partitioning, Charm++ and machine
layers are unaware of the partitioning. Charm++ assumes its partition to be the entire world, whereas machine layer
considers the whole set of allocated nodes as one partition. During start up, converse divides the allocated set of nodes
into partitions, in each of which Charm++ instances are run. It performs the necessary translations as interactions
happen with Charm++ and the machine layer. The partitions can communicate with each other using the Converse
API described later.

Ranking

The Charm++ stack assigns a rank to every processing element (PE). In the non-partitioned version, a rank assigned
to a PE is the same at all three layers of the Charm++ stack. This rank also generally coincides with the rank provided
to processors/cores by the underlying job scheduler. The importance of these ranks derive from the fact that they are
used for multiple purposes. Partitioning leads to segregation of the notion of ranks at different levels of Charm++
stack. What used to be the PE is now a local rank within a partition running a Charm++ instance. Existing methods
such as CkMyPe(), CkMyNode(), CmiMyPe(), etc. continue to provide these local ranks. Hence, existing codes
do not require any change as long as inter-partition interaction is not required.

128 Chapter 2. The Charm++ Parallel Programming System

https://raja.readthedocs.io/en/master/


Charm++ Documentation

On the other hand, machine layer is provided with the target ranks that are globally unique. These ranks can
be obtained using functions with the Global suffix such as CmiNumNodesGlobal(), CmiMyNodeGlobal(),
CmiMyPeGlobal() etc.

Converse, which operates at a layer between Charm++ and machine layer, performs the required transitions. It main-
tains relevant information for any conversion. Information related to partitions can be obtained using Converse
level functions such as CmiMyPartition(), CmiNumPartitions(), etc. If required, one can also obtain
the mapping of a local rank to a global rank using functions such as CmiGetPeGlobal(int perank, int
partition) and CmiGetNodeGlobal(int noderank, int partition). These functions take two ar-
guments - the local rank and the partition number. For example, CmiGetNodeGlobal(5, 2) will return the global rank
of the node that belongs to partition 2 and has a local rank of 5 in partition 2. The inverse translation, from global rank
to local rank, is not supported.

Startup and Partitioning

A number of compile time and runtime parameters are available for users who want to run multiple partitions in one
single job.

• Runtime parameter: +partitions <part_number> or +replicas <replica_number> - number
of partitions to be created. If no further options are provided, allocated cores/nodes are divided equally among
partitions. Only this option is supported from the 6.5.0 release; remaining options are supported starting 6.6.0.

• Runtime parameter: +master_partition - assign one core/node as the master partition (partition 0), and
divide the remaining cores/nodes equally among remaining partitions.

• Runtime parameter: +partition_sizes L[-U[:S[.R]]]#W[,...] - defines the size of partitions. A
single number identifies a particular partition. Two numbers separated by a dash identify an inclusive range
(lower bound and upper bound). If they are followed by a colon and another number (a stride), that range will
be stepped through in increments of the additional number. Within each stride, a dot followed by a run will
indicate how many partitions to use from that starting point. Finally, a compulsory number sign (#) followed by
a width defines the size of each of the partitions identified so far. For example, the sequence 0-4:2#10,1#5,
3#15 states that partitions 0, 2, 4 should be of size 10, partition 1 of size 5 and partition 3 of size 15. In SMP
mode, these sizes are in terms of nodes. All workers threads associated with a node are assigned to the partition
of the node. This option conflicts with +assign_master.

• Runtime parameter: +partition_topology - use a default topology aware scheme to partition the allocated
nodes.

• Runtime parameter: +partition_topology_scheme <scheme> - use the given scheme to partition the
allocated nodes. Currently, two generalized schemes are supported that should be useful on torus networks.
If scheme is set to 1, allocated nodes are traversed plane by plane during partitioning. A hilbert curve based
traversal is used with scheme 2.

• Compilation parameter: -custom-part, runtime parameter: +use_custom_partition - enables use of
user defined partitioning. In order to implement a new partitioning scheme, a user must link an object exporting
a C function with following prototype:

extern "C" void createCustomPartitions(int numparts, int *partitionSize,
int *nodeMap);

numparts (input) - number of partitions to be created.
partitionSize (input) - an array that contains the size of each partition.
nodeMap (output, preallocated) - a preallocated array of length CmiNumNodesGlobal(). Entry i in this
array specifies the new global node rank of a node with default node rank i. The entries in this array are
block-wise divided to create partitions, i.e. entries 0 to partitionSize[0]-1 belong to partition 1, partitionSize[0]
to partitionSize[0]+partitionSize[1]-1 to partition 2 and so on.
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When this function is invoked to create partitions, TopoManager is configured to view all the allocated nodes
as one partition. Partition based API is yet to be initialized, and should not be used. A link time parameter
-custom-part is required to be passed to charmc for successful compilation.

Redirecting output from individual partitions

Output to standard output (stdout) from various partitions can be directed to separate files by passing the target path
as a command line option. The run time parameter +stdout <path> is to be used for this purpose. The <path>
may contain the C format specifier %d, which will be replaced by the partition number. In case, %d is specified
multiple times, only the first three instances from the left will be replaced by the partition number (other or additional
format specifiers will result in undefined behavior). If a format specifier is not specified, the partition number will be
appended as a suffix to the specified path. Example usage:

• +stdout out/%d/log will write to out/0/log, out/1/log, out/2/log, · · ·.

• +stdout log will write to log.0, log.1, log.2, · · ·.

• +stdout out/%d/log%d will write to out/0/log0, out/1/log1, out/2/log2, · · ·.

Inter-partition Communication

A new API was added to Converse to enable sending messages from one replica to another. Currently, the following
functions are available:

• CmiInterSyncSend(local_rank, partition, size, message)

• CmiInterSyncSendAndFree(local_rank, partition, size, message)

• CmiInterSyncNodeSend(local_node, partition, size, message)

• CmiInterSyncNodeSendAndFree(local_node, partition, size, message)

Users who have coded in Converse will find these functions to be very similar to basic Converse functions for send
- CmiSyncSend and CmiSyncSendAndFree. Given the local rank of a PE and the partition it belongs to, these
two functions will pass the message to the machine layer. CmiInterSyncSend does not return until message is
ready for reuse. CmiInterSyncSendAndFree passes the ownership of message to the Charm++ RTS, which
will free the message when the send is complete. Each converse message contains a message header, which makes
those messages active - they contain information about their handlers. These handlers can be registered using existing
API in Charm++ - CmiRegisterHandler. CmiInterNodeSend and CmiInterNodeSendAndFree are
counterparts to these functions that allow sending of a message to a node (in SMP mode).

2.4 Expert-Level Functionality

2.4.1 Tuning and Developing Load Balancers

Load Balancing Simulation

The simulation feature of the load balancing framework allows the users to collect information about the compute
WALL/CPU time and communication of the chares during a particular run of the program and use this information
later to test the different load balancing strategies to see which one is suitable for the program behavior. Currently, this
feature is supported only for the centralized load balancing strategies. For this, the load balancing framework accepts
the following command line options:

1. +LBDump StepStart
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This will dump the compute and the communication data collected by the load balancing framework starting
from the load balancing step StepStart into a file on the disk. The name of the file is given by the
+LBDumpFile option. The load balancing step in the program is numbered starting from 0. Negative value for
StepStart will be converted to 0.

2. +LBDumpSteps StepsNo
This option specifies the number of load balancing steps for which data will be dumped to disk. If omitted, its
default value is 1. The program will exit after StepsNo files are created.

3. +LBDumpFile FileName
This option specifies the base name of the file created with the load balancing data. If this option is not
specified, the framework uses the default file lbdata.dat. Since multiple steps are allowed, a number
corresponding to the step number is appended to the filename in the form Filename.#; this applies to both
dump and simulation.

4. +LBSim StepStart
This option instructs the framework to do the simulation starting from StepStart step. When this option is
specified, the load balancing data along with the step number will be read from the file specified in the
+LBDumpFile option. The program will print the results of the balancing for a number of steps given by the
+LBSimSteps option, and then will exit.

5. +LBSimSteps StepsNo
This option is applicable only to the simulation mode. It specifies the number of load balancing steps for which
the data will be dumped. The default value is 1.

6. +LBSimProcs
With this option, the user can change the number of processors specified to the load balancing strategy. It may
be used to test the strategy in the cases where some processor crashes or a new processor becomes available. If
this number is not changed since the original run, starting from the second step file, the program will print
other additional information about how the simulated load differs from the real load during the run
(considering all strategies that were applied while running). This may be used to test the validity of a load
balancer prediction over the reality. If the strategies used during run and simulation differ, the additional data
printed may not be useful.

Here is an example which collects the data for a 1000 processor run of a program

$ ./charmrun pgm +p1000 +balancer RandCentLB +LBDump 2 +LBDumpSteps 4 +LBDumpFile
→˓lbsim.dat

This will collect data on files lbsim.dat.2,3,4,5. We can use this data to analyze the performance of various centralized
strategies using:

$ ./charmrun pgm +balancer <Strategy to test> +LBSim 2 +LBSimSteps 4 +LBDumpFile
→˓lbsim.dat
[+LBSimProcs 900]

Please note that this does not invoke the real application. In fact, “pgm” can be replaced with any generic applica-
tion which calls centralized load balancer. An example can be found in tests/charm++/load_balancing/
lb_test.

Future load predictor

When objects do not follow the assumption that the future workload will be the same as the past, the load balancer
might not have the right information to do a good rebalancing job. To prevent this, the user can provide a transition
function to the load balancer to predict what will be the future workload, given the past instrumented one. For this,
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the user can provide a specific class which inherits from LBPredictorFunction and implement the appropriate
functions. Here is the abstract class:

class LBPredictorFunction {
public:

int num_params;

virtual void initialize_params(double *x);

virtual double predict(double x, double *params) =0;
virtual void print(double *params) {PredictorPrintf("LB: unknown model");};
virtual void function(double x, double *param, double &y, double *dyda) =0;

};

• initialize_params by default initializes the parameters randomly. If the user knows how they should be,
this function can be re-implemented.

• predict is the function that predicts the future load based on the function parameters. An example for the
predict function is given below.

double predict(double x, double *param) {return (param[0]*x + param[1]);}

• print is useful for debugging and it can be re-implemented to have a meaningful print of the learned model

• function is a function internally needed to learn the parameters, x and param are input, y and dyda are
output (the computed function and all its derivatives with respect to the parameters, respectively). For the
function in the example should look like:

void function(double x, double *param, double &y, double *dyda) {
y = predict(x, param);
dyda[0] = x;
dyda[1] = 1;

}

Other than these functions, the user should provide a constructor which must initialize num_params to the number
of parameters the model has to learn. This number is the dimension of param and dyda in the previous functions.
For the given example, the constructor is {num_params = 2;}.

If the model for computation is not known, the user can leave the system to use the default function.

As seen, the function can have several parameters which will be learned during the execution of the program. For this,
user can be add the following command line arguments to specify the learning behavior:

1. +LBPredictorWindow size
This parameter specifies the number of statistics steps the load balancer will store. The greater this number is,
the better the approximation of the workload will be, but more memory is required to store the intermediate
information. The default is 20.

2. +LBPredictorDelay steps
This will tell how many load balancer steps to wait before considering the function parameters learned and
starting to use the mode. The load balancer will collect statistics for a +LBPredictorWindow steps, but it will
start using the model as soon as +LBPredictorDelay information are collected. The default is 10.

Moreover, another flag can be set to enable the predictor from command line: +LBPredictor.
Other than the command line options, there are some methods which can be called from the user program to modify
the predictor. These methods are:
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• void PredictorOn(LBPredictorFunction *model);

• void PredictorOn(LBPredictorFunction *model,int window);

• void PredictorOff();

• void ChangePredictor(LBPredictorFunction *model);

An example can be found in tests/charm++/load_balancing/lb_test/predictor.

Control CPU Load Statistics

Charm++ programmers can modify the CPU load data in the load balancing database before a load balancing phase
starts (which is the time when load balancing database is collected and used by load balancing strategies).

In an array element, the following function can be invoked to overwrite the CPU load that is measured by the load
balancing framework.

double newTiming;
setObjTime(newTiming);

setObjTime() is defined as a method of class CkMigratable, which is the superclass of all array elements.

The users can also retrieve the current timing that the load balancing runtime has measured for the current array
element using getObjTime().

double measuredTiming;
measuredTiming = getObjTime();

This is useful when the users want to derive a new CPU load based on the existing one.

Model-based Load Balancing

The user can choose to feed load balancer with their own CPU timing for each Chare based on certain computational
model of the applications.

To do so, in the array element’s constructor, the user first needs to turn off automatic CPU load measurement com-
pletely by setting

usesAutoMeasure = false;

The user must also implement the following function to the chare array classes:

virtual void CkMigratable::UserSetLBLoad(); // defined in base class

This function serves as a callback that is called on each chare object when AtSync() is called and ready to do load
balancing. The implementation of UserSetLBLoad() is simply to set the current chare object’s CPU load in load
balancing framework. setObjTime() described above can be used for this.

Writing a new load balancing strategy

Charm++ programmers can choose an existing load balancing strategy from Charm++’s built-in strategies(see 2.2.6)
for the best performance based on the characteristics of their applications. However, they can also choose to write
their own load balancing strategies.

The Charm++ load balancing framework provides a simple scheme to incorporate new load balancing strategies. The
programmer needs to write their strategy for load balancing based on the instrumented ProcArray and ObjGraph
provided by the load balancing framework. This strategy is implemented within this function:
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void FooLB::work(LDStats *stats) {
/** ========================== INITIALIZATION ============================= */
ProcArray *parr = new ProcArray(stats);
ObjGraph *ogr = new ObjGraph(stats);

/** ============================= STRATEGY ================================ */
/// The strategy goes here
/// The strategy goes here
/// The strategy goes here
/// The strategy goes here
/// The strategy goes here

/** ============================== CLEANUP ================================ */
ogr->convertDecisions(stats);

}

Figure 2 explains the two data structures available to the strategy: ProcArray and ObjGraph. Using them, the strat-
egy should assign objects to new processors where it wants to be migrated through the setNewPe() method. src/
ck-ldb/GreedyLB.C can be referred.

2: ProcArray and ObjGraph data structures to be used when writing a load balancing strategy

Incorporating this strategy into the Charm++ build framework is explained in the next section.

Adding a load balancer to Charm++

Let us assume that we are writing a new centralized load balancer called FooLB. The next few steps explain the steps
of adding the load balancer to the Charm++ build system:

1. Create files named FooLB.ci, FooLB.h and FooLB.C in directory of src/ck-ldb. One can choose to copy and
rename the files GraphPartLB.* and rename the class name in those files.

2. Implement the strategy in the FooLB class method — FooLB::work(LDStats* stats) as described in the previ-
ous section.

3. Build charm for your platform (This will create the required links in the tmp directory).
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4. To compile the strategy files, first add FooLB in the ALL_LDBS list in charm/tmp/Makefile_lb.sh. Also com-
ment out the line containing UNCOMMON_LDBS in Makefile_lb.sh. If FooLB will require some libraries at
link time, you also need to create the dependency file called libmoduleFooLB.dep. Run the script in charm/tmp,
which creates the new Makefile named “Make.lb”.

5. Run make depends to update dependence rule of Charm++ files. And run make charm++ to compile
Charm++ which includes the new load balancing strategy files.

Understand Load Balancing Database Data Structure

To write a load balancing strategy, you need to know what information is measured during the runtime and how it is
represented in the load balancing database data structure.

There are mainly 3 categories of information: a) processor information including processor speed, background load;
b) object information including per object CPU/WallClock compute time and c) communication information .

The database data structure named LDStats is defined in CentralLB.h:

struct ProcStats { // per processor
LBRealType total_walltime;
LBRealType total_cputime;
LBRealType idletime;
LBRealType bg_walltime;
LBRealType bg_cputime;
int pe_speed;
double utilization;
bool available;
int n_objs;

}

struct LDStats { // load balancing database
ProcStats *procs;
int count;

int n_objs;
int n_migrateobjs;
LDObjData* objData;

int n_comm;
LDCommData* commData;

int *from_proc, *to_proc;
}

1. LBRealType is the data type for load balancer measured time. It is “double” by default. User can specify the
type to float at Charm++ compile time if want. For example, ./build charm++ netlrts-linux-x86_64 –with-lbtime-
type=float;

2. procs array defines processor attributes and usage data for each processor;

3. objData array records per object information, LDObjData is defined in lbdb.h;

4. commData array records per communication information. LDCommData is defined in lbdb.h.

2.4.2 Dynamic Code Injection

The Python scripting language in Charm++ allows the user to dynamically execute pieces of code inside a running
application, without the need to recompile. This is performed through the CCS (Converse Client Server) framework
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(see Converse Client-Server Interface for more information about this). The user specifies which elements of the
system will be accessible through the interface, as we will see later, and then run a client which connects to the server.

In order to exploit this functionality, Python interpreter needs to be installed into the system, and Charm++ LIBS need
to be built with: ./build LIBS <arch> <options>

The interface provides three different types of requests:

Execute requests to execute a code, it will contain the code to be executed on the server, together with the instructions
on how to handle the environment;

Print asks the server to send back all the strings which have been printed by the script until now;

Finished asks the server if the current script has finished or it is still running.

There are three modes to run code on the server, ordered here by increase of functionality, and decrease of dynamic
flexibility:

• simple read/write By implementing the read and write methods of the object exposed to python, in this way
single variables may be exposed, and the code will have the possibility to modify them individually as desired.
(see section 2.4.2)

• iteration By implementing the iterator functions in the server (see 2.4.2), the user can upload the code of a
Python function and a user-defined iterator structure, and the system will apply the specified function to all the
objects reflected by the iterator structure.

• high level By implementing python entry methods, the Python code uploaded can access them and activate
complex, parallel operations that will be performed by the Charm++ application. (see section 2.4.2)

This documentation will describe the client API first, and then the server API.

Client API

In order to facilitate the interface between the client and the server, some classes are available to the user to include
into the client. Currently C++ and java interfaces are provided.

C++ programs need to include PythonCCS-client.h into their code. This file is among the Charm++ include
files. For java, the package charm.ccs needs to be imported. This is located under the java directory on the Charm++
distribution, and it provides both the Python and CCS interface classes.

There are three main classes provided: PythonExecute, PythonPrint, and PythonFinishedwhich are used
for the three different types of request.

All of them have two common methods to enable communication across different platforms:

int size(); Returns the size of the class, as number of bytes that will be transmitted through the network (this includes
the code and other dynamic variables in the case of PythonExecute).

char *pack(); Returns a new memory location containing the data to be sent to the server, this is the data which has
to be passed to the CcsSendRequest function. The original class will be unmodified and can be reused in
subsequent calls.

A typical invocation to send a request from the client to the server has the following format:

CcsSendRequest (&server, "pyCode", 0, request.size(), request.pack());

PythonExecute

To execute a Python script on a running server, the client has to create an instance of PythonExecute, the two
constructors have the following signature (java has a corresponding functionality):
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PythonExecute(char *code, bool persistent=false, bool highlevel=false, CmiUInt4
→˓interpreter=0);
PythonExecute(char *code, char *method, PythonIterator *info, bool persistent=false,

bool highlevel=false, CmiUInt4 interpreter=0);

The second one is used for iterative requests (see 2.4.2). The only required argument is the code, a null terminated
string, which will not be modified by the system. All the other parameters are optional. They refer to the possible
variants for an execution request. In particular, this is a list of all the options:

iterative If the request is a single code (false) or if it represents a function over which to iterate (true) (see 2.4.2 for
more details).

persistent It is possible to store information on the server which will be retained across different client calls (from
simple data all the way up to complete libraries). True means that the information will be retained on the server,
false means that the information will be deleted when the script terminates. In order to properly release the
memory, when the last call is made (and the data is no longer required), this flag should be set to false. To reuse
persistent data, the interpreter field of the request should be set to handle returned by a previous persistent call
(see later in this subsection).

high level In order to have the ability to call high level Charm++ functions (available through the keyword python)
this flag must be set to true. If it is false, the entire module “charm” will not be present, but the startup of the
script will be faster.

print retain When the requested action triggers printed output for the client, this data can be retrieved with a Python-
Print request. If the output is not desired, this flag can be set to false, and the output will be discarded. If it is set
to true the output will be buffered pending retrieval by the client. The data will survive also after the termination
of the Python script, and if not retrieved will bloat memory usage on the server.

busy waiting Instead of returning a handle immediately to the client, that can be used to retrieve prints and check if
the script has finished, the server will answer to the client only when the script has terminated to run (and it will
effectively work as a PythonFinished request).

These flags can be set and checked with the following routines (CmiUInt4 represent a 4 byte unsigned integer):

void setCode(char *set);
void setPersistent(bool set);
void setIterate(bool set);
void setHighLevel(bool set);
void setKeepPrint(bool set);
void setWait(bool set);
void setInterpreter(CmiUInt4 i);

bool isPersistent();
bool isIterate();
bool isHighLevel();
bool isKeepPrint();
bool isWait();
CmiUInt4 getInterpreter();

From a PythonExecute request, the server will answer with a 4 byte integer value, which is a handle for the interpreter
that is running. It can be used to request for prints, check if the script has finished, and for reusing the same interpreter
(if it was persistent).

A value of 0 means that there was an error and the script didn’t run. This is typically due to a request to reuse an
existing interpreter which is not available, either because it was not persistent or because another script is still running
on that interpreter.
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Auto-imported modules

When a Python script is run inside a Charm++ application, two Python modules are made available by the system. One
is ck, the other is charm. The first one is always present and it represent basic functions, the second is related to high
level scripting and it is present only when this is enabled (see 2.4.2 for how to enable it, and 2.4.2 for a description on
how to implement charm functions).

The methods present in the ck module are the following:

printstr It accepts a string as parameter. It will write into the server stdout that string using the CkPrintf function
call.

printclient It accepts a string as parameter. It will forward the string back to the client when it issues a PythonPrint
request. It will buffer the strings until requested by PythonPrint if the KeepPrint option is true, otherwise it
will discard them.

mype Requires no parameters, and will return an integer representing the current processor where the code is execut-
ing. It is equivalent to the Charm++ function CkMyPe().

numpes Requires no parameters, and will return an integer representing the total number of processors that the appli-
cation is using. It is equivalent to the Charm++ function CkNumPes().

myindex Requires no parameters, and will return the index of the current element inside the array, if the object under
which Python is running is an array, or None if it is running under a Chare, a Group or a Nodegroup. The index
will be a tuple containing as many numbers as the dimension of the array.

read It accepts one object parameter, and it will perform a read request to the Charm++ object connected to the
Python script, and return an object containing the data read (see 2.4.2 for a description of this functionality).
An example of a call can be: value = ck.read((number, param, var2, var3)) where the double parenthesis are
needed to create a single tuple object containing four values passed as a single paramter, instead of four different
parameters.

write It accepts two object parameters, and it will perform a write request to the Charm++ object connected to the
Python script. For a description of this method, see 2.4.2. Again, only two objects need to be passed, so extra
parenthesis may be needed to create tuples from individual values.

Iterate mode

Sometimes some operations need to be iterated over all the elements in the system. This “iterative” functionality
provides a shortcut for the client user to do this. As an example, suppose we have a system which contains particles,
with their position, velocity and mass. If we implement read and write routines which allow us to access single
particle attributes, we may upload a script which doubles the mass of the particles with velocity greater than 1:

size = ck.read((``numparticles'', 0));
for i in range(0, size):

vel = ck.read((``velocity'', i));
mass = ck.read((``mass'', i));
mass = mass * 2;
if (vel > 1): ck.write((``mass'', i), mass);

Instead of all these read and writes, it will be better to be able to write:

def increase(p):
if (p.velocity > 1): p.mass = p.mass * 2;

This is what the “iterative” functionality provides. In order for this to work, the server has to implement two additional
functions (see 2.4.2), and the client has to pass some more information together with the code. This information is
the name of the function that has to be called (which can be defined in the “code” or was previously uploaded to a
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persistent interpreter), and a user defined structure which specifies over what data the function should be invoked.
These values can be specified either while constructing the PythonExecute variable (see the second constructor in
section 2.4.2), or with the following methods:

void setMethodName(char *name);
void setIterator(PythonIterator *iter);

The PythonIterator object must be defined by the user, and the user must insure that the same definition is
present inside both the client and the server. The Charm++ system will simply pass this structure as a void pointer.
This structure must inherit from PythonIterator. In the simple case (highly recommended), wherein no pointers
or dynamic allocation are used inside this class, nothing else needs to be done because it is trivial to serialize such
objects.

If instead pointers or dynamic memory allocation are used, the following methods have to be reimplemented to support
correct serialization:

int size();
char * pack();
void unpack();

The first returns the size of the class/structure after being packed. The second returns a pointer to a newly allocated
memory containing all the packed data, the returned memory must be compatible with the class itself, since later on
this same memory a call to unpack will be performed. Finally, the third will do the work opposite to pack and fix all
the pointers. This method will not return anything and is supposed to fix the pointers “inline”.

PythonPrint

In order to receive the output printed by the Python script, the client needs to send a PythonPrint request to the server.
The constructor is:

PythonPrint(CmiUInt4 interpreter, bool Wait=true, bool Kill=false);

The interpreter for which the request is made is mandatory. The other parameters are optional. The wait parameter
represents whether a reply will be sent back immediately to the client even if there is no output (false), or if the answer
will be delayed until there is an output (true). The kill option set to true means that this is not a normal request, but a
signal to unblock the latest print request which was blocking.

The returned data will be a non null-terminated string if some data is present (or if the request is blocking), or a 4 byte
zero data if nothing is present. This zero reply can happen in different situations:

• If the request is non blocking and no data is available on the server;

• If a kill request is sent, the previous blocking request is squashed;

• If the Python code ends without any output and it is not persistent;

• If another print request arrives, the previous one is squashed and the second one is kept.

As for a print kill request, no data is expected to come back, so it is safe to call CcsNoResponse(server).

The two options can also be dynamically set with the following methods:

void setWait(bool set);
bool isWait();

void setKill(bool set);
bool isKill();
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PythonFinished

In order to know when a Python code has finished executing, especially when using persistent interpreters, and a
serialization of the scripts is needed, a PythonFinished request is available. The constructor is the following:

PythonFinished(CmiUInt4 interpreter, bool Wait=true);

The interpreter corresponds to the handle for which the request was sent, while the wait option refers to a blocking
call (true), or immediate return (false).

The wait option can be dynamically modified with the two methods:

void setWait(bool set);
bool isWait();

This request will return a 4 byte integer containing the same interpreter value if the Python script has already finished,
or zero if the script is still running.

Server API

In order for a Charm++ object (chare, array, node, or nodegroup) to receive python requests, it is necessary to define
it as python-compliant. This is done through the keyword python placed in square brackets before the object name in
the .ci file. Some examples follow:

mainchare [python] main {...}
array [1D] [python] myArray {...}
group [python] myGroup {...}

In order to register a newly created object to receive Python scripts, the method registerPython of the proxy
should be called. As an example, the following code creates a 10 element array myArray, and then registers it to
receive scripts directed to “pycode”. The argument of registerPython is the string that CCS will use to address
the Python scripting capability of the object.

Cproxy_myArray localVar = CProxy_myArray::ckNew(10);
localVar.registerPython("pycode");

Server read and write functions

As explained previously in subsection 2.4.2, some functions are automatically made available to the scripting code
through the ck module. Two of these, read and write are only available if redefined by the object. The signatures of
the two methods to redefine are:

PyObject* read(PyObject* where);
void write(PyObject* where, PyObject* what);

The read function receives as a parameter an object specifying from where the data will be read, and returns an object
with the information required. The write function will receive two parameters: where the data will be written and
what data, and will perform the update. All these PyObjects are generic, and need to be coherent with the protocol
specified by the application. In order to parse the parameters, and create the value of the read, please refer to the
manual Extending and Embedding the Python Interpreter, and in particular to the functions PyArg_ParseTuple
and Py_BuildValue.
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Server iterator functions

In order to use the iterative mode as explained in subsection 2.4.2, it is necessary to implement two functions which
will be called by the system. These two functions have the following signatures:

int buildIterator(PyObject*, void*);
int nextIteratorUpdate(PyObject*, PyObject*, void*);

The first one is called once before the first execution of the Python code, and receives two parameters. The first is a
pointer to an empty PyObject to be filled with the data needed by the Python code. In order to manage this object,
some utility functions are provided. They are explained in subsection 2.4.2.

The second is a void pointer containing information of what the iteration should run over. This parameter may contain
any data structure, and an agreement between the client and the user object is necessary. The system treats it as a void
pointer since it has no information about what user defined data it contains.

The second function (nextIteratorUpdate) has three parameters. The first parameter contains the object to be
filled (similar to buildIterator), but the second object contains the PyObject which was provided for the last
iteration, potentially modified by the Python function. Its content can be read with the provided routines, used to
retrieve the next logical element in the iterator (with which to update the parameter itself), and possibly update the
content of the data inside the Charm++ object. The second parameter is the object returned by the last call to the
Python function, and the third parameter is the same data structure passed to buildIterator.

Both functions return an integer which will be interpreted by the system as follows:

1

• a new iterator in the first parameter has been provided, and the Python function should be called with it;

0

• there are no more elements to iterate.

Server utility functions

These are inherited when declaring an object as Python-compliant, and therefore they are available inside the object
code. All of them accept a PyObject pointer where to read/write the data, a string with the name of a field, and one
or two values containing the data to be read/written (note that to read the data from the PyObject, a pointer needs to
be passed). The strings used to identify the fields will be the same strings that the Python script will use to access the
data inside the object.

The name of the function identifies the type of Python object stored inside the PyObject container (i.e String, Int,
Long, Float, Complex), while the parameter of the functions identifies the C++ object type.

void pythonSetString(PyObject*, char*, char*);
void pythonSetString(PyObject*, char*, char*, int);
void pythonSetInt(PyObject*, char*, long);
void pythonSetLong(PyObject*, char*, long);
void pythonSetLong(PyObject*, char*, unsigned long);
void pythonSetLong(PyObject*, char*, double);
void pythonSetFloat(PyObject*, char*, double);
void pythonSetComplex(PyObject*, char*, double, double);

void pythonGetString(PyObject*, char*, char**);
void pythonGetInt(PyObject*, char*, long*);
void pythonGetLong(PyObject*, char*, long*);
void pythonGetLong(PyObject*, char*, unsigned long*);
void pythonGetLong(PyObject*, char*, double*);

(continues on next page)
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void pythonGetFloat(PyObject*, char*, double*);
void pythonGetComplex(PyObject*, char*, double*, double*);

To handle more complicated structures like Dictionaries, Lists or Tuples, please refer to Python/C API Reference
Manual.

High level scripting

When in addition to the definition of the Charm++ object as python, an entry method is also defined as python, this
entry method can be accessed directly by a Python script through the charm module. For example, the following
definition will be accessible with the python call: result = charm.highMethod(var1, var2, var3) It can accept any
number of parameters (even complex like tuples or dictionaries), and it can return an object as complex as needed.

The method must have the following signature:

entry [python] void highMethod(int handle);

The parameter is a handle that is passed by the system, and can be used in subsequent calls to return values to the
Python code.

The arguments passed by the Python caller can be retrieved using the function:

PyObject *pythonGetArg(int handle);

which returns a PyObject. This object is a Tuple containing a vector of all parameters. It can be parsed using
PyArg_ParseTuple to extract the single parameters.

When the Charm++’s entry method terminates (by means of return or termination of the function), control is
returned to the waiting Python script. Since the python entry methods execute within an user-level thread, it is possible
to suspend the entry method while some computation is carried on in Charm++. To start parallel computation, the entry
method can send regular messages, as every other threaded entry method (see 2.3.2 for more information on how this
can be done using CkCallbackResumeThread callbacks). The only difference with other threaded entry methods is that
here the callback CkCallbackPython must be used instead of CkCallbackResumeThread. The more specialized
CkCallbackPython callback works exactly like the other one, except that it correctly handles Python internal locks.

At the end of the computation, the following special function will return a value to the Python script:

void pythonReturn(int handle, PyObject* result);

where the second parameter is the Python object representing the returned value. The function Py_BuildValue
can be used to create this value. This function in itself does not terminate the entry method, but only sets the returning
value for Python to read when the entry method terminates.

A characteristic of Python is that in a multithreaded environment (like the one provided in Charm++), the running
thread needs to keep a lock to prevent other threads to access any variable. When using high level scripting, and the
Python script is suspended for long periods of time while waiting for the Charm++ application to perform the required
task, the Python internal locks are automatically released and re-acquired by the CkCallbackPython class when
it suspends.

2.4.3 Intercepting Messages via Delegation

Delegation is a means by which a library writer can intercept messages sent via a proxy. This is typically used to
construct communication libraries. A library creates a special kind of Group called a DelegationManager, which
receives the messages sent via a delegated proxy.

There are two parts to the delegation interface- a very small client-side interface to enable delegation, and a more
complex manager-side interface to handle the resulting redirected messages.
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Client Interface

All proxies (Chare, Group, Array, . . . ) in Charm++ support the following delegation routines.

void CProxy::ckDelegate(CkGroupID delMgr); Begin delegating messages sent via this proxy to the
given delegation manager. This only affects the proxy it is called on- other proxies for the same object are not changed.
If the proxy is already delegated, this call changes the delegation manager.

CkGroupID CProxy::ckDelegatedIdx(void) const; Get this proxy’s current delegation manager.

void CProxy::ckUndelegate(void); Stop delegating messages sent via this proxy. This restores the proxy
to normal operation.

One use of these routines might be:

CkGroupID mgr=somebodyElsesCommLib(...);
CProxy_foo p=...;
p.someEntry1(...); //Sent to foo normally
p.ckDelegate(mgr);
p.someEntry2(...); //Handled by mgr, not foo!
p.someEntry3(...); //Handled by mgr again
p.ckUndelegate();
p.someEntry4(...); //Back to foo

The client interface is very simple; but it is often not called by users directly. Often the delegate manager library needs
some other initialization, so a more typical use would be:

CProxy_foo p=...;
p.someEntry1(...); //Sent to foo normally
startCommLib(p,...); // Calls ckDelegate on proxy
p.someEntry2(...); //Handled by library, not foo!
p.someEntry3(...); //Handled by library again
finishCommLib(p,...); // Calls ckUndelegate on proxy
p.someEntry4(...); //Back to foo

Sync entry methods, group and nodegroup multicast messages, and messages for virtual chares that have not yet been
created are never delegated. Instead, these kinds of entry methods execute as usual, even if the proxy is delegated.

Manager Interface

A delegation manager is a group which inherits from CkDelegateMgr and overrides certain virtual methods. Since
CkDelegateMgr does not do any communication itself, it need not be mentioned in the .ci file; you can simply declare
a group as usual and inherit the C++ implementation from CkDelegateMgr.

Your delegation manager will be called by Charm++ any time a proxy delegated to it is used. Since any kind of proxy
can be delegated, there are separate virtual methods for delegated Chares, Groups, NodeGroups, and Arrays.

class CkDelegateMgr : public Group {
public:

virtual void ChareSend(int ep,void *m,const CkChareID *c,int onPE);

virtual void GroupSend(int ep,void *m,int onPE,CkGroupID g);
virtual void GroupBroadcast(int ep,void *m,CkGroupID g);

virtual void NodeGroupSend(int ep,void *m,int onNode,CkNodeGroupID g);
virtual void NodeGroupBroadcast(int ep,void *m,CkNodeGroupID g);

virtual void ArrayCreate(int ep,void *m,const CkArrayIndex &idx,int onPE,CkArrayID
→˓a); (continues on next page)
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virtual void ArraySend(int ep,void *m,const CkArrayIndex &idx,CkArrayID a);
virtual void ArrayBroadcast(int ep,void *m,CkArrayID a);
virtual void ArraySectionSend(int ep,void *m,CkArrayID a,CkSectionID &s);

};

These routines are called on the send side only. They are called after parameter marshalling; but before the messages
are packed. The parameters passed in have the following descriptions.

1. ep The entry point begin called, passed as an index into the Charm++ entry table. This information is also stored
in the message’s header; it is duplicated here for convenience.

2. m The Charm++ message. This is a pointer to the start of the user data; use the system routine UsrToEnv to get
the corresponding envelope. The messages are not necessarily packed; be sure to use CkPackMessage.

3. c The destination CkChareID. This information is already stored in the message header.

4. onPE The destination processor number. For chare messages, this indicates the processor the chare lives on. For
group messages, this indicates the destination processor. For array create messages, this indicates the desired
processor.

5. g The destination CkGroupID. This is also stored in the message header.

6. onNode The destination node.

7. idx The destination array index. This may be looked up using the lastKnown method of the array manager, e.g.,
using:

int lastPE=CProxy_CkArray(a).ckLocalBranch()->lastKnown(idx);

8. s The destination array section.

The CkDelegateMgr superclass implements all these methods; so you only need to implement those you wish to
optimize. You can also call the superclass to do the final delivery after you’ve sent your messages.

2.5 Experimental Features

2.5.1 Control Point Automatic Tuning

Charm++ currently includes an experimental automatic tuning framework that can dynamically adapt a program at
runtime to improve its performance. The program provides a set of tunable knobs that are adjusted automatically by
the tuning framework. The user program also provides information about the control points so that intelligent tuning
choices can be made. This information will be used to steer the program instead of requiring the tuning framework to
blindly search the possible program configurations.

Warning: this is still an experimental feature not meant for production applications

Exposing Control Points in a Charm++ Program

The program should include a header file before any of its *.decl.h files:

#include <controlPoints.h>

The control point framework initializes itself, so no changes need to be made at startup in the program.

The program will request the values for each control point on PE 0. Control point values are non-negative integers:

144 Chapter 2. The Charm++ Parallel Programming System



Charm++ Documentation

my_var = controlPoint("any_name", 5, 10);
my_var2 = controlPoint("another_name", 100,101);

To specify information about the effects of each control point, make calls such as these once on PE 0 before accessing
any control point values:

ControlPoint::EffectDecrease::Granularity("num_chare_rows");
ControlPoint::EffectDecrease::Granularity("num_chare_cols");
ControlPoint::EffectIncrease::NumMessages("num_chare_rows");
ControlPoint::EffectIncrease::NumMessages("num_chare_cols");
ControlPoint::EffectDecrease::MessageSizes("num_chare_rows");
ControlPoint::EffectDecrease::MessageSizes("num_chare_cols");
ControlPoint::EffectIncrease::Concurrency("num_chare_rows");
ControlPoint::EffectIncrease::Concurrency("num_chare_cols");
ControlPoint::EffectIncrease::NumComputeObjects("num_chare_rows");
ControlPoint::EffectIncrease::NumComputeObjects("num_chare_cols");

For a complete list of these functions, see cp_effects.h in charm/include.

The program, of course, has to adapt its behavior to use these new control point values. There are two ways for the
control point values to change over time. The program can request that a new phase (with its own control point values)
be used whenever it wants, or the control point framework can automatically advance to a new phase periodically. The
structure of the program will be slightly different in these to cases. Sections 2.5.1 and 2.5.1 describe the additional
changes to the program that should be made for each case.

Control Point Framework Advances Phases

The program provides a callback to the control point framework in a manner such as this:

// Once early on in program, create a callback, and register it
CkCallback cb(CkIndex_Main::granularityChange(NULL),thisProxy);
registerCPChangeCallback(cb, true);

In the callback or after the callback has executed, the program should request the new control point values on PE 0,
and adapt its behavior appropriately.

Alternatively, the program can specify that it wants to call gotoNextPhase(); itself when it is ready. Perhaps
the program wishes to delay its adaptation for a while. To do this, it specifies false as the final parameter to
registerCPChangeCallback as follows:

registerCPChangeCallback(cb, false);

Program Advances Phases

registerControlPointTiming(duration); // called after each program iteration on PE 0
gotoNextPhase(); // called after some number of iterations on PE 0

// Then request new control point values

Linking With The Control Point Framework

The control point tuning framework is now an integral part of the Charm++ runtime system. It does not need to be
linked in to an application in any special way. It contains the framework code responsible for recording information
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about the running program as well as adjust the control point values. The trace module will enable measurements to
be gathered including information about utilization, idle time, and memory usage.

Runtime Command Line Arguments

Various following command line arguments will affect the behavior of the program when running with the control
point framework. As this is an experimental framework, these are subject to change.

The scheme used for tuning can be selected at runtime by the use of one of the following options:

+CPSchemeRandom Randomly Select Control Point Values
+CPExhaustiveSearch Exhaustive Search of Control Point Values

+CPSimulAnneal Simulated Annealing Search of Control Point Values
+CPCriticalPathPrio Use Critical Path to adapt Control Point Values

+CPBestKnown Use BestKnown Timing for Control Point Values
+CPSteering Use Steering to adjust Control Point Values

+CPMemoryAware Adjust control points to approach available memory

To intelligently tune or steer an application’s performance, performance measurements ought to be used. Some of the
schemes above require that memory footprint statistics and utilization statistics be gathered. All measurements are
performed by a tracing module that has some overheads, so is not enabled by default. To use any type of measurement
based steering scheme, it is necessary to add a runtime command line argument to the user program to enable the
tracing module:

+CPEnableMeasurements

The following flags enable the gathering of the different types of available measurements.

+CPGatherAll Gather all types of measurements for each phase
+CPGatherMemoryUsage Gather memory usage after each phase
+CPGatherUtilization Gather utilization & Idle time after each phase

The control point framework will periodically adapt the control point values. The following command line flag deter-
mines the frequency at which the control point framework will attempt to adjust things.

+CPSamplePeriod number The time between Control Point Framework samples (in
→˓seconds)

The data from one run of the program can be saved and used in subsequent runs. The following command line
arguments specify that a file named controlPointData.txt should be created or loaded. This file contains
measurements for each phase as well as the control point values used in each phase.

+CPSaveData Save Control Point timings & configurations at completion
+CPLoadData Load Control Point timings & configurations at startup

+CPDataFilename Specify the data filename

It might be useful for example, to run once with +CPSimulAnneal +CPSaveData to try to find a good configu-
ration for the program, and then use +CPBestKnown +CPLoadData for all subsequent production runs.

2.5.2 Malleability: Shrink/Expand Number of Processors

This feature enables a Charm++ application to dynamically shrink and expand the number of processors that it is
running on during the execution. It internally uses three other features of Charm++: CCS (Converse Client Server)
interface, load balancing, and checkpoint restart.
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• The CCS interface is used to send and receive the shrink and expand commands. These commands can be
internal (i.e. application decides to shrink or expand itself) or external via a client. The runtime listens for the
commands on a port specified at launch time.

• The load balancing framework is used to evacuate the tasks before a shrink operation and distribute the load
equally over the new set of processors after an expand operation.

• The in-memory checkpoint restart mechanism is used to restart the application with the new processor count
quickly and without leaving residual processes behind.

An example program with a CCS client to send shrink/expand commands can be found in examples/charm++/
shrink_expand in the charm distribution.

To enable shrink expand, Charm++ needs to be built with the --enable-shrinkexpand option:

$ ./build charm++ netlrts-linux-x86_64 --enable-shrinkexpand

An example application launch command needs to include a load balancer, a nodelist file that contains all of the nodes
that are going to be used, and a port number to listen the shrink/expand commands:

$ ./charmrun +p4 ./jacobi2d 200 20 +balancer GreedyLB ++nodelist ./mynodelistfile
→˓++server ++server-port 1234

The CCS client to send shrink/expand commands needs to specify the hostname, port number, the old(current) number
of processor and the new(future) number of processors:

$ ./client <hostname> <port> <oldprocs> <newprocs>
(./client valor 1234 4 8 //This will increase from 4 to 8 processors.)

To make a Charm++ application malleable, first, pup routines for all of the constructs in the application need to be
written. This includes writing a pup routine for the mainchare and marking it migratable:

mainchare [migratable] Main { ... }

Second, the AtSync() and ResumeFromSync() functions need to be implemented in the usual way of doing load
balancing (See Section 2.2.6 for more info on load balancing). Shrink/expand will happen at the next load balancing
step after the receipt of the shrink/expand command.

NOTE: If you want to shrink your application, for example, from two physical nodes to one node where each node
has eight cores, then you should have eight entries in the nodelist file for each node, one per processor. Otherwise, the
application will shrink in a way that will use four cores from each node, whereas what you likely want is to use eight
cores on only one of the physical nodes after shrinking. For example, instead of having a nodelist like this:

host a
host b

the nodelist should be like this:

host a
host a
host a
host a
host a
host a
host a
host a
host b
host b

(continues on next page)
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(continued from previous page)

host b
host b
host b
host b
host b
host b

Warning: this is an experimental feature and not supported in all charm builds and applications. Currently, it
is tested on netlrts-{linux/darwin}-x86_64 builds. Support for other Charm++ builds and AMPI applica-
tions are under development. It is only tested with RefineLB and GreedyLB load balancing strategies; use other
strategies with caution.

2.6 Appendix

2.6.1 Installing Charm++

Charm++ can be installed manually from the source code or using a precompiled binary package. We also provide a
source code package for the Spack package manager. Building from the source code provides more flexibility, since
one can choose the options as desired. However, a precompiled binary may be slightly easier to get running.

Manual installation

Downloading Charm++

Charm++ can be downloaded using one of the following methods:

• From Charm++ website - The current stable version (source code and binaries) can be downloaded from our
website at http://charm.cs.illinois.edu/software.

• From source archive - The latest development version of Charm++ can be downloaded from our source archive
using git clone https://github.com/UIUC-PPL/charm.

If you download the source code from the website, you will have to unpack it using a tool capable of extracting gzip’d
tar files, such as tar (on Unix) or WinZIP (under Windows). Charm++ will be extracted to a directory called charm.

Installation

A typical prototype command for building Charm++ from the source code is:

./build <TARGET> <TARGET ARCHITECTURE> [OPTIONS] where,

TARGET is the framework one wants to build such as charm++ or AMPI.

TARGET ARCHITECTURE is the machine architecture one wants to build for such as netlrts-linux-x86_64,
pamilrts-bluegeneq etc.

OPTIONS are additional options to the build process, e.g. smp is used to build a shared memory version, -j8 is given
to build in parallel etc.

In Table 2, a list of build commands is provided for some of the commonly used systems. Note that, in general, options
such as smp, --with-production, compiler specifiers etc can be used with all targets. It is advisable to build with
--with-production to obtain the best performance. If one desires to perform trace collection (for Projections),
--enable-tracing --enable-tracing-commthread should also be passed to the build command.
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Details on all the available alternatives for each of the above mentioned parameters can be found by invoking ./
build --help. One can also go through the build process in an interactive manner. Run ./build, and it will be
followed by a few queries to select appropriate choices for the build one wants to perform.

2: Build command for some common cases
Machine Build command
Net with 32 bit Linux ./build charm++ netlrts-linux

--with-production -j8
Multicore (single node, shared memory) 64
bit Linux

./build charm++ multicore-linux-x86_64
--with-production -j8

Net with 64 bit Linux ./build charm++ netlrts-linux-x86_64
--with-production -j8

Net with 64 bit Linux (intel compilers) ./build charm++ netlrts-linux-x86_64 icc
--with-production -j8

Net with 64 bit Linux (shared memory) ./build charm++ netlrts-linux-x86_64 smp
--with-production -j8

Net with 64 bit Linux (checkpoint restart
based fault tolerance)

./build charm++ netlrts-linux-x86_64 syncft
--with-production -j8

MPI with 64 bit Linux ./build charm++ mpi-linux-x86_64
--with-production -j8

MPI with 64 bit Linux (shared memory) ./build charm++ mpi-linux-x86_64 smp
--with-production -j8

MPI with 64 bit Linux (mpicxx wrappers) ./build charm++ mpi-linux-x86_64 mpicxx
--with-production -j8

IBVERBS with 64 bit Linux ./build charm++ verbs-linux-x86_64
--with-production -j8

OFI with 64 bit Linux ./build charm++ ofi-linux-x86_64
--with-production -j8

UCX with 64 bit Linux ./build charm++ ucx-linux-x86_64
--with-production -j8

UCX with 64 bit Linux (Armv8) ./build charm++ ucx-linux-arm8
--with-production -j8

Net with 64 bit Windows ./build charm++ netlrts-win-x86_64
--with-production -j8

MPI with 64 bit Windows ./build charm++ mpi-win-x86_64
--with-production -j8

Net with 64 bit Mac ./build charm++ netlrts-darwin-x86_64
--with-production -j8

Blue Gene/Q (bgclang compilers) ./build charm++ pami-bluegeneq
--with-production -j8

Blue Gene/Q (bgclang compilers) ./build charm++ pamilrts-bluegeneq
--with-production -j8

Cray XE6 ./build charm++ gni-crayxe --with-production
-j8

Cray XK7 ./build charm++ gni-crayxe-cuda
--with-production -j8

Cray XC40 ./build charm++ gni-crayxc --with-production
-j8

As mentioned earlier, one can also build Charm++ using the precompiled binary in a manner similar to what is used
for installing any common software.

When a Charm++ build folder has already been generated, it is possible to perform incremental rebuilds by in-
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voking make from the tmp folder inside it. For example, with a netlrts-linux-x86_64 build, the path would be
netlrts-linux-x86_64/tmp. On Linux and macOS, the tmp symlink in the top-level charm directory also
points to the tmp directory of the most recent build.

Alternatively, CMake can be used for configuring and building Charm++. You can use cmake-gui or ccmake for
an overview of available options. Note that some are only effective when passed with -D from the command line
while configuring from a blank slate. To build with all defaults, cmake . is sufficient, though invoking CMake from
a separate location (ex: mkdir mybuild && cd mybuild && cmake ../charm) is recommended. Please
see Section 2.6.1 for building Charm++ directly with CMake.

Installation through the Spack package manager

Charm++ can also be installed through the Spack package manager (https://spack.io/).

A basic command to install Charm++ through Spack is the following:

$ spack install charmpp

By default, the netlrts network backend with SMP support is built. You can specify other backends by providing the
backend parameter to spack. It is also possible to specify other options, as listed in Section 2.6.1, by adding them
to the Spack command prepended by a +. For example, to build the MPI version of Charm++ with the integrated
OpenMP support, you can use the following command:

$ spack install charmpp backend=mpi +omp

To disable an option, prepend it with a ~. For example, to build Charm++ with SMP support disabled, you can use the
following command:

$ spack install charmpp ~smp

By default, the newest released version of Charm++ is built. You can select another version with the @ option (for
example, @6.8.1). To build the current git version of Charm++, specify the @develop version:

$ spack install charmpp@develop

Installation with CMake

As an experimental feature, Charm++ can be installed with the CMake tool, version 3.4 or newer (3.11 if you need
Fortran support). This is currently supported on Linux and Darwin, but not on Windows.

After downloading and unpacking Charm++, it can be installed in the following way:

$ cd charm
$ mkdir build-cmake
$ cd build-cmake
$ cmake ..
$ make -j4

By default, CMake builds the netlrts version. Other configuration options can be specified in the cmake command
above. For example, to build Charm++ and AMPI on top of the MPI layer with SMP, the following command can be
used:

$ cmake .. -DNETWORK=mpi -DSMP=on -DTARGET=AMPI

To simplify building with CMake, the buildcmake command is a simple wrapper around cmake that supports many of
the options that build supports.
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$ ./buildcmake AMPI netlrts-linux-x86_64 smp --with-production

Charm++ installation directories

The main directories in a Charm++ installation are:

charm/bin Executables, such as charmc and charmrun, used by Charm++.

charm/doc Documentation for Charm++, such as this document. Distributed as LaTeX source code; HTML and PDF
versions can be built or downloaded from our web site.

charm/include The Charm++ C++ and Fortran user include files (.h).

charm/lib The static libraries (.a) that comprise Charm++.

charm/lib_so The shared libraries (.so/.dylib) that comprise Charm++, if Charm++ is compiled with the
-build-shared option.

charm/examples Example Charm++ programs.

charm/src Source code for Charm++ itself.

charm/tmp Directory where Charm++ is built.

charm/tests Test Charm++ programs used by autobuild.

Reducing disk usage

The charm directory contains a collection of example-programs and test-programs. These may be deleted with no
other effects. You may also strip all the binaries in charm/bin.

Installation for Specific Builds

UCX

UCX stands for Unified Communication X and is a high performance communication library that can be used as a
backend networking layer for Charm++ builds on supported transports like Infiniband, Omni-Path, gni, TCP/IP, etc.

In order to install Charm++ with UCX backend, you require UCX or HPC-X modules in your environment. In case
UCX or HPC-X is not available in your environment, you can build UCX from scratch using the following steps:

$ git clone https://github.com/openucx/ucx.git
$ cd ucx
$ ./autogen.sh
$ ./contrib/configure-release --prefix=$HOME/ucx/build
$ make -j8
$ make install

After installing UCX, there are several supported process management interfaces (PMI) that can be specified as op-
tions in order to build Charm++ with UCX. These include Simple PMI, Slurm PMI, Slurm PMI 2 and PMIx (using
OpenMPI). Currently, in order to use PMIx for process management, it is required to have OpenMPI installed on
the system. Additionally, in order to use the other supported process management interfaces, it is required to have a
non-OpenMPI based MPI implementation installed on the system (e.g. Intel MPI, MVAPICH, MPICH, etc.).

The following section shows examples of build commands that can be used to build targets with the UCX backend
using different process management interfaces. It should be noted that unless UCX is installed in a system directory,
in order for Charm++ to find the UCX installation, it is required to pass the UCX build directory as --basedir.
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To build the Charm++ target with Simple PMI, do not specify any additional option as shown in the build command.

$ ./build charm++ ucx-linux-x86_64 --with-production --enable-error-checking --
→˓basedir=$HOME/ucx/build -j16

To build the Charm++ target with Slurm PMI, specify slurmpmi in the build command.

$ ./build charm++ ucx-linux-x86_64 slurmpmi --with-production --enable-error-checking
→˓--basedir=$HOME/ucx/build -j16

Similarly, to build the Charm++ target with Slurm PMI 2, specify slurmpmi2 in the build command.

$ ./build charm++ ucx-linux-x86_64 slurmpmi2 --with-production --enable-error-
→˓checking --basedir=$HOME/ucx/build -j16

To build the Charm++ target with PMIx, you would require an OpenMPI implementation with PMIx enabled to be
installed on your system. In case OpenMPI is not available in your environment, you can build OpenMPI from scratch
using the following steps:

$ wget https://download.open-mpi.org/release/open-mpi/v4.0/openmpi-4.0.1.tar.gz
$ tar -xvf openmpi-4.0.1.tar.gz
$ ./configure --enable-install-libpmix --prefix=$HOME/openmpi-4.0.1/build
$ make -j24
$ make install all

After installing OpenMPI or using the pre-installed OpenMPI, you can build the Charm++ target with the UCX back-
end by specifying ompipmix in the build command and passing the OpenMPI installation path as --basedir (in
addition to passing the UCX build directory)

$ ./build charm++ ucx-linux-x86_64 ompipmix --with-production --enable-error-checking
→˓--basedir=$HOME/ucx/build --basedir=$HOME/openmpi-4.0.1/build -j16

It should be noted that the pmix version is the most stable version of using the UCX backend. We’re in the process of
debugging some recent issues with Simple PMI, Slurm PMI and Slurm PMI2.

2.6.2 Compiling Charm++ Programs

The charmc program, located in “charm/bin”, standardizes compiling and linking procedures among various ma-
chines and operating systems. “charmc” is a general-purpose tool for compiling and linking, not only restricted to
Charm++ programs.

Charmc can perform the following tasks. The (simplified) syntax for each of these modes is shown. Caution: in
reality, one almost always has to add some command-line options in addition to the simplified syntax shown below.
The options are described next.

* Compile C charmc -o pgm.o pgm.c

* Compile C++ charmc -o pgm.o pgm.C

* Link charmc -o pgm obj1.o obj2.o obj3.o...

* Compile + Link charmc -o pgm src1.c src2.ci src3.C

* Create Library charmc -o lib.a obj1.o obj2.o obj3.o...

* Translate Charm++ Interface File charmc file.ci

Charmc automatically determines where the charm lib and include directories are — at no point do you have to
configure this information. However, the code that finds the lib and include directories can be confused if you remove
charmc from its normal directory, or rearrange the directory tree. Thus, the files in the charm/bin, charm/include, and
charm/lib directories must be left where they are relative to each other.
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The following command-line options are available to users of charmc:

-o output-file: Output file name. Note: charmc only ever produces one output file at a time. Because of this, you
cannot compile multiple source files at once, unless you then link or archive them into a single output-file. If
exactly one source-file is specified, then an output file will be selected by default using the obvious rule (e.g., if
the input file if pgm.c, the output file is pgm.o). If multiple input files are specified, you must manually specify
the name of the output file, which must be a library or executable.

-c: Ignored. There for compatibility with cc.

-Dsymbol[=value]: Defines preprocessor variables from the command line at compile time.

-I: Add a directory to the search path for preprocessor include files.

-g: Causes compiled files to include debugging information.

-L*: Add a directory to the search path for libraries selected by the -l command.

-l*: Specifies libraries to link in.

-module m1[,m2[,...]] Specifies additional Charm++ modules to link in. Similar to -l, but also registers
Charm++ parallel objects. See the library’s documentation for whether to use -l or -module.

-optimize: Causes files to be compiled with maximum optimization.

-no-optimize: If this follows -optimize on the command line, it turns optimization back off. This can be used
to override options specified in makefiles.

-production: Enable architecture-specific production-mode features. For instance, use available hardware fea-
tures more aggressively. It’s probably a bad idea to build some objects with this, and others without.

-s: Strip the executable of debugging symbols. Only meaningful when producing an executable.

-verbose: All commands executed by charmc are echoed to stdout.

-seq: Indicates that we’re compiling sequential code. On parallel machines with front ends, this option also means
that the code is for the front end. This option is only valid with C and C++ files.

-use-fastest-cc: Some environments provide more than one C compiler (cc and gcc, for example). Usually,
charmc prefers the less buggy of the two. This option causes charmc to switch to the most aggressive compiler,
regardless of whether it’s buggy or not.

-use-reliable-cc: Some environments provide more than one C compiler (cc and gcc, for example). Usually,
charmc prefers the less buggy of the two, but not always. This option causes charmc to switch to the most
reliable compiler, regardless of whether it produces slow code or not.

-language {converse|charm++|ampi|fem|f90charm}: When linking with charmc, one must specify
the “language”. This is just a way to help charmc include the right libraries. Pick the “language” according to
this table:

• Charm++ if your program includes Charm++, C++, and C.

• Converse if your program includes C or C++.

• f90charm if your program includes f90 Charm interface.

-balance seed load-balance-strategy: When linking any Converse program (including any Charm++ or sdag pro-
gram), one must include a seed load-balancing library. There are currently three to choose from: rand, test,
and neighbor are supported. Default is -balance rand.

When linking with neighbor seed load balancer, one can also specify a virtual topology for constructing
neighbors during run-time using +LBTopo topo, where topo can be one of (a) ring, (b) mesh2d, (c) mesh3d
and (d) graph. The default is mesh2d.
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-tracemode tracing-mode: Selects the desired degree of tracing for Charm++ programs. See the Charm++ manual
and the Projections manuals for more information. Currently supported modes are none, summary, and
projections. Default is -tracemode none.

-memory memory-mode: Selects the implementation of malloc and free to use. Select a memory mode from the
table below.

• os Use the operating system’s standard memory routines.

• gnu Use a set of GNU memory routines.

• paranoid Use an error-checking set of routines. These routines will detect common mistakes such as buffer
overruns, underruns, double-deletes, and use-after-delete. The extra checks slow down programs, so this
version should not be used in production code.

• leak Use a special set of memory routines and annotation functions for detecting memory leaks. Call
CmiMemoryMark() to mark allocated memory as OK, do work which you suspect is leaking memory,
then call CmiMemorySweep(const char *tag) to check.

• verbose Use a tracing set of memory routines. Every memory-related call results in a line printed to
standard out.

• default Use the default, which depends on the version of Charm++.

-c++ C++ compiler: Forces the specified C++ compiler to be used.

-cc C-compiler: Forces the specified C compiler to be used.

-cp copy-file: Creates a copy of the output file in copy-file.

-cpp-option options: Options passed to the C pre-processor.

-ld linker: Use this option only when compiling programs that do not include C++ modules. Forces charmc to use
the specified linker.

-ld++ linker: Use this option only when compiling programs that include C++ modules. Forces charmc to use the
specified linker.

-ld++-option options: Options passed to the linker for -language charm++.

-ld-option options: Options passed to the linker for -language converse.

-ldro-option options: Options passes to the linker when linking .o files.

Other options that are not listed here will be passed directly to the underlying compiler and/or linker.

2.6.3 Running Charm++ Programs

Launching Programs with charmrun

When compiling Charm++ programs, the charmc linker produces both an executable file and an utility called
charmrun, which is used to load the executable onto the parallel machine.

To run a Charm++ program named “pgm” on four processors, type:

$ charmrun pgm +p4

Execution on platforms which use platform specific launchers, (i.e., aprun, ibrun), can proceed without charmrun, or
charmrun can be used in coordination with those launchers via the ++mpiexec (see Section 2.6.3) parameter.

Programs built using the network version of Charm++ can be run alone, without charmrun. This restricts you to using
the processors on the local machine, but it is convenient and often useful for debugging. For example, a Charm++
program can be run on one processor in the debugger using:
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$ gdb pgm

If the program needs some environment variables to be set for its execution on compute nodes (such as library paths),
they can be set in .charmrunrc under home directory. charmrun will run that shell script before running the executable.

Charmrun normally limits the number of status messages it prints to a minimal level to avoid flooding the terminal
with unimportant information. However, if you encounter trouble launching a job, try using the ++verbose option
to help diagnose the issue. (See the ++quiet option to suppress output entirely.)

Parameters that function as boolean flags within Charmrun (taking no other parameters) can be prefixed with “no-” to
negate their effect. For example, ++no-scalable-start.

Command Line Options

A Charm++ program accepts the following command line options:

+auto-provision Automatically determine the number of worker threads to launch in order to fully subscribe
the machine running the program.

+autoProvision Same as above.

+oneWthPerHost Launch one worker thread per compute host. By the definition of standalone mode, this always
results in exactly one worker thread.

+oneWthPerSocket Launch one worker thread per CPU socket.

+oneWthPerCore Launch one worker thread per CPU core.

+oneWthPerPU Launch one worker thread per CPU processing unit, i.e. hardware thread.

+pN Explicitly request exactly N worker threads. The default is 1.

+ss Print summary statistics about chare creation. This option prints the total number of chare creation requests, and
the total number of chare creation requests processed across all processors.

+cs Print statistics about the number of create chare messages requested and processed, the number of messages for
chares requested and processed, and the number of messages for branch office chares requested and processed,
on a per processor basis. Note that the number of messages created and processed for a particular type of
message on a given node may not be the same, since a message may be processed by a different processor from
the one originating the request.

user_options Options that are be interpreted by the user program may be included mixed with the system options.
However, user_options cannot start with +. The user_options will be passed as arguments to the user
program via the usual argc/argv construct to the main entry point of the main chare. Charm++ system
options will not appear in argc/argv.

Additional Network Options

The following ++ command line options are available in the network version.

First, commands related to subscription of computing resources:

++auto-provision Automatically determine the number of processes and threads to launch in order to fully
subscribe the available resources.

++autoProvision Same as above.

++processPerHost N Launch N processes per compute host.

++processPerSocket N Launch N processes per CPU socket.
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++processPerCore N Launch N processes per CPU core.

++processPerPU N Launch N processes per CPU processing unit, i.e. hardware thread.

The above options should allow sufficient control over process provisioning for most users. If you need more control,
the following advanced options are available:

++n N Run the program with N processes. Functionally identical to +p in non-SMP mode (see below). The default
is 1.

++p N Total number of processing elements to create. In SMP mode, this refers to worker threads (where n *
ppn = p), otherwise it refers to processes (n = p). The default is 1. Use of ++p is discouraged in favor of
++processPer* (and ++oneWthPer* in SMP mode) where desirable, or ++n (and ++ppn) otherwise.

The remaining options cover details of process launch and connectivity:

++local Run charm program only on local machines. No remote shell invocation is needed in this case. It starts
node programs right on your local machine. This could be useful if you just want to run small program on only
one machine, for example, your laptop.

++mpiexec Use the cluster’s mpiexec job launcher instead of the built in ssh method.

This will pass -n $P to indicate how many processes to launch. If -n $P is not required because the number
of processes to launch is determined via queueing system environment variables then use ++mpiexec-no-n
rather than ++mpiexec. An executable named something other than mpiexec can be used with the additional
argument ++remote-shell runmpi, with ‘runmpi’ replaced by the necessary name.

To pass additional arguments to mpiexec, specify ++remote-shell and list them as part of the value after
the executable name as follows:

$ ./charmrun ++mpiexec ++remote-shell "mpiexec --YourArgumentsHere" ./pgm

Use of this option can potentially provide a few benefits:

• Faster startup compared to the SSH approach charmrun would otherwise use

• No need to generate a nodelist file

• Multi-node job startup on clusters that do not allow connections from the head/login nodes to the compute
nodes

At present, this option depends on the environment variables for some common MPI implementa-
tions. It supports OpenMPI (OMPI_COMM_WORLD_RANK and OMPI_COMM_WORLD_SIZE), M(VA)PICH
(MPIRUN_RANK and MPIRUN_NPROCS or PMI_RANK and PMI_SIZE), and IBM POE (MP_CHILD and
MP_PROCS).

++debug Run each node under gdb in an xterm window, prompting the user to begin execution.

++debug-no-pause Run each node under gdb in an xterm window immediately (i.e. without prompting the user
to begin execution).

If using one of the ++debug or ++debug-no-pause options, the user must ensure the following:

1. The DISPLAY environment variable points to your terminal. SSH’s X11 forwarding does not work prop-
erly with Charm++.

2. The nodes must be authorized to create windows on the host machine (see man pages for xhost and
xauth).

3. xterm, xdpyinfo, and gdb must be in the user’s path.

4. The path must be set in the .cshrc file, not the .login file, because ssh does not run the .login file.
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++scalable-start Scalable start, or SMP-aware startup. It is useful for scalable process launch on multi-core
systems since it creates only one ssh session per node and spawns all clients from that ssh session. This is the
default startup strategy and the option is retained for backward compatibility.

++batch Ssh a set of node programs at a time, avoiding overloading Charmrun pe. In this strategy, the nodes
assigned to a charmrun are divided into sets of fixed size. Charmrun performs ssh to the nodes in the current set,
waits for the clients to connect back and then performs ssh on the next set. We call the number of nodes in one
ssh set as batch size.

++maxssh Maximum number of ssh’s to run at a time. For backwards compatibility, this option is also available
as ++maxrsh.

++nodelist File containing list of nodes.

++numHosts Number of nodes from the nodelist to use. If the value requested is larger than the number of nodes
found, Charmrun will error out.

++help Print help messages

++runscript Script to run node-program with. The specified run script is invoked with the node program and
parameter. For example:

$ ./charmrun +p4 ./pgm 100 2 3 ++runscript ./set_env_script

In this case, the set_env_script is invoked on each node before launching pgm.

++xterm Which xterm to use

++in-xterm Run each node in an xterm window

++display X Display for xterm

++debugger Which debugger to use

++remote-shell Which remote shell to use

++useip Use IP address provided for charmrun IP

++usehostname Send nodes our symbolic hostname instead of IP address

++server-auth CCS Authentication file

++server-port Port to listen for CCS requests

++server Enable client-server (CCS) mode

++nodegroup Which group of nodes to use

++verbose Print diagnostic messages

++quiet Suppress runtime output during startup and shutdown

++timeout Seconds to wait per host connection

++timelimit Seconds to wait for program to complete

SMP Options

SMP mode in Charm++ spawns one OS process per logical node. Within this process there are two types of threads:

1. Worker Threads that have objects mapped to them and execute entry methods

2. Communication Thread that sends and receives data (depending on the network layer)
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Charm++ always spawns one communication thread per process when using SMP mode and as many worker threads
as the user specifies (see the options below). In general, the worker threads produce messages and hand them to the
communication thread, which receives messages and schedules them on worker threads.
To use SMP mode in Charm++, build charm with the smp option, e.g.:

$ ./build charm++ netlrts-linux-x86_64 smp

There are various trade-offs associated with SMP mode. For instance, when using SMP mode there is no waiting to
receive messages due to long running entry methods. There is also no time spent in sending messages by the worker
threads and memory is limited by the node instead of per core. In SMP mode, intra-node messages use simple pointer
passing, which bypasses the overhead associated with the network and extraneous copies. Another benefit is that the
runtime will not pollute the caches of worker threads with communication-related data in SMP mode.

However, there are also some drawbacks associated with using SMP mode. First and foremost, you sacrifice one core
to the communication thread. This is not ideal for compute bound applications. Additionally, this communication
thread may become a serialization bottleneck in applications with large amounts of communication. Keep these trade-
offs in mind when evaluating whether to use SMP mode for your application or deciding how many processes to launch
per physical node when using SMP mode. Finally, any library code the application may call needs to be thread-safe.

Charm++ provides the following options to control the number of worker threads spawned and the placement of both
worker and communication threads:

++oneWthPerHost Launch one worker thread per compute host.

++oneWthPerSocket Launch one worker thread per CPU socket.

++oneWthPerCore Launch one worker thread per CPU core.

++oneWthPerPU Launch one worker thread per CPU processing unit, i.e. hardware thread.

The above options (and ++auto-provision) should allow sufficient control over thread provisioning for most
users. If you need more precise control over thread count and placement, the following options are available:

++ppn N Number of PEs (or worker threads) per logical node (OS process). This option should be specified even
when using platform specific launchers (e.g., aprun, ibrun).

+pemap L[-U[:S[.R]+O]][,...] Bind the execution threads to the sequence of cores described by the argu-
ments using the operating system’s CPU affinity functions. Can be used outside SMP mode.

A single number identifies a particular core. Two numbers separated by a dash identify an inclusive range
(lower bound and upper bound). If they are followed by a colon and another number (a stride), that range
will be stepped through in increments of the additional number. Within each stride, a dot followed by a run
will indicate how many cores to use from that starting point. A plus represents the offset to the previous core
number. Multiple +offset flags are supported, e.g., 0-7+8+16 equals 0,8,16,1,9,17.

For example, the sequence 0-8:2,16,20-24 includes cores 0, 2, 4, 6, 8, 16, 20, 21, 22, 23, 24. On a 4-way
quad-core system, if one wanted to use 3 cores from each socket, one could write this as 0-15:4.3. ++ppn
10 +pemap 0-11:6.5+12 equals ++ppn 10 +pemap 0,12,1,13,2,14,3,15,4,16,6,18,7,
19,8,20,9,21,10,22

By default, this option accepts PU indices assigned by the OS. The user might want
to instead provide logical PU indices used by hwloc (see link <https://www.open-
mpi.org/projects/hwloc/doc/v2.1.0/a00342.php#faq_indexes> for details). To do this, prepend the sequence
with an alphabet L (case-insensitive). For instance, +pemap L0-3 will instruct the runtime to bind threads to
PUs with logical indices 0-3.

+commap p[,q,...] Bind communication threads to the listed cores, one per process.

To run applications in SMP mode, we generally recommend using one logical node per socket or NUMA domain.
++ppn will spawn N threads in addition to 1 thread spawned by the runtime for the communication threads, so the
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total number of threads will be N+1 per node. Consequently, you should map both the worker and communication
threads to separate cores. Depending on your system and application, it may be necessary to spawn one thread less
than the number of cores in order to leave one free for the OS to run on. An example run command might look like:

$ ./charmrun ++ppn 3 +p6 +pemap 1-3,5-7 +commap 0,4 ./app <args>

This will create two logical nodes/OS processes (2 = 6 PEs/3 PEs per node), each with three worker threads/PEs
(++ppn 3). The worker threads/PEs will be mapped thusly: PE 0 to core 1, PE 1 to core 2, PE 2 to core 3 and PE 4
to core 5, PE 5 to core 6, and PE 6 to core 7. PEs/worker threads 0-2 compromise the first logical node and 3-5 are
the second logical node. Additionally, the communication threads will be mapped to core 0, for the communication
thread of the first logical node, and to core 4, for the communication thread of the second logical node.

Please keep in mind that +p always specifies the total number of PEs created by Charm++, regardless of mode (the
same number as returned by CkNumPes()). The +p option does not include the communication thread, there will
always be exactly one of those per logical node.

Multicore Options

On multicore platforms, operating systems (by default) are free to move processes and threads among cores to balance
load. This however sometimes can degrade the performance of Charm++ applications due to the extra overhead of
moving processes and threads, especially for Charm++ applications that already implement their own dynamic load
balancing.

Charm++ provides the following runtime options to set the processor affinity automatically so that processes or threads
no longer move. When cpu affinity is supported by an operating system (tested at Charm++ configuration time), the
same runtime options can be used for all flavors of Charm++ versions including network and MPI versions, smp and
non-smp versions.

+setcpuaffinity Set cpu affinity automatically for processes (when Charm++ is based on non-smp versions)
or threads (when smp). This option is recommended, as it prevents the OS from unnecessarily moving pro-
cesses/threads around the processors of a physical node.

+excludecore <core #> Do not set cpu affinity for the given core number. One can use this option multiple
times to provide a list of core numbers to avoid.

IO buffering options

There may be circumstances where a Charm++ application may want to take or relinquish control of stdout buffer
flushing. Most systems default to giving the Charm++ runtime control over stdout but a few default to giving the
application that control. The user can override these system defaults with the following runtime options:

+io_flush_user User (application) controls stdout flushing

+io_flush_system The Charm++ runtime controls flushing

Nodelist file

For network of workstations, the list of machines to run the program can be specified in a file. Without a nodelist file,
Charm++ runs the program only on the local machine.

The format of this file allows you to define groups of machines, giving each group a name. Each line of the nodes file
is a command. The most important command is:

host <hostname> <qualifiers>
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which specifies a host. The other commands are qualifiers: they modify the properties of all hosts that follow them.
The qualifiers are:

group <groupname> - subsequent hosts are members of specified group
login <login> - subsequent hosts use the specified login
shell <shell> - subsequent hosts use the specified remote shell
setup <cmd> - subsequent hosts should execute cmd
pathfix <dir1> <dir2> - subsequent hosts should replace dir1 with dir2 in the program path
cpus <n> - subsequent hosts should use N light-weight processes
speed <s> - subsequent hosts have relative speed rating
ext <extn> - subsequent hosts should append extn to the pgm name

Note: By default, charmrun uses a remote shell “ssh” to spawn node processes on the remote hosts. The shell
qualifier can be used to override it with say, “rsh”. One can set the CONV_RSH environment variable or use charmrun
option ++remote-shell to override the default remote shell for all hosts with unspecified shell qualifier.

All qualifiers accept “*” as an argument, this resets the modifier to its default value. Note that currently, the passwd,
cpus, and speed factors are ignored. Inline qualifiers are also allowed:

host beauty ++cpus 2 ++shell ssh

Except for “group”, every other qualifier can be inlined, with the restriction that if the “setup” qualifier is inlined, it
should be the last qualifier on the “host” or “group” statement line.

Here is a simple nodes file:

group kale-sun ++cpus 1
host charm.cs.illinois.edu ++shell ssh
host dp.cs.illinois.edu
host grace.cs.illinois.edu
host dagger.cs.illinois.edu

group kale-sol
host beauty.cs.illinois.edu ++cpus 2

group main
host localhost

This defines three groups of machines: group kale-sun, group kale-sol, and group main. The ++nodegroup option is
used to specify which group of machines to use. Note that there is wraparound: if you specify more nodes than there
are hosts in the group, it will reuse hosts. Thus,

$ charmrun pgm ++nodegroup kale-sun +p6

uses hosts (charm, dp, grace, dagger, charm, dp) respectively as nodes (0, 1, 2, 3, 4, 5).

If you don’t specify a ++nodegroup, the default is ++nodegroup main. Thus, if one specifies

$ charmrun pgm +p4

it will use “localhost” four times. “localhost” is a Unix trick; it always find a name for whatever machine you’re on.

Using “ssh”, the user will have to setup password-less login to remote hosts using public key authentication based on
a key-pair and adding public keys to “.ssh/authorized_keys” file. See “ssh” documentation for more information. If
“rsh” is used for remote login to the compute nodes, the user is required to set up remote login permissions on all
nodes using the “.rhosts” file in their home directory.
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In a network environment, charmrun must be able to locate the directory of the executable. If all workstations share
a common file name space this is trivial. If they don’t, charmrun will attempt to find the executable in a directory
with the same path from the $HOME directory. Pathname resolution is performed as follows:

1. The system computes the absolute path of pgm.

2. If the absolute path starts with the equivalent of $HOME or the current working directory, the beginning part
of the path is replaced with the environment variable $HOME or the current working directory. However, if
++pathfix dir1 dir2 is specified in the nodes file (see above), the part of the path matching dir1 is
replaced with dir2.

3. The system tries to locate this program (with modified pathname and appended extension if specified) on all
nodes.

Instructions to run Charm++ programs for Specific Builds

UCX

When Charm++ is built with UCX using Simple PMI, Slurm PMI or Slurm PMI2, ensure that an MPI implementa-
tion which is not OpenMPI is loaded in the environment. Use the mpirun launcher provided by the non-OpenMPI
implementation to launch programs. Alternatively, you can also use any system provided launchers.

When Charm++ is built with UCX using PMIx, ensure that an OpenMPI implementation is loaded in the environment.
Use the mpiexec/mpirun launcher provided with OpenMPI to launch programs.

Note that due to bug #2477, binaries built with UCX cannot be run in standalone mode i.e without a launcher.

2.6.4 Reserved words in .ci files

The following words are reserved for the Charm++ interface translator, and cannot appear as variable or entry method
names in a .ci file:

• module

• mainmodule

• chare

• mainchare

• group

• nodegroup

• namespace

• array

• message

• conditional

• extern

• initcall

• initnode

• initproc

• readonly

• PUPable
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• pupable

• template

• class

• include

• virtual

• packed

• varsize

• entry

• using

• nocopy

• Entry method attributes

– stacksize

– threaded

– migratable

– createhere

– createhome

– sync

– iget

– exclusive

– immediate

– expedited

– inline

– local

– aggregate

– nokeep

– notrace

– python

– accel

– readwrite

– writeonly

– accelblock

– memcritical

– reductiontarget

• Basic C++ types

– int

– short
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– long

– char

– float

– double

– unsigned

– void

– const

• SDAG constructs

– atomic

– serial

– forward

– when

– while

– for

– forall

– if

– else

– overlap

– connect

– publishes

2.6.5 Performance Tracing for Analysis

Projections is a performance analysis/visualization framework that helps you understand and investigate performance-
related problems in the (Charm++) applications. It is a framework with an event tracing component which allows
to control the amount of information generated. The tracing has low perturbation on the application. It also has a
Java-based visualization and analysis component with various views that help present the performance information in
a visually useful manner.

Performance analysis with Projections typically involves two simple steps:

1. Prepare your application by linking with the appropriate trace generation modules and execute it to generate
trace data.

2. Using the Java-based tool to visually study various aspects of the performance and locate the performance issues
for that application execution.

The Charm++ runtime automatically records pertinent performance data for performance-related events during ex-
ecution. These events include the start and end of entry method execution, message send from entry methods and
scheduler idle time. This means most users do not need to manually insert code into their applications in order to
generate trace data. In scenarios where special performance information not captured by the runtime is required, an
API (see section 2.6.5) is available for user-specific events with some support for visualization by the Java-based tool.
If greater control over tracing activities (e.g. dynamically turning instrumentation on and off) is desired, the API also
allows users to insert code into their applications for such purposes.
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The automatic recording of events by the Projections framework introduces the overhead of an if-statement for each
runtime event, even if no performance analysis traces are desired. Developers of Charm++ applications who consider
such an overhead to be unacceptable (e.g. for a production application which requires the absolute best performance)
may recompile the Charm++ runtime with the --with-production flag, which removes the instrumentation stubs.
To enable the instrumentation stubs while retaining the other optimizations enabled by --with-production, one
may compile Charm++ with both --with-production and --enable-tracing, which explicitly enables
Projections tracing.

To enable performance tracing of your application, users simply need to link the appropriate trace data generation
module(s) (also referred to as tracemode(s)). (see section 2.6.5)

Enabling Performance Tracing at Link/Run Time

Projections tracing modules dictate the type of performance data, data detail and data format each processor will
record. They are also referred to as “tracemodes”. There are currently 2 tracemodes available. Zero or more trace-
modes may be specified at link-time. When no tracemodes are specified, no trace data is generated.

Tracemode projections

Link time option: -tracemode projections

This tracemode generates files that contain information about all Charm++ events like entry method calls and message
packing during the execution of the program. The data will be used by Projections in visualization and analysis.

This tracemode creates a single symbol table file and 𝑝 ASCII log files for 𝑝 processors. The names of the log files
will be NAME.#.log where NAME is the name of your executable and # is the processor #. The name of the symbol
table file is NAME.sts where NAME is the name of your executable.

This is the main source of data needed by the performance visualizer. Certain tools like timeline will not work without
the detail data from this tracemode.

The following is a list of runtime options available under this tracemode:

• +logsize NUM: keep only NUM log entries in the memory of each processor. The logs are emptied and
flushed to disk when filled. (defaults to 1,000,000)

• +binary-trace: generate projections log in binary form.

• +gz-trace: generate gzip (if available) compressed log files.

• +gz-no-trace: generate regular (not compressed) log files.

• +checknested: a debug option. Checks if events are improperly nested while recorded and issue a warning
immediately.

• +trace-subdirs NUM: divide the generated log files among NUM subdirectories of the trace root, each
named PROGNAME.projdir.K

Tracemode summary

Compile option: -tracemode summary

In this tracemode, execution time across all entry points for each processor is partitioned into a fixed number of equally
sized time-interval bins. These bins are globally resized whenever they are all filled in order to accommodate longer
execution times while keeping the amount of space used constant.

Additional data like the total number of calls made to each entry point is summarized within each processor.
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This tracemode will generate a single symbol table file and 𝑝 ASCII summary files for 𝑝 processors. The names of the
summary files will be NAME.#.sum where NAME is the name of your executable and # is the processor #. The name
of the symbol table file is NAME.sum.sts where NAME is the name of your executable.

This tracemode can be used to control the amount of output generated in a run. It is typically used in scenarios
where a quick look at the overall utilization graph of the application is desired to identify smaller regions of time for
more detailed study. Attempting to generate the same graph using the detailed logs of the prior tracemode may be
unnecessarily time consuming or impossible.

The following is a list of runtime options available under this tracemode:

• +bincount NUM: use NUM time-interval bins. The bins are resized and compacted when filled.

• +binsize TIME: sets the initial time quantum each bin represents.

• +version: set summary version to generate.

• +sumDetail: Generates a additional set of files, one per processor, that stores the time spent by each entry
method associated with each time-bin. The names of “summary detail” files will be NAME.#.sumd where
NAME is the name of your executable and # is the processor #.

• +sumonly: Generates a single file that stores a single utilization value per time-bin, averaged across all pro-
cessors. This file bears the name NAME.sum where NAME is the name of your executable. This runtime option
currently overrides the +sumDetail option.

General Runtime Options

The following is a list of runtime options available with the same semantics for all tracemodes:

• +traceroot DIR: place all generated files in DIR.

• +traceoff: trace generation is turned off when the application is started. The user is expected to insert code
to turn tracing on at some point in the run.

• +traceWarn: By default, warning messages from the framework are not displayed. This option enables
warning messages to be printed to screen. However, on large numbers of processors, they can overwhelm the
terminal I/O system of the machine and result in unacceptable perturbation of the application.

• +traceprocessors RANGE: Only output logfiles for PEs present in the range (i.e. 0-31,
32-999966:1000,999967-999999 to record every PE on the first 32, only every thousanth for the middle
range, and the last 32 for a million processor run).

End-of-run Analysis for Data Reduction

As applications are scaled to thousands or hundreds of thousands of processors, the amount of data generated becomes
extremely large and potentially unmanageable by the visualization tool. At the time of documentation, Projections
is capable of handling data from 8000+ processors but with somewhat severe tool responsiveness issues. We have
developed an approach to mitigate this data size problem with options to trim-off “uninteresting” processors’ data by
not writing such data at the end of an application’s execution.

This is currently done through heuristics to pick out interesting extremal (i.e. poorly behaved) processors and at the
same time using a k-means clustering to pick out exemplar processors from equivalence classes to form a representative
subset of processor data. The analyst is advised to also link in the summary module via +tracemode summary
and enable the +sumDetail option in order to retain some profile data for processors whose data were dropped.

• +extrema: enables extremal processor identification analysis at the end of the application’s execution.
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• +numClusters: determines the number of clusters (equivalence classes) to be used by the k-means clustering
algorithm for determining exemplar processors. Analysts should take advantage of their knowledge of natural
application decomposition to guess at a good value for this.

This feature is still being developed and refined as part of our research. It would be appreciated if users of this feature
could contact the developers if you have input or suggestions.

Controlling Tracing from Within the Program

Selective Tracing

Charm++ allows users to start/stop tracing the execution at certain points in time on the local processor. Users are
advised to make these calls on all processors and at well-defined points in the application.

Users may choose to have instrumentation turned off at first (by command line option +traceoff - see section 2.6.5)
if some period of time in middle of the applicationś execution is of interest to the user.

Alternatively, users may start the application with instrumentation turned on (default) and turn off tracing for specific
sections of the application.

Again, users are advised to be consistent as the +traceoff runtime option applies to all processors in the application.

• void traceBegin()

Enables the runtime to trace events (including all user events) on the local processor where traceBegin is
called.

• void traceEnd()

Prevents the runtime from tracing events (including all user events) on the local processor where traceEnd is
called.

Explicit Flushing

By default, when linking with -tracemode projections, log files are flushed to disk whenever the number of
entries on a processor reaches the logsize limit (see Section 2.6.5). However, this can occur at any time during the
execution of the program, potentially causing performance perturbations. To address this, users can explicitly flush
to disk using the traceFlushLog() function. Note that automatic flushing will still occur if the logsize limit is
reached, but sufficiently frequent explicit flushes should prevent that from happening.

• void traceFlushLog()

Explicitly flushes the collected logs to disk.

User Events

Projections has the ability to visualize traceable user specified events. User events are usually displayed in the Timeline
view as vertical bars above the entry methods. Alternatively the user event can be displayed as a vertical bar that
vertically spans the timelines for all processors. Follow these following basic steps for creating user events in a
charm++ program:

1. Register an event with an identifying string and either specify or acquire a globally unique event identifier. All
user events that are not registered will be displayed in white.

2. Use the event identifier to specify trace points in your code of interest to you.

The functions available are as follows:
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• int traceRegisterUserEvent(char* EventDesc, int EventNum=-1)

This function registers a user event by associating EventNum to EventDesc. If EventNum is not specified,
a globally unique event identifier is obtained from the runtime and returned. The string EventDesc must
either be a constant string, or it can be a dynamically allocated string that is NOT freed by the program. If
the EventDesc contains a substring “***” then the Projections Timeline tool will draw the event vertically
spanning all PE timelines.

EventNum has to be the same on all processors. Therefore use one of the following methods to ensure the
same value for any PEs generating the user events:

1. Call traceRegisterUserEvent on PE 0 in main::main without specifying an event number, and
store returned event number into a readonly variable.

2. Call traceRegisterUserEvent and specify the event number on processor 0. Doing this on other
processors would have no effect. Afterwards, the event number can be used in the following user event
calls.

Eg. traceRegisterUserEvent("Time Step Begin", 10);

Eg. eventID = traceRegisterUserEvent(“Time Step Begin”);

There are two main types of user events, bracketed and non bracketed. Non-bracketed user events mark a specific point
in time. Bracketed user events span an arbitrary contiguous time range. Additionally, the user can supply a short user
supplied text string that is recorded with the event in the log file. These strings should not contain newline characters,
but they may contain simple html formatting tags such as <br>, <b>, <i>, <font color=#ff00ff>, etc.

The calls for recording user events are the following:

• void traceUserEvent(int EventNum)

This function creates a user event that marks a specific point in time.

Eg. traceUserEvent(10);

• void traceBeginUserBracketEvent(int EventNum)

void traceEndUserBracketEvent(int EventNum)

These functions record a user event spanning a time interval. The tracing framework automatically as-
sociates the call with the time it was made, so timestamps are not explicitly passed in as they are with
traceUserBracketEvent.

• void traceUserBracketEvent(int EventNum, double StartTime, double EndTime)

This function records a user event spanning a time interval from StartTime to EndTime. Both StartTime
and EndTime should be obtained from a call to CmiWallTimer() at the appropriate point in the program.

Eg.

traceRegisterUserEvent("Critical Code", 20); // on PE 0
double critStart = CmiWallTimer();; // start time
// do the critical code
traceUserBracketEvent(20, critStart,CmiWallTimer());

• void traceUserSuppliedData(int data)

This function records a user specified data value at the current time. This data value can be used to color entry
method invocations in Timeline, see 17.2.3.

• void traceUserSuppliedNote(char * note)

This function records a user specified text string at the current time.
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• void traceUserSuppliedBracketedNote(char *note, int EventNum, double
StartTime, double EndTime)

This function records a user event spanning a time interval from StartTime to EndTime. Both StartTime
and EndTime should be obtained from a call to CmiWallTimer() at the appropriate point in the program.

Additionally, a user supplied text string is recorded, and the EventNum is recorded. These events
are therefore displayed with colors determined by the EventNum, just as those generated with
traceUserBracketEvent are.

User Stats

Charm++ allows the user to track the progression of any variable or value throughout the program execution. These
user specified stats can then be plotted in Projections, either over time or by processor. To enable this feature for
Charm++, build Charm++ with the -enable-tracing flag.

Follow these steps to track user stats in a Charm++ program:

1. Register a stat with an identifying string and a globally unique integer identifier.

2. Update the value of the stat at points of interest in the code by calling the update stat functions.

3. Compile program with -tracemode projections flag.

The functions available are as follows:

• int traceRegisterUserStat(const char * StatDesc, int StatNum)

This function is called once near the beginning the of the Charm++ program. StatDesc is the identifying
string and StatNum is the unique integer identifier.

• void updateStat(int StatNum, double StatValue)

This function updates the value of a user stat and can be called many times throughout program execution.
StatNum is the integer identifier corresponding to the desired stat. StatValue is the updated value of the
user stat.

• void updateStatPair(int StatNum, double StatValue, double Time)

This function works similar to updateStat(), but also allows the user to store a user specified time for the
update. In Projections, the user can then choose which time scale to use: real time, user specified time, or
ordered.

Function-level Tracing for Adaptive MPI Applications

Adaptive MPI (AMPI) is an implementation of the MPI interface on top of Charm++. As with standard MPI pro-
grams, the appropriate semantic context for performance analysis is captured through the observation of MPI calls
within C/C++/Fortran functions. Users can selectively begin and end tracing in AMPI programs using the routines
AMPI_Trace_begin and AMPI_Trace_end.

2.6.6 Debugging

Message Order Race Conditions

While common Charm++ programs are data-race free due to a lack of shared mutable state between threads, it is still
possible to observe race conditions resulting from variation in the order that messages are delivered to each chare
object. The Charm++ ecosystem offers a variety of ways to attempt to reproduce these often non-deterministic bugs,
diagnose their causes, and test fixes.
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Randomized Message Queueing

To facilitate debugging of applications and to identify race conditions due to message order, the user can enable a
randomized message scheduler queue. Using the build-time configuration option --enable-randomized-msgq,
the charm message queue will be randomized. Note that a randomized message queue is only available when message
priority type is not bit vector. Therefore, the user needs to specify prio-type to be a data type long enough to hold the
msg priorities in your application for eg: --with-prio-type=int.

CharmDebug

The CharmDebug interactive debugging tool can be used to inspect the messages in the scheduling queue of each
processing element, and to manipulate the order in which they’re delivered. More details on how to use CharmDebug
can be found in its manual.

Deterministic Record-Replay

Charm++ supports recording the order in which messages are processed from one run, to deterministically replay the
same order in subsequent runs. This can be useful to capture the infrequent undesirable message order cases that cause
intermittent failures. Once an impacted run has been recorded, various debugging methods can be more easily brought
to bear, without worrying that they will perturb execution to avoid the bug.

Support for record-replay is enabled in common builds of Charm++. Builds with either of the
--with-production or --disable-tracing options disable record-replay support. To record traces, simply
run the program with an additional command line-flag +record. The generated traces can be repeated with the
command-line flag +replay. The full range of parallel and sequential debugging techniques are available to apply
during deterministic replay.

The traces will work even if the application is modified and recompiled, as long as entry method numbering and
send/receive sequences do not change. For instance, it is acceptable to add print statements or assertions to aid in the
debugging process.

Memory Access Errors

Using Valgrind

The popular Valgrind memory debugging tool can be used to monitor Charm++ applications in both serial and parallel
executions. For single-process runs, it can be used directly:

$ valgrind ...valgrind options... ./application_name ...application arguments...

When running in parallel, it is helpful to note a few useful adaptations of the above incantation, for various kinds of
process launchers:

$ ./charmrun +p2 `which valgrind` --log-file=VG.out.%p --trace-children=yes ./
→˓application_name ...application arguments...
$ aprun -n 2 `which valgrind` --log-file=VG.out.%p --trace-children=yes ./application_
→˓name ...application arguments...

The first adaptation is to use `which valgrind` to obtain a full path to the valgrind binary, since parallel process
launchers typically do not search the environment $PATH directories for the program to run. The second adaptation
is found in the options passed to valgrind. These will make sure that valgrind tracks the spawned application process,
and write its output to per-process logs in the file system rather than standard error.
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2.6.7 History

The Charm software was developed as a group effort of the Parallel Programming Laboratory at the University of
Illinois at Urbana-Champaign. Researchers at the Parallel Programming Laboratory keep Charm++ updated for the
new machines, new programming paradigms, and for supporting and simplifying development of emerging applica-
tions for parallel processing. The earliest prototype, Chare Kernel(1.0), was developed in the late eighties. It consisted
only of basic remote method invocation constructs available as a library. The second prototype, Chare Kernel(2.0), a
complete re-write with major design changes. This included C language extensions to denote Chares, messages and
asynchronous remote method invocation. Charm(3.0) improved on this syntax, and contained important features such
as information sharing abstractions, and chare groups (called Branch Office Chares). Charm(4.0) included Charm++
and was released in fall 1993. Charm++ in its initial version consisted of syntactic changes to C++ and employed a
special translator that parsed the entire C++ code while translating the syntactic extensions. Charm(4.5) had a ma-
jor change that resulted from a significant shift in the research agenda of the Parallel Programming Laboratory. The
message-driven runtime system code of the Charm++ was separated from the actual language implementation, result-
ing in an interoperable parallel runtime system called Converse. The Charm++ runtime system was retargetted on top
of Converse, and popular programming paradigms such as MPI and PVM were also implemented on Converse. This al-
lowed interoperability between these paradigms and Charm++. This release also eliminated the full-fledged Charm++
translator by replacing syntactic extensions to C++ with C++ macros, and instead contained a small language and a
translator for describing the interfaces of Charm++ entities to the runtime system. This version of Charm++, which,
in earlier releases was known as Interface Translator Charm++, is the default version of Charm++ now, and hence
referred simply as Charm++. In early 1999, the runtime system of Charm++ was rewritten in C++. Several new
features were added. The interface language underwent significant changes, and the macros that replaced the syntactic
extensions in original Charm++, were replaced by natural C++ constructs. Late 1999, and early 2000 reflected several
additions to Charm++, when a load balancing framework and migratable objects were added to Charm++.
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3.1 Introduction

This manual describes Adaptive MPI (AMPI), which is an implementation of the MPI standard1 on top of Charm++.
AMPI acts as a regular MPI implementation (akin to MPICH, OpenMPI, MVAPICH, etc.) with several built-in ex-
tensions that allow MPI developers to take advantage of Charm++’s dynamic runtime system, which provides support
for process virtualization, overlap of communication and computation, load balancing, and fault tolerance with zero
to minimal changes to existing MPI codes.

In this manual, we first describe the philosophy behind Adaptive MPI, then give a brief introduction to Charm++
and rationale for AMPI. We then describe AMPI in detail. Finally we summarize the changes required for existing
MPI codes to run with AMPI. Appendices contain the details of installing AMPI, and building and running AMPI
programs.

3.1.1 Overview

Developing parallel Computational Science and Engineering (CSE) applications is a complex task. One has to im-
plement the right physics, develop or choose and code appropriate numerical methods, decide and implement the
proper input and output data formats, perform visualizations, and be concerned with correctness and efficiency of the
programs. It becomes even more complex for multi-physics coupled simulations, many of which are dynamic and
adaptively refined so that load imbalance becomes a major challenge. In addition to imbalance caused by dynamic
program behavior, hardware factors such as latencies, variability, and failures must be tolerated by applications. Our
philosophy is to lessen the burden of application developers by providing advanced programming paradigms and ver-
satile runtime systems that can handle many common programming and performance concerns automatically and let
application programmers focus on the actual application content.

Many of these concerns can be addressed using the processor virtualization and over-decomposition philosophy of
Charm++. Thus, the developer only sees virtual processors and lets the runtime system deal with underlying physical
processors. This is implemented in AMPI by mapping MPI ranks to Charm++ user-level threads as illustrated in
Figure 3. As an immediate and simple benefit, the programmer can use as many virtual processors (“MPI ranks”) as
the problem can be easily decomposed to. For example, suppose the problem domain has 𝑛 * 2𝑛 parts that can be
easily distributed but programming for general number of MPI processes is burdensome, then the developer can have
𝑛 * 2𝑛 virtual processors on any number of physical ones using AMPI.

AMPI’s execution model consists of multiple user-level threads per Processing Element (PE). The Charm++ scheduler
coordinates execution of these user-level threads (also called Virtual Processors or VPs) and controls execution. These
VPs can also migrate between PEs for the purpose of load balancing or other reasons. The number of VPs per PE
specifies the virtualization ratio (degree of over-decomposition). For example, in Figure 3 the virtualization ratio is 3.5
(there are four VPs on PE 0 and three VPs on PE 1). Figure 4 shows how the problem domain can be over-decomposed
in AMPI’s VPs as opposed to other MPI implementations.

Another benefit of virtualization is communication and computation overlap, which is automatically realized in AMPI
without programming effort. Techniques such as software pipelining require significant programming effort to achieve
this goal and improve performance. However, one can use AMPI to have more virtual processors than physical

1 Currently, AMPI supports the MPI-2.2 standard, and the MPI-3.1 standard is under active development, though we already support non-
blocking and neighborhood collectives among other MPI-3.1 features.
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3: MPI ranks are implemented as user-level threads in AMPI rather than Operating System processes.

4: The problem domain is over-decomposed to more VPs than PEs.
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processors to overlap communication and computation. Each time a VP is blocked for communication, the Charm++
scheduler picks the next VP among those that are ready to execute. In this manner, while some of the VPs of a physical
processor are waiting for a message to arrive, others can continue their execution. Thus, performance improves without
any changes to the application source code.

Another potential benefit is that of better cache utilization. With over-decomposition, a smaller subdomain is accessed
by a VP repeatedly in different function calls before getting blocked by communication and switching to another VP.
That smaller subdomain may fit into cache if over-decomposition is enough. This concept is illustrated in Figure
3 where each AMPI rank’s subdomain is smaller than the corresponding MPI subdomain and so may fit into cache
memory. Thus, there is a potential performance improvement without changing the source code.

One important concern is that of load imbalance. New generation parallel applications are dynamically varying, mean-
ing that processors’ load is shifting during execution. In a dynamic simulation application such as rocket simulation,
burning solid fuel, sub-scaling for a certain part of the mesh, crack propagation, particle flows all contribute to load
imbalance. A centralized load balancing strategy built into an application is impractical since each individual module
is developed mostly independently by various developers. In addition, embedding a load balancing strategy in the code
complicates it greatly, and programming effort increases significantly. The runtime system is uniquely positioned to
deal with load imbalance. Figure 5 shows the runtime system migrating a VP after detecting load imbalance. This
domain may correspond to a weather forecast model where there is a storm cell in the top-left quadrant, which requires
more computation to simulate. AMPI will then migrate VP 1 to balance the division of work across processors and
improve performance. Note that incorporating this sort of load balancing inside the application code may take a lot of
effort and complicate the code.

5: AMPI can migrate VPs across processes for load balancing.

There are many different load balancing strategies built into Charm++ that can be selected by an AMPI application
developer. Among those, some may fit better for a particular application depending on its characteristics. Moreover,
one can write a new load balancer, best suited for an application, by the simple API provided inside Charm++ infras-
tructure. Our approach is based on actual measurement of load information at runtime, and on migrating computations
from heavily loaded to lightly loaded processors.

For this approach to be effective, we need the computation to be split into pieces many more in number than available
processors. This allows us to flexibly map and re-map these computational pieces to available processors. This
approach is usually called “multi-domain decomposition”.

Charm++, which we use as a runtime system layer for the work described here, simplifies our approach. It embeds an
elaborate performance tracing mechanism, a suite of plug-in load balancing strategies, infrastructure for defining and
migrating computational load, and is interoperable with other programming paradigms.

178 Chapter 3. Adaptive MPI (AMPI)



Charm++ Documentation

3.2 Charm++

Charm++ is an object-oriented parallel programming library for C. It differs from traditional message passing pro-
gramming libraries (such as MPI) in that Charm++ is “message-driven”. Message-driven parallel programs do not
block the processor waiting for a message to be received. Instead, each message carries with itself a computation that
the processor performs on arrival of that message. The underlying runtime system of Charm++ is called Converse,
which implements a “scheduler” that chooses which message to schedule next (message-scheduling in Charm++ in-
volves locating the object for which the message is intended, and executing the computation specified in the incoming
message on that object). A parallel object in Charm++ is a C object on which a certain computations can be asked to
be performed from remote processors.

Charm++ programs exhibit latency tolerance since the scheduler always picks up the next available message rather
than waiting for a particular message to arrive. They also tend to be modular, because of their object-based nature.
Most importantly, Charm++ programs can be dynamically load balanced, because the messages are directed at objects
and not at processors; thus allowing the runtime system to migrate the objects from heavily loaded processors to lightly
loaded processors.

Since many CSE applications are originally written using MPI, one would have to rewrite existing code if they were
to be converted to Charm++ to take advantage of dynamic load balancing and other Charm++ features. This is indeed
impractical. However, Converse - the runtime system of Charm++ - supports interoperability between different parallel
programming paradigms such as parallel objects and threads. Using this feature, we developed AMPI, which is
described in more detail in the next section.

3.3 AMPI

AMPI utilizes the dynamic load balancing and other capabilities of Charm++ by associating a “user-level” thread
with each Charm++ migratable object. User’s code runs inside this thread, so that it can issue blocking receive calls
similar to MPI, and still present the underlying scheduler an opportunity to schedule other computations on the same
processor. The runtime system keeps track of the computational loads of each thread as well as the communication
graph between AMPI threads, and can migrate these threads in order to balance the overall load while simultaneously
minimizing communication overhead.

3.3.1 AMPI Compliance to MPI Standards

Currently AMPI supports the MPI-2.2 standard, with preliminary support for most MPI-3.1 features and a collection of
extensions explained in detail in this manual. One-sided communication calls in MPI-2 and MPI-3 are implemented,
but they do not yet take advantage of RMA features. Non-blocking collectives have been defined in AMPI since before
MPI-3.0’s adoption of them. Also ROMIO2 has been integrated into AMPI to support parallel I/O features.

3.3.2 AMPI Extensions to MPI Standards

The following are AMPI extensions to the MPI standard, which will be explained in detail in this manual. All AMPI
extensions to the MPI standard are prefixed with AMPI_ rather than MPI_. All extensions are available in C, C++,
and Fortran, with the exception of AMPI_Command_argument_count and AMPI_Get_command_argument
which are only available in Fortran.

AMPI_Migrate AMPI_Register_pup AMPI_Get_pup_data
AMPI_Migrate_to_pe AMPI_Set_migratable AMPI_Evacuate
AMPI_Load_set_value AMPI_Load_start_measure AMPI_Load_stop_measure

(continues on next page)

2 http://www-unix.mcs.anl.gov/romio/
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(continued from previous page)

AMPI_Iget AMPI_Iget_wait AMPI_Iget_data
AMPI_Iget_free AMPI_Type_is_contiguous AMPI_Register_main
AMPI_Yield AMPI_Suspend AMPI_Resume
AMPI_Alltoall_medium AMPI_Alltoall_long
AMPI_Register_just_migrated AMPI_Register_about_to_migrate
AMPI_Command_argument_count AMPI_Get_command_argument

AMPI provides a set of built-in attributes on all communicators and windows to find the number of the worker thread,
process, or host that a rank is currently running on, as well as the total number of worker threads, processes, and hosts
in the job. We define a worker thread to be a thread on which one of more AMPI ranks are scheduled. We define a
process here as an operating system process, which may contain one or more worker threads. The built-in attributes
are AMPI_MY_WTH, AMPI_MY_PROCESS, AMPI_NUM_WTHS, and AMPI_NUM_PROCESSES. These attributes are
accessible from any rank by calling MPI_Comm_get_attr, such as:

! Fortran:
integer :: my_wth, flag, ierr
call MPI_Comm_get_attr(MPI_COMM_WORLD, AMPI_MY_WTH, my_wth, flag, ierr)

// C/C++:
int my_wth, flag;
MPI_Comm_get_attr(MPI_COMM_WORLD, AMPI_MY_WTH, &my_wth, &flag);

AMPI also provides extra communicator types that users can pass to MPI_Comm_split_type:
AMPI_COMM_TYPE_HOST for splitting a communicator into disjoint sets of ranks that share the same physi-
cal host, AMPI_COMM_TYPE_PROCESS for splitting a communicator into disjoint sets of ranks that share the same
operating system process, and AMPI_COMM_TYPE_WTH, for splitting a communicator into disjoint sets of ranks that
share the same worker thread.

For parsing Fortran command line arguments, AMPI Fortran programs should use our extension APIs, which are
similar to Fortran 2003’s standard APIs. For example:

integer :: i, argc, ierr
integer, parameter :: arg_len = 128
character(len=arg_len), dimension(:), allocatable :: raw_arguments

call AMPI_Command_argument_count(argc)
allocate(raw_arguments(argc))
do i = 1, size(raw_arguments)

call AMPI_Get_command_argument(i, raw_arguments(i), arg_len, ierr)
end do

3.3.3 Name for Main Program

To convert an existing program to use AMPI, the main function or program may need to be renamed. The changes
should be made as follows:

Fortran

You must declare the main program as a subroutine called “MPI_MAIN”. Do not declare the main subroutine as a
program because it will never be called by the AMPI runtime.
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program pgm -> subroutine MPI_Main
... ...

end program -> end subroutine

C or C++

The main function can be left as is, if mpi.h is included before the main function. This header file has a preprocessor
macro that renames main, and the renamed version is called by the AMPI runtime by each thread.

3.3.4 Global Variable Privatization

For the before-mentioned benefits to be effective, one needs to map multiple user-level threads onto each processor.
Traditional MPI programs assume that the entire processor is allocated to themselves, and that only one thread of
control exists within the process’s address space. So, they may safely use global and static variables in the program.
However, global and static variables are problematic for multi-threaded environments such as AMPI or OpenMP. This
is because there is a single instance of those variables so they will be shared among different threads in the single
address space, so if programmers are not careful a wrong result may be produced by the program. Figure 6 shows
an example of a multi-threaded application with two threads in a single process. 𝑣𝑎𝑟 is a global or static variable in
this example. Thread 1 assigns a value to it, then it gets blocked for communication and another thread can continue.
Thereby, thread 2 is scheduled next and accesses 𝑣𝑎𝑟 which is wrong. The semantics of this program needs separate
instances of 𝑣𝑎𝑟 for each of the threads. That is where the need arises to make some transformations to the original
MPI program in order to run correctly with AMPI. Note, this is the only change necessary to run an MPI program with
AMPI, that the program be thread-safe and have no global or static variables whose values differ across different MPI
ranks. Also note that global variables that are constant or are only written to once to the same value across all ranks
during initialization are already thread-safe.

6: Mutable global or static variables are an issue for AMPI

The basic transformation needed to port the MPI program to AMPI is privatization of global variables. With the MPI
process model, each MPI node can keep a copy of its own “permanent variables” - variables that are accessible from
more than one subroutines without passing them as arguments. Module variables, “saved” subroutine local variables,
and common blocks in Fortran90 belong to this category. If such a program is executed without privatization on AMPI,
all the AMPI threads that reside in the same process will access the same copy of such variables, which is clearly not the
desired semantics. To ensure correct execution of the original source program, it is necessary to make such variables
“private” to individual threads. We provide three choices with varying degrees of developer effort required and varying
degrees of portability: manual encapsulation of global state, a thread-local storage based automated mechanism, and
global offset table based automated mechanism.

Automatic Thread-Local Storage Swapping

Thread Local Store (TLS) was originally employed in kernel threads to localize variables to threads and provide thread
safety. It can be used by annotating global/static variable declarations in C with thread_local, in C with __thread or
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C11 with thread_local or _Thread_local, and in Fortran with OpenMP’s threadprivate attribute. OpenMP is required
for using tlsglobals in Fortran code since Fortran has no other method of using TLS. The __thread keyword is not an
official extension of the C language, though compiler writers are encouraged to implement this feature.

It handles both global and static variables and has no context-switching overhead. AMPI provides runtime support for
privatizing thread-local variables to user-level threads by changing the TLS segment register when context switching
between user-level threads. The runtime overhead is that of changing a single pointer per user-level thread context
switch. Currently, Charm++ supports it for x86/x86_64 platforms when using GNU compilers.

// C/C++ example:
int myrank;
double xyz[100];

! Fortran example:
integer :: myrank
real*8, dimension(100) :: xyz

For the example above, the following changes to the code handle the global variables:

// C++ example:
thread_local int myrank;
thread_local double xyz[100];

// C example:
__thread int myrank;
__thread double xyz[100];

! Fortran example:
integer :: myrank
real*8, dimension(100) :: xyz
!$omp threadprivate(myrank)
!$omp threadprivate(xyz)

The runtime system also should know that TLS-Globals is used at both compile and link time:

$ ampicxx -o example example.C -tlsglobals

Automatic Process-in-Process Runtime Linking Privatization

Process-in-Process (PiP) [PiP2018] Globals allows fully automatic privatization of global variables on GNU/Linux
systems without modification of user code. All languages (C, C++, Fortran, etc.) are supported. This method cur-
rently lacks support for checkpointing and migration, which are necessary for load balancing and fault tolerance.
Additionally, overdecomposition is limited to approximately 12 virtual ranks per logical node, though this can be
resolved by building a patched version of glibc.

This method works by combining a specific method of building binaries with a GNU extension to the dynamic linker.
First, AMPI’s toolchain wrapper compiles your user program as a Position Independent Executable (PIE) and links it
against a special shim of function pointers instead of the normal AMPI runtime. It then builds a small loader utility that
links directly against AMPI. For each rank, this loader calls the glibc-specific function dlmopen on the PIE binary
with a unique namespace index. The loader uses dlsym to populate the PIE binary’s function pointers and then it calls
the entry point. This dlmopen and dlsym process repeats for each rank. As soon as execution jumps into the PIE
binary, any global variables referenced within will appear privatized. This is because PIE binaries locate the global
data segment immediately after the code segment so that PIE global variables are accessed relative to the instruction
pointer, and because dlmopen creates a separate copy of these segments in memory for each unique namespace
index.
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Optionally, the first step in using PiP-Globals is to build PiP-glibc to overcome the limitation on rank count per
process. Use the instructions at https://github.com/RIKEN-SysSoft/PiP/blob/pip-1/INSTALL to download an instal-
lable PiP package or build PiP-glibc from source by following the Patched GLIBC section. AMPI may be able
to automatically detect PiP’s location if installed as a package, but otherwise set and export the environment variable
PIP_GLIBC_INSTALL_DIR to the value of <GLIBC_INSTALL_DIR> as used in the above instructions. For
example:

$ export PIP_GLIBC_INSTALL_DIR=~/pip

To use PiP-Globals in your AMPI program (with or without PiP-glibc), compile and link with the -pipglobals
parameter:

$ ampicxx -o example.o -c example.cpp -pipglobals
$ ampicxx -o example example.o -pipglobals

No further effort is needed. Global variables in example.cpp will be automatically privatized when the program
is run. Any libraries and shared objects compiled as PIE will also be privatized. However, if these objects call MPI
functions, it will be necessary to build them with the AMPI toolchain wrappers, -pipglobals, and potentially also
the -standalone parameter in the case of shared objects. It is recommended to do this in any case so that AMPI
can ensure everything is built as PIE.

Potential future support for checkpointing and migration will require modification of the ld-linux.so runtime
loader to intercept mmap allocations of the previously mentioned segments and redirect them through Isomalloc. The
present lack of support for these features mean PiP-Globals is best suited for testing AMPI during exploratory phases
of development, and for production jobs not requiring load balancing or fault tolerance.

Automatic Filesystem-Based Runtime Linking Privatization

Filesystem Globals (FS-Globals) was discovered during the development of PiP-Globals and the two are highly similar.
Like PiP-Globals, it requires no modification of user code and works with any language. It also currently lacks
support for checkpointing and migration, preventing use of load balancing and fault tolerance. Unlike PiP-Globals, it
is portable beyond GNU/Linux and has no limits to overdecomposition beyond available disk space.

FS-Globals works in the same way as PiP-Globals except that instead of specifying namespaces using dlmopen,
which is a GNU/Linux-specific feature, this method creates copies of the user’s PIE binary on the filesystem for each
rank and calls the POSIX-standard dlopen.

To use FS-Globals, compile and link with the -fsglobals parameter:

$ ampicxx -o example.o -c example.cpp -fsglobals
$ ampicxx -o example example.o -fsglobals

No additional steps are required. Global variables in example.cpp will be automatically privatized when the pro-
gram is run. Variables in statically linked libraries will also be privatized if compiled as PIE. It is recommended to
achieve this by building with the AMPI toolchain wrappers and -fsglobals, and this is necessary if the libraries
call MPI functions. Shared objects are currently not supported by FS-Globals due to the extra overhead of iterating
through all dependencies and copying each one per rank while avoiding system components, plus the complexity of
ensuring each rank’s program binary sees the proper set of objects.

This method’s use of the filesystem is a drawback in that it is slow during startup and can be considered wasteful.
Additionally, support for load balancing and fault tolerance would require further development in the future, using the
same infrastructure as what PiP-Globals would require. For these reasons FS-Globals is best suited for the R&D phase
of AMPI program development and for small jobs, and it may be less suitable for large production environments.
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Automatic Global Offset Table Swapping

Thanks to the ELF Object Format, we have successfully automated the procedure of switching the set of user global
variables when switching thread contexts. Executable and Linkable Format (ELF) is a common standard file format for
Object Files in Unix-like operating systems. ELF maintains a Global Offset Table (GOT) for globals so it is possible
to switch GOT contents at thread context-switch by the runtime system.

The only thing that the user needs to do is pass the flag -swapglobals at both compile and link time (e.g. “ampicc
-o prog prog.c -swapglobals”). This method does not require any changes to the source code and works with any
language (C, C++, Fortran, etc). However, it does not handle static variables, has a context switching overhead that
grows with the number of global variables, and is incompatible with SMP builds of AMPI, where multiple virtual ranks
can execute simultaneously on different scheduler threads within an OS process. Currently, this feature only works on
x86 and x86_64 platforms that fully support ELF, and it requires ld version 2.23 or older, or else a patched version of
ld 2.24+ that we provide here: https://charm.cs.illinois.edu/gerrit/gitweb?p=libbfd-patches.git;a=tree;f=swapglobals

Manual Change

We have employed a strategy of argument passing to do this privatization transformation. That is, the global variables
are bunched together in a single user-defined type, which is allocated by each thread dynamically or on the stack.
Then a pointer to this type is passed from subroutine to subroutine as an argument. Since the subroutine arguments are
passed on the stack, which is not shared across all threads, each subroutine when executing within a thread operates
on a private copy of the global variables.

This scheme is demonstrated in the following examples. The original Fortran90 code contains a module
shareddata. This module is used in the MPI_MAIN subroutine and a subroutine subA. Note that PROGRAM
PGM was renamed to SUBROUTINE MPI_MAIN and END PROGRAM was renamed to END SUBROUTINE.

!FORTRAN EXAMPLE
MODULE shareddata
INTEGER :: myrank
DOUBLE PRECISION :: xyz(100)

END MODULE

SUBROUTINE MPI_MAIN ! Previously PROGRAM PGM
USE shareddata
include 'mpif.h'
INTEGER :: i, ierr
CALL MPI_Init(ierr)
CALL MPI_Comm_rank(MPI_COMM_WORLD, myrank, ierr)
DO i = 1, 100
xyz(i) = i + myrank

END DO
CALL subA
CALL MPI_Finalize(ierr)

END SUBROUTINE ! Previously END PROGRAM

SUBROUTINE subA
USE shareddata
INTEGER :: i
DO i = 1, 100
xyz(i) = xyz(i) + 1.0

END DO
END SUBROUTINE

//C Example
#include <mpi.h>

(continues on next page)
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int myrank;
double xyz[100];

void subA();
int main(int argc, char** argv){
int i;
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
for(i=0;i<100;i++)
xyz[i] = i + myrank;

subA();
MPI_Finalize();

}

void subA(){
int i;
for(i=0;i<100;i++)
xyz[i] = xyz[i] + 1.0;

}

AMPI executes the main subroutine inside a user-level thread as a subroutine.

Now we transform this program using the argument passing strategy. We first group the shared data into a user-defined
type.

!FORTRAN EXAMPLE
MODULE shareddata
TYPE chunk ! modified
INTEGER :: myrank
DOUBLE PRECISION :: xyz(100)

END TYPE ! modified
END MODULE

//C Example
struct shareddata{
int myrank;
double xyz[100];

};

Now we modify the main subroutine to dynamically allocate this data and change the references to them. Subroutine
subA is then modified to take this data as argument.

!FORTRAN EXAMPLE
SUBROUTINE MPI_Main

USE shareddata
USE AMPI
INTEGER :: i, ierr
TYPE(chunk), pointer :: c ! modified
CALL MPI_Init(ierr)
ALLOCATE(c) ! modified
CALL MPI_Comm_rank(MPI_COMM_WORLD, c%myrank, ierr)
DO i = 1, 100
c%xyz(i) = i + c%myrank ! modified

END DO
CALL subA(c)

(continues on next page)
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CALL MPI_Finalize(ierr)
END SUBROUTINE

SUBROUTINE subA(c)
USE shareddata
TYPE(chunk) :: c ! modified
INTEGER :: i
DO i = 1, 100
c%xyz(i) = c%xyz(i) + 1.0 ! modified

END DO
END SUBROUTINE

//C Example
void MPI_Main{

int i,ierr;
struct shareddata *c;
ierr = MPI_Init();
c = (struct shareddata*)malloc(sizeof(struct shareddata));
ierr = MPI_Comm_rank(MPI_COMM_WORLD, c.myrank);
for(i=0;i<100;i++)
c.xyz[i] = i + c.myrank;

subA(c);
ierr = MPI_Finalize();

}

void subA(struct shareddata *c){
int i;
for(i=0;i<100;i++)
c.xyz[i] = c.xyz[i] + 1.0;

}

With these changes, the above program can be made thread-safe. Note that it is not really necessary to dynamically
allocate chunk. One could have declared it as a local variable in subroutine MPI_Main. (Or for a small example
such as this, one could have just removed the shareddata module, and instead declared both variables xyz and
myrank as local variables). This is indeed a good idea if shared data are small in size. For large shared data, it would
be better to do heap allocation because in AMPI, the stack sizes are fixed at the beginning (and can be specified from
the command line) and stacks do not grow dynamically.

Source-to-source Transformation

Another approach is to do the changes described in the previous scheme automatically. It means that we can use a
tool to transform the source code to move global or static variables in an object and pass them around. This approach
is portable across systems and compilers and may also improve locality and hence cache utilization. It also does not
have the context-switch overhead of swapping globals. We have multiple tools for automating these transformations
for different languages. Currently, there is a tool called Photran3 for refactoring Fortran codes that can do this trans-
formation. It is Eclipse-based and works by constructing Abstract Syntax Trees (ASTs) of the program. We also have
a tool built on top of the ROSE compiler4 that works for C/C++ and Fortran programs that is available upon request.
It emits patches for all files containing global variables which can then be applied to the source code.

Table 3 shows portability of different schemes.

3 http://www.eclipse.org/photran
4 http://rosecompiler.org/
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3: Portability of current implementations of three privatization schemes.
“Yes” means we have implemented this technique. “Maybe” indicates
there are no theoretical problems, but no implementation exists. “No”
indicates the technique is impossible on this platform.

Privatization Scheme x86 x86_64 Mac OS BG/Q Windows PPC ARM7
Transformation Yes Yes Yes Yes Yes Yes Yes
GOT-Globals Yes Yes No No No Yes Yes
TLS-Globals Yes Yes Yes No Maybe Maybe Maybe
PiP-Globals Yes Yes No No No Yes Yes
FS-Globals Yes Yes Yes No Maybe Yes Yes

3.3.5 Extensions for Migrations

AMPI provides fully automated support for migrating MPI ranks between nodes of a system without any application-
specific code at all. We do so using a memory allocator, Isomalloc, that allocates memory per user-level thread to
globally unique virtual memory addresses. This means that every worker thread in the system reserves slices of virtual
memory for all user-level threads, allowing transparent migration of stacks and pointers into memory (Isomalloc
requires 64-bit virtual memory addresses and support from the operating system for mapping memory to arbitrary
virtual addresses). Applications only need to link with Isomalloc to enable automatic migratability, using -memory
isomalloc.

For systems that do not support Isomalloc and for users that wish to have more fine-grain control over which application
data structures will be copied at migration time, we have added a few calls to AMPI. These include the ability to register
thread-specific data with the run-time system, to pack and unpack all of the thread’s data, and to express willingness
to migrate.

Registering User Data

When the AMPI runtime system decides that load imbalance exists within the application, it will invoke one of its
internal load balancing strategies, which determines the new mapping of AMPI ranks so as to balance the load. Then
the AMPI runtime packs up the rank’s state and moves it to its new home processor. AMPI packs up any internal data
in use by the rank, including the thread’s stack in use. This means that the local variables declared in subroutines in a
rank, which are created on stack, are automatically packed up by the AMPI runtime system. However, it has no way of
knowing what other data are in use by the rank. Thus upon starting execution, a rank needs to notify the system about
the data that it is going to use (apart from local variables). Even with the data registration, AMPI cannot determine
what size the data is, or whether the registered data contains pointers to other places in memory. For this purpose,
a packing subroutine also needs to be provided to the AMPI runtime system along with registered data. (See next
section for writing packing subroutines.) The call provided by AMPI for doing this is AMPI_Register_pup. This
function takes three arguments: a data item to be transported along with the rank, the pack subroutine, and a pointer to
an integer which denotes the registration identifier. In C/C++ programs, it may be necessary to use this integer value
after migration completes and control returns to the rank with the function AMPI_Get_pup_data.

Migration

The AMPI runtime system could detect load imbalance by itself and invoke the load balancing strategy. However,
since the application code is going to pack/unpack the rank’s data, writing the pack subroutine will be complicated if
migrations occur at a stage unknown to the application. For example, if the system decides to migrate a rank while
it is in initialization stage (say, reading input files), application code will have to keep track of how much data it has
read, what files are open etc. Typically, since initialization occurs only once in the beginning, load imbalance at that
stage would not matter much. Therefore, we want the demand to perform load balance check to be initiated by the
application.
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AMPI provides a subroutine AMPI_Migrate(MPI_Info hints); for this purpose. Each rank periodically
calls AMPI_Migrate. Typical CSE applications are iterative and perform multiple time-steps. One should call
AMPI_Migrate in each rank at the end of some fixed number of timesteps. The frequency of AMPI_Migrate
should be determined by a tradeoff between conflicting factors such as the load balancing overhead, and performance
degradation caused by load imbalance. In some other applications, where application suspects that load imbalance
may have occurred, as in the case of adaptive mesh refinement; it would be more effective if it performs a couple of
timesteps before telling the system to re-map ranks. This will give the AMPI runtime system some time to collect the
new load and communication statistics upon which it bases its migration decisions. Note that AMPI_Migrate does
NOT tell the system to migrate the rank, but merely tells the system to check the load balance after all the ranks call
AMPI_Migrate. To migrate the rank or not is decided only by the system’s load balancing strategy.

Essentially, a call to AMPI_Migrate signifies to the runtime system that the application has reached a point at which
it is safe to serialize the local state. Knowing this, the runtime system can act in several ways.

The MPI_Info object taken as a parameter by AMPI_Migrate gives users a way to influence the runtime system’s
decision-making and behavior. AMPI provides two built-in MPI_Info objects for this, called AMPI_INFO_LB_SYNC
and AMPI_INFO_LB_ASYNC. Synchronous load balancing assumes that the application is already at a synchroniza-
tion point. Asynchronous load balancing does not assume this.

Calling AMPI_Migrate on a rank with pending send requests (i.e. from MPI_Isend) is currently not supported,
therefore users should always wait on any outstanding send requests before calling AMPI_Migrate.

// Main time-stepping loop
for (int iter=0; iter < max_iters; iter++) {

// Time step work ...

if (iter % lb_freq == 0)
AMPI_Migrate(AMPI_INFO_LB_SYNC);

}

Note that migrating ranks around the cores and nodes of a system can change which ranks share physical resources,
such as memory. A consequence of this is that communicators created via MPI_Comm_split_type are invalidated
by calls to AMPI_Migrate that result in migration which breaks the semantics of that communicator type. The only
valid routine to call on such communicators is MPI_Comm_free.

We also provide callbacks that user code can register with the runtime system to be invoked just before and right af-
ter migration: AMPI_Register_about_to_migrate and AMPI_Register_just_migrated respectively.
Note that the callbacks are only invoked on those ranks that are about to actually migrate or have just actually migrated.

AMPI provide routines for starting and stopping load measurements, and for users to explicitly set the
load value of a rank using the following: AMPI_Load_start_measure, AMPI_Load_stop_measure,
AMPI_Load_reset_measure, and AMPI_Load_set_value. And since AMPI builds on top of Charm++,
users can experiment with the suite of load balancing strategies included with Charm++, as well as write their own
strategies based on user-level information and heuristics.

Packing/Unpacking Thread Data

Once the AMPI runtime system decides which ranks to send to which processors, it calls the specified pack subroutine
for that rank, with the rank-specific data that was registered with the system using AMPI_Register_pup. If an
AMPI application uses Isomalloc, then the system will define the Pack/Unpack routines for the user. This section
explains how a subroutine should be written for performing explicit pack/unpack.

There are three steps for transporting the rank’s data to another processor. First, the system calls a subroutine to get
the size of the buffer required to pack the rank’s data. This is called the “sizing” step. In the next step, which is called
immediately afterward on the source processor, the system allocates the required buffer and calls the subroutine to
pack the rank’s data into that buffer. This is called the “packing” step. This packed data is then sent as a message to
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the destination processor, where first a rank is created (along with the thread) and a subroutine is called to unpack the
rank’s data from the buffer. This is called the “unpacking” step.

Though the above description mentions three subroutines called by the AMPI runtime system, it is possible to actually
write a single subroutine that will perform all the three tasks. This is achieved using something we call a “pupper”. A
pupper is an external subroutine that is passed to the rank’s pack-unpack-sizing subroutine, and this subroutine, when
called in different phases performs different tasks. An example will make this clear:

Suppose the user data, chunk, is defined as a derived type in Fortran90:

!FORTRAN EXAMPLE
MODULE chunkmod
INTEGER, parameter :: nx=4, ny=4, tchunks=16
TYPE, PUBLIC :: chunk

REAL(KIND=8) t(22,22)
INTEGER xidx, yidx
REAL(KIND=8), dimension(400):: bxm, bxp, bym, byp

END TYPE chunk
END MODULE

//C Example
struct chunk{
double t;
int xidx, yidx;
double bxm,bxp,bym,byp;

};

Then the pack-unpack subroutine chunkpup for this chunk module is written as:

!FORTRAN EXAMPLE
SUBROUTINE chunkpup(p, c)

USE pupmod
USE chunkmod
IMPLICIT NONE
INTEGER :: p
TYPE(chunk) :: c

call pup(p, c%t)
call pup(p, c%xidx)
call pup(p, c%yidx)
call pup(p, c%bxm)
call pup(p, c%bxp)
call pup(p, c%bym)
call pup(p, c%byp)

end subroutine

//C Example
void chunkpup(pup_er p, struct chunk c){
pup_double(p,c.t);
pup_int(p,c.xidx);
pup_int(p,c.yidx);
pup_double(p,c.bxm);
pup_double(p,c.bxp);
pup_double(p,c.bym);
pup_double(p,c.byp);

}

There are several things to note in this example. First, the same subroutine pup (declared in module pupmod) is
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called to size/pack/unpack any type of data. This is possible because of procedure overloading possible in Fortran90.
Second is the integer argument p. It is this argument that specifies whether this invocation of subroutine chunkpup
is sizing, packing or unpacking. Third, the integer parameters declared in the type chunk need not be packed or
unpacked since they are guaranteed to be constants and thus available on any processor.

A few other functions are provided in module pupmod. These functions provide more control over the pack-
ing/unpacking process. Suppose one modifies the chunk type to include allocatable data or pointers that are
allocated dynamically at runtime. In this case, when chunk is packed, these allocated data structures should
be deallocated after copying them to buffers, and when chunk is unpacked, these data structures should be al-
located before copying them from the buffers. For this purpose, one needs to know whether the invocation
of chunkpup is a packing one or unpacking one. For this purpose, the pupmod module provides functions
fpup_isdeleting(fpup_isunpacking). These functions return logical value .TRUE. if the invocation is
for packing (unpacking), and .FALSE. otherwise. The following example demonstrates this:

Suppose the type dchunk is declared as:

!FORTRAN EXAMPLE
MODULE dchunkmod
TYPE, PUBLIC :: dchunk

INTEGER :: asize
REAL(KIND=8), pointer :: xarr(:), yarr(:)

END TYPE dchunk
END MODULE

//C Example
struct dchunk{
int asize;
double* xarr, *yarr;

};

Then the pack-unpack subroutine is written as:

!FORTRAN EXAMPLE
SUBROUTINE dchunkpup(p, c)

USE pupmod
USE dchunkmod
IMPLICIT NONE
INTEGER :: p
TYPE(dchunk) :: c

pup(p, c%asize)

IF (fpup_isunpacking(p)) THEN !! if invocation is for unpacking
allocate(c%xarr(c%asize))
ALLOCATE(c%yarr(c%asize))

ENDIF

pup(p, c%xarr)
pup(p, c%yarr)

IF (fpup_isdeleting(p)) THEN !! if invocation is for packing
DEALLOCATE(c%xarr)
DEALLOCATE(c%yarr)

ENDIF

END SUBROUTINE
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//C Example
void dchunkpup(pup_er p, struct dchunk c){
pup_int(p,c.asize);
if(pup_isUnpacking(p)){
c.xarr = (double *)malloc(sizeof(double)*c.asize);
c.yarr = (double *)malloc(sizeof(double)*c.asize);

}
pup_doubles(p,c.xarr,c.asize);
pup_doubles(p,c.yarr,c.asize);
if(pup_isPacking(p)){
free(c.xarr);
free(c.yarr);

}
}

One more function fpup_issizing is also available in module pupmod that returns .TRUE. when the invocation
is a sizing one. In practice one almost never needs to use it.

Charm++ also provides higher-level PUP routines for C++ STL data structures and Fortran90 data types. The STL
PUP routines will deduce the size of the structure automatically, so that the size of the data does not have to be passed
in to the PUP routine. This facilitates writing PUP routines for large pre-existing codebases. To use it, simply include
pup_stl.h in the user code. For modern Fortran with pointers and allocatable data types, AMPI provides a similarly
automated PUP interface called apup. User code can include pupmod and then call apup() on any array (pointer or
allocatable, multi-dimensional) of built-in types (character, short, int, long, real, double, complex, double complex,
logical) and the runtime will deduce the size and shape of the array, including unassociated and NULL pointers. Here
is the dchunk example from earlier, written to use the apup interface:

!FORTRAN EXAMPLE
SUBROUTINE dchunkpup(p, c)

USE pupmod
USE dchunkmod
IMPLICIT NONE
INTEGER :: p
TYPE(dchunk) :: c

!! no need for asize
!! no isunpacking allocation necessary

apup(p, c%xarr)
apup(p, c%yarr)

!! no isdeleting deallocation necessary

END SUBROUTINE

Calling MPI_ routines or accessing global variables that have been privatized by use of tlsglobals or swapglobals from
inside a user PUP routine is currently not allowed in AMPI. Users can store MPI-related information like communi-
cator rank and size in data structures to be be packed and unpacked before they are needed inside a PUP routine.

3.3.6 Extensions for Checkpointing

The pack-unpack subroutines written for migrations make sure that the current state of the program is correctly packed
(serialized) so that it can be restarted on a different processor. Using the same subroutines, it is also possible to save
the state of the program to disk, so that if the program were to crash abruptly, or if the allocated time for the program
expires before completing execution, the program can be restarted from the previously checkpointed state. Thus, the
pack-unpack subroutines act as the key facility for checkpointing in addition to their usual role for migration. Just as
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in load balancing, no application specific code is required when using Isomalloc: the AMPI runtime takes care of all
the details involved in migrating data.

To perform a checkpoint in an AMPI program, all you have to do is make a call to int
AMPI_Migrate(MPI_Info hints) with an MPI_Info object that specifies how you would like to
checkpoint. Checkpointing can be thought of as migrating AMPI ranks to storage. Users set the check-
pointing policy on an MPI_Info object’s "ampi_checkpoint" key to one of the following values:
"to_file=directory_name" or "false". To perform checkpointing in memory a built-in MPI_Info
object called AMPI_INFO_CHKPT_IN_MEMORY is provided.

Checkpointing to file tells the runtime system to save checkpoints in a given directory. (Typically, in an iterative pro-
gram, the iteration number, converted to a character string, can serve as a checkpoint directory name.) This directory
is created, and the entire state of the program is checkpointed to this directory. One can restart the program from the
checkpointed state (using the same, more, or fewer physical processors than were checkpointed with) by specifying
"+restart directory_name" on the command-line.

Checkpointing in memory allows applications to transparently tolerate failures online. The checkpointing scheme
used here is a double in-memory checkpoint, in which virtual processors exchange checkpoints pairwise across nodes
in each other’s memory such that if one node fails, that failed node’s AMPI ranks can be restarted by its buddy
once the failure is detected by the runtime system. As long as no two buddy nodes fail in the same checkpointing
interval, the system can restart online without intervention from the user (provided the job scheduler does not revoke
its allocation). Any load imbalance resulting from the restart can then be managed by the runtime system. Use of this
scheme is illustrated in the code snippet below.

// Main time-stepping loop
for (int iter=0; iter < max_iters; iter++) {

// Time step work ...

if (iter % chkpt_freq == 0)
AMPI_Migrate(AMPI_INFO_CHKPT_IN_MEMORY);

}

A value of "false" results in no checkpoint being done that step. Note that AMPI_Migrate is a collective func-
tion, meaning every virtual processor in the program needs to call this subroutine with the same MPI_Info object.
The checkpointing capabilities of AMPI are powered by the Charm++ runtime system. For more information about
checkpoint/restart mechanisms please refer to the Charm++ manual: 2.3.12.

3.3.7 Extensions for Memory Efficiency

MPI functions usually require the user to preallocate the data buffers needed before the functions being called. For
unblocking communication primitives, sometimes the user would like to do lazy memory allocation until the data
actually arrives, which gives the opportunities to write more memory efficient programs. We provide a set of AMPI
functions as an extension to the standard MPI-2 one-sided calls, where we provide a split phase MPI_Get called
AMPI_Iget. AMPI_Iget preserves the similar semantics as MPI_Get except that no user buffer is provided to
hold incoming data. AMPI_Iget_wait will block until the requested data arrives and runtime system takes care to
allocate space, do appropriate unpacking based on data type, and return. AMPI_Iget_free lets the runtime system
free the resources being used for this get request including the data buffer. Finally, AMPI_Iget_data is the routine
used to access the data.

int AMPI_Iget(MPI_Aint orgdisp, int orgcnt, MPI_Datatype orgtype, int rank,
MPI_Aint targdisp, int targcnt, MPI_Datatype targtype, MPI_Win win,
MPI_Request *request);

int AMPI_Iget_wait(MPI_Request *request, MPI_Status *status, MPI_Win win);

(continues on next page)
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int AMPI_Iget_free(MPI_Request *request, MPI_Status *status, MPI_Win win);

int AMPI_Iget_data(void *data, MPI_Status status);

3.3.8 Extensions for Interoperability

Interoperability between different modules is essential for coding coupled simulations. In this extension to AMPI,
each MPI application module runs within its own group of user-level threads distributed over the physical parallel
machine. In order to let AMPI know which ranks are to be created, and in what order, a top level registration routine
needs to be written. A real-world example will make this clear. We have an MPI code for fluids and another MPI code
for solids, both with their main programs, then we first transform each individual code to run correctly under AMPI
as standalone codes. Aside from the global and static variable privatization transformations needed, this also involves
making the main program into a subroutine and naming it MPI_Main.

Thus now, we have two MPI_Mains, one for the fluids code and one for the solids code. We now make these codes
co-exist within the same executable, by first renaming these MPI_Mains as Fluids_Main and Solids_Main5

writing a subroutine called MPI_Setup.

!FORTRAN EXAMPLE
SUBROUTINE MPI_Setup

USE ampi
CALL AMPI_Register_main(Solids_Main)
CALL AMPI_Register_main(Fluids_Main)

END SUBROUTINE

//C Example
void MPI_Setup(){

AMPI_Register_main(Solids_Main);
AMPI_Register_main(Fluids_Main);

}

This subroutine is called from the internal initialization routines of AMPI and tells AMPI how many numbers of
distinct modules exist, and which orchestrator subroutines they execute.

The number of ranks to create for each module is specified on the command line when an AMPI program is run.
Appendix B explains how AMPI programs are run, and how to specify the number of ranks (+vp option). In the above
case, suppose one wants to create 128 ranks of Solids and 64 ranks of Fluids on 32 physical processors, one would
specify those with multiple +vp options on the command line as:

$ ./charmrun gen1.x +p 32 +vp 128 +vp 64

This will ensure that multiple modules representing different complete applications can co-exist within the same
executable. They can also continue to communicate among their own ranks using the same AMPI function calls
to send and receive with communicator argument as MPI_COMM_WORLD. But this would be completely useless if
these individual applications cannot communicate with each other, which is essential for building efficient coupled
codes. For this purpose, we have extended the AMPI functionality to allow multiple “COMM_WORLDs”; one for
each application. These world communicators form a “communicator universe” an array of communicators aptly
called MPI_COMM_UNIVERSE. This array of communicators is indexed [1 . . . MPI_MAX_COMM]. In the current
implementation, MPI_MAX_COMM is 8, that is, maximum of 8 applications can co-exist within the same executable.

5 Currently, we assume that the interface code, which does mapping and interpolation among the boundary values of Fluids and Solids domain,
is integrated with one of Fluids and Solids.
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The order of these COMM_WORLDs within MPI_COMM_UNIVERSE is determined by the order in which individual
applications are registered in MPI_Setup.

Thus, in the above example, the communicator for the Solids module would be MPI_COMM_UNIVERSE(1) and
communicator for Fluids module would be MPI_COMM_UNIVERSE(2).

Now any rank within one application can communicate with any rank in the other application using the familiar send
or receive AMPI calls by specifying the appropriate communicator and the rank number within that communicator in
the call. For example if a Solids rank number 36 wants to send data to rank number 47 within the Fluids module, it
calls:

!FORTRAN EXAMPLE
INTEGER , PARAMETER :: Fluids_Comm = 2
CALL MPI_Send(InitialTime, 1, MPI_Double_Precision, tag,

47, MPI_Comm_Universe(Fluids_Comm), ierr)

//C Example
int Fluids_Comm = 2;
ierr = MPI_Send(InitialTime, 1, MPI_DOUBLE, tag,

47, MPI_Comm_Universe(Fluids_Comm));

The Fluids rank has to issue a corresponding receive call to receive this data:

!FORTRAN EXAMPLE
INTEGER , PARAMETER :: Solids_Comm = 1
CALL MPI_Recv(InitialTime, 1, MPI_Double_Precision, tag,

36, MPI_Comm_Universe(Solids_Comm), stat, ierr)

//C Example
int Solids_Comm = 1;
ierr = MPI_Recv(InitialTime, 1, MPI_DOUBLE, tag,

36, MPI_Comm_Universe(Solids_Comm), &stat);

3.3.9 Charm++ Interoperability

There is preliminary support for interoperating AMPI programs with Charm++ programs. This allows users to launch
an AMPI program with an arbitrary number of virtual processes in the same executable as a Charm++ program that
contains arbitrary collections of chares, with both AMPI ranks and chares being co-scheduled by the runtime system.
We also provide an entry method void injectMsg(int n, char buf[n]) for chares to communicate with
AMPI ranks. An example program can be found in examples/charm++/AMPI-interop.

3.3.10 Extensions for Sequential Re-run of a Parallel Node

In some scenarios, a sequential re-run of a parallel node is desired. One example is instruction-level accurate architec-
ture simulations, in which case the user may wish to repeat the execution of a node in a parallel run in the sequential
simulator. AMPI provides support for such needs by logging the change in the MPI environment on a certain pro-
cessors. To activate the feature, build AMPI module with variable “AMPIMSGLOG” defined, like the following
command in charm directory. (Linking with zlib “-lz” might be required with this, for generating compressed log file.)

$ ./build AMPI netlrts-linux-x86_64 -DAMPIMSGLOG

The feature is used in two phases: writing (logging) the environment and repeating the run. The first logging phase is
invoked by a parallel run of the AMPI program with some additional command line options.
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$ ./charmrun ./pgm +p4 +vp4 +msgLogWrite +msgLogRank 2 +msgLogFilename "msg2.log"

In the above example, a parallel run with 4 worker threads and 4 AMPI ranks will be executed, and the changes in the
MPI environment of worker thread 2 (also rank 2, starting from 0) will get logged into diskfile “msg2.log”.

Unlike the first run, the re-run is a sequential program, so it is not invoked by charmrun (and omitting charmrun options
like +p4 and +vp4), and additional command line options are required as well.

$ ./pgm +msgLogRead +msgLogRank 2 +msgLogFilename "msg2.log"

3.3.11 User Defined Initial Mapping

You can define the initial mapping of virtual processors (vp) to physical processors (p) as a runtime option. You
can choose from predefined initial mappings or define your own mappings. The following predefined mappings are
available:

Round Robin This mapping scheme maps virtual processor to physical processor in round-robin fashion, i.e. if there
are 8 virtual processors and 2 physical processors then virtual processors indexed 0,2,4,6 will be mapped to
physical processor 0 and virtual processors indexed 1,3,5,7 will be mapped to physical processor 1.

$ ./charmrun ./hello +p2 +vp8 +mapping RR_MAP

Block Mapping This mapping scheme maps virtual processors to physical processor in ranks, i.e. if there are 8
virtual processors and 2 physical processors then virtual processors indexed 0,1,2,3 will be mapped to physical
processor 0 and virtual processors indexed 4,5,6,7 will be mapped to physical processor 1.

$ ./charmrun ./hello +p2 +vp8 +mapping BLOCK_MAP

Proportional Mapping This scheme takes the processing capability of physical processors into account for mapping
virtual processors to physical processors, i.e. if there are 2 processors running at different frequencies, then the
number of virtual processors mapped to processors will be in proportion to their processing power. To make the
load balancing framework aware of the heterogeneity of the system, the flag +LBTestPESpeed should also be
used.

$ ./charmrun ./hello +p2 +vp8 +mapping PROP_MAP
$ ./charmrun ./hello +p2 +vp8 +mapping PROP_MAP +balancer GreedyLB +LBTestPESpeed

If you want to define your own mapping scheme, please contact us for assistance.

3.3.12 Performance Visualization

AMPI users can take advantage of Charm++’s tracing framework and associated performance visualization tool,
Projections. Projections provides a number of different views of performance data that help users diagnose perfor-
mance issues. Along with the traditional Timeline view, Projections also offers visualizations of load imbalance and
communication-related data.

In order to generate tracing logs from an application to view in Projections, link with ampicc -tracemode
projections.

AMPI defines the following extensions for tracing support:

AMPI_Trace_begin AMPI_Trace_end
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When using the Timeline view in Projections, AMPI users can visualize what each VP on each processor is doing
(what MPI method it is running or blocked in) by clicking the View tab and then selecting Show Nested Bracketed
User Events from the drop down menu. See the Projections manual for information on performance analysis and
visualization.

AMPI users can also use any tracing libraries or tools that rely on MPI’s PMPI profiling interface, though such tools
may not be aware of AMPI process virtualization.

3.3.13 Compiling AMPI Programs

AMPI provides a cross-platform compile-and-link script called ampicc to compile C, C++, and Fortran AMPI pro-
grams. This script resides in the bin subdirectory in the Charm++ installation directory. The main purpose of this
script is to deal with the differences of various compiler names and command-line options across various machines on
which AMPI runs. It is recommended that the AMPI compiler scripts be used to compile and link AMPI programs.
One major advantage of using these is that one does not have to specify which libraries are to be linked for ensuring
that C++ and Fortran90 codes are linked together correctly. Appropriate libraries required for linking such modules
together are known to ampicc for various machines.

In spite of the platform-neutral syntax of ampicc, one may have to specify some platform-specific options for compiling
and building AMPI codes. Fortunately, if ampicc does not recognize any particular options on its command line, it
promptly passes it to all the individual compilers and linkers it invokes to compile the program. See the appendix for
more details on building and running AMPI programs.

3.3.14 AMPI Example Applications

This section contains a list of applications that have been written or adapted to work with AMPI. Most applications
are available on git:
git clone ssh://charm.cs.illinois.edu:9418/benchmarks/ampi-benchmarks.

Most benchmarks can be compiled with the provided top-level Makefile:

$ git clone ssh://charm.cs.illinois.edu:9418/benchmarks/ampi-benchmarks
$ cd ampi-benchmarks
$ make -f Makefile.ampi

Mantevo project v3.0

Set of mini-apps from the Mantevo project. Download at https://mantevo.org/download/.

MiniFE

• Mantevo mini-app for unstructured implicit Finite Element computations.

• No changes necessary to source to run on AMPI. Modify file makefile.ampi and change variable AMPIDIR
to point to your Charm++ directory, execute make -f makefile.ampi to build the program.

• Refer to the README file on how to run the program. For example: ./charmrun +p4 ./miniFE.x
nx=30 ny=30 nz=30 +vp32
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MiniMD v2.0

• Mantevo mini-app for particle interaction in a Lennard-Jones system, as in the LAMMPS MD code.

• No changes necessary to source code. Modify file Makefile.ampi and change variable AMPIDIR to point
to your Charm++ directory, execute make ampi to build the program.

• Refer to the README file on how to run the program. For example: ./charmrun +p4 ./miniMD_ampi
+vp32

CoMD v1.1

• Mantevo mini-app for molecular dynamics codes: https://github.com/exmatex/CoMD

• To AMPI-ize it, we had to remove calls to not thread-safe getopt(). Support for dynamic load balancing has
been added in the main loop and the command line options. It will run on all platforms.

• Just update the Makefile to point to AMPI compilers and run with the provided run scripts.

MiniXYCE v1.0

• Mantevo mini-app for discrete analog circuit simulation, version 1.0, with serial, MPI, OpenMP, and
MPI+OpenMP versions.

• No changes besides Makefile necessary to run with virtualization. To build, do cp common/
generate_info_header miniXyce_ref/., modify the CC path in miniXyce_ref/ and run make.
Run scripts are in test/.

• Example run command: ./charmrun +p3 ./miniXyce.x +vp3 -circuit ../tests/cir1.
net -t_start 1e-6 -pf params.txt

HPCCG v1.0

• Mantevo mini-app for sparse iterative solves using the Conjugate Gradient method for a problem similar to that
of MiniFE.

• No changes necessary except to set compilers in Makefile to the AMPI compilers.

• Run with a command such as: ./charmrun +p2 ./test_HPCCG 20 30 10 +vp16

MiniAMR v1.0

• miniAMR applies a stencil calculation on a unit cube computational domain, which is refined over time.

• No changes if using swap-globals. Explicitly extern global variables if using TLS.

Not yet AMPI-zed (reason):

MiniAero v1.0 (build issues), MiniGhost v1.0.1 (globals), MiniSMAC2D v2.0 (globals), TeaLeaf v1.0 (globals),
CloverLeaf v1.1 (globals), CloverLeaf3D v1.0 (globals).
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LLNL ASC Proxy Apps

LULESH v2.0

• LLNL Unstructured Lagrangian-Eulerian Shock Hydrodynamics proxy app: https://codesign.llnl.gov/lulesh.
php

• Charm++, MPI, MPI+OpenMP, Liszt, Loci, Chapel versions all exist for comparison.

• Manually privatized version of LULESH 2.0, plus a version with PUP routines in subdirectory
pup_lulesh202/.

AMG 2013

• LLNL ASC proxy app: Algebraic Multi-Grid solver for linear systems arising from unstructured meshes: https:
//codesign.llnl.gov/amg2013.php

• AMG is based on HYPRE, both from LLNL. The only change necessary to get AMG running on AMPI with
virtualization is to remove calls to HYPRE’s timing interface, which is not thread-safe.

• To build, point the CC variable in Makefile.include to your AMPI CC wrapper script and make. Executable is
test/amg2013.

Lassen v1.0

• LLNL ASC mini-app for wave-tracking applications with dynamic load imbalance. Reference versions are
serial, MPI, Charm++, and MPI/Charm++ interop: https://codesign.llnl.gov/lassen.php

• No changes necessary to enable AMPI virtualization. Requires some C++11 support. Set AMPIDIR in Makefile
and make. Run with: ./charmrun +p4 ./lassen_mpi +vp8 default 2 2 2 50 50 50

Kripke v1.1

• LLNL ASC proxy app for ARDRA, a full Sn deterministic particle transport application: https://codesign.llnl.
gov/kripke.php

• Charm++, MPI, MPI+OpenMP, MPI+RAJA, MPI+CUDA, MPI+OCCA versions exist for comparison.

• Kripke requires no changes between MPI and AMPI since it has no global/static variables. It uses cmake so
edit the cmake toolchain files in cmake/toolchain/ to point to the AMPI compilers, and build in a build
directory:

$ mkdir build; cd build;
$ cmake .. -DCMAKE_TOOLCHAIN_FILE=../cmake/Toolchain/linux-gcc-ampi.cmake
-DENABLE_OPENMP=OFF
$ make

Run with:

$ ./charmrun +p8 ./src/tools/kripke +vp8 --zones 64,64,64 --procs 2,2,2 --nest ZDG
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MCB v1.0.3 (2013)

• LLNL ASC proxy app for Monte Carlo particle transport codes: https://codesign.llnl.gov/mcb.php

• MPI+OpenMP reference version.

• Run with:

$ OMP_NUM_THREADS=1 ./charmrun +p4 ./../src/MCBenchmark.exe --weakScaling
--distributedSource --nCores=1 --numParticles=20000 --multiSigma --nThreadCore=1
→˓+vp16

Not yet AMPI-zed (reason)

: UMT 2013 (global variables).

Other Applications

MILC 7.0

• MILC is a code to study quantum chromodynamics (QCD) physics. http://www.nersc.gov/users/
computational-systems/cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks/milc/

• Moved MPI_Init_thread call to main(), added __thread to all global/static variable declarations. Runs
on AMPI with virtualization when using -tlsglobals.

• Build: edit ks_imp_ds/Makefile to use AMPI compiler wrappers, run make su3_rmd in ks_imp_ds/

• Run with: ./su3_rmd +vp8 ../benchmark_n8/single_node/n8_single.in

SNAP v1.01 (C version)

• LANL proxy app for PARTISN, an Sn deterministic particle transport application: https://github.com/losalamos/
SNAP

• SNAP is an update to Sweep3D. It simulates the same thing as Kripke, but with a different decomposition and
slight algorithmic differences. It uses a 1- or 2-dimensional decomposition and the KBA algorithm to perform
parallel sweeps over the 3-dimensional problem space. It contains all of the memory, computation, and network
performance characteristics of a real particle transport code.

• Original SNAP code is Fortran90-MPI-OpenMP, but this is a C-MPI-OpenMP version of it provided along with
the original version. The Fortran90 version will require global variable privatization, while the C version works
out of the box on all platforms.

• Edit the Makefile for AMPI compiler paths and run with: ./charmrun +p4 ./snap +vp4 --fi
center_src/fin01 --fo center_src/fout01

Sweep3D

• Sweep3D is a particle transport program that analyzes the flux of particles along a space. It solves a three-
dimensional particle transport problem.

• This mini-app has been deprecated, and replaced at LANL by SNAP (above).

• Build/Run Instructions:
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– Modify the makefile and change variable CHARMC to point to your Charm++ compiler command,
execute make mpi to build the program.

– Modify file input to set the different parameters. Refer to file README on how to change those parame-
ters. Run with: ./charmrun ./sweep3d.mpi +p8 +vp16

PENNANT v0.8

• Unstructured mesh Rad-Hydro mini-app for a full application at LANL called FLAG. https://github.com/
losalamos/PENNANT

• Written in C++, only global/static variables that need to be privatized are mype and numpe. Done manually.

• Legion, Regent, MPI, MPI+OpenMP, MPI+CUDA versions of PENNANT exist for comparison.

• For PENNANT-v0.8, point CC in Makefile to AMPICC and just ’make’. Run with the provided input files, such
as: ./charmrun +p2 ./build/pennant +vp8 test/noh/noh.pnt

Benchmarks

Jacobi-2D (Fortran)

• Jacobi-2D with 1D decomposition. Problem size and number of iterations are defined in the source code.
Manually privatized.

Jacobi-3D (C)

• Jacobi-3D with 3D decomposition. Manually privatized. Includes multiple versions: Isomalloc, PUP, FT, LB,
Isend/Irecv, Iput/Iget.

NAS Parallel Benchmarks (NPB 3.3)

• A collection of kernels used in different scientific applications. They are mainly implementations of various
linear algebra methods. http://www.nas.nasa.gov/Resources/Software/npb.html

• Build/Run Instructions:

– Modify file config/make.def to make variable CHAMRDIR point to the right Charm++ directory.

– Use make <benchmark> NPROCS=<P> CLASS=<C> to build a particular benchmark. The values
for <benchmark> are (bt, cg, dt, ep, ft, is, lu, mg, sp), <P> is the number of ranks and <C> is the class or
the problem size (to be chosen from A,B,C,D or E). Some benchmarks may have restrictions on values of
<P> and <C>. For instance, to make CG benchmark with 256 ranks and class C, we will use the following
command: make cg NPROCS=256

– The resulting executable file will be generated in the respective directory for the benchmark. In the pre-
vious example, a file cg.256.C will appear in the CG and bin/ directories. To run the particular bench-
mark, you must follow the standard procedure of running AMPI programs: ./charmrun ./cg.C.256
+p64 +vp256 ++nodelist nodelist +isomalloc_sync
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NAS PB Multi-Zone Version (NPB-MZ 3.3)

• A multi-zone version of BT, SP and LU NPB benchmarks. The multi-zone intentionally divides the space
unevenly among ranks and causes load imbalance. The original goal of multi-zone versions was to offer an
test case for hybrid MPI+OpenMP programming, where the load imbalance can be dealt with by increasing the
number of threads in those ranks with more computation. http://www.nas.nasa.gov/Resources/Software/npb.
html

• The BT-MZ program shows the heaviest load imbalance.

• Build/Run Instructions:

– Modify file config/make.def to make variable CHAMRDIR point to the right Charm++ build.

– Use the format make <benchmark> NPROCS=<P> CLASS=<C> to build a particular benchmark.
The values for <benchmark> are (bt-mz, lu-mz, sp-mz), <P> is the number of ranks and <C> is the
class or the problem size (to be chosen from A,B,C,D or E). Some benchmarks may have restrictions on
values of <P> and <C>. For instance, to make the BT-MZ benchmark with 256 ranks and class C, you can
use the following command: make bt-mz NPROCS=256 CLASS=C

– The resulting executable file will be generated in the bin/ directory. In the previous example, a file bt-
mz.256.C will be created in the bin directory. To run the particular benchmark, you must follow the
standard procedure of running AMPI programs: ./charmrun ./bt-mz.C.256 +p64 +vp256
++nodelist nodelist +isomalloc_sync

HPCG v3.0

• High Performance Conjugate Gradient benchmark, version 3.0. Companion metric to Linpack, with many
vendor-optimized implementations available: http://hpcg-benchmark.org/

• No AMPI-ization needed. To build, modify setup/Make.AMPI for compiler paths, do mkdir build &&
cd build && configure ../setup/Make.AMPI && make. To run, do ./charmrun +p16 ./
bin/xhpcg +vp64

Intel Parallel Research Kernels (PRK) v2.16

• A variety of kernels (Branch, DGEMM, Nstream, Random, Reduce, Sparse, Stencil, Synch_global, Synch_p2p,
and Transpose) implemented for a variety of runtimes (SERIAL, OpenMP, MPI-1, MPI-RMA, MPI-SHM,
MPI+OpenMP, SHMEM, FG_MPI, UPC, Grappa, Charm++, and AMPI). https://github.com/ParRes/Kernels

• For AMPI tests, set CHARMTOP and run: make allampi. There are run scripts included.

OSU Microbenchmarks

MPI collectives performance testing suite. https://charm.cs.illinois.edu/gerrit/#/admin/projects/benchmarks/
osu-collectives-benchmarking

• Build with: ./configure CC=~/charm/bin/ampicc && make

Third Party Open Source Libraries

3.3. AMPI 201

http://www.nas.nasa.gov/Resources/Software/npb.html
http://www.nas.nasa.gov/Resources/Software/npb.html
http://hpcg-benchmark.org/
https://github.com/ParRes/Kernels
https://charm.cs.illinois.edu/gerrit/#/admin/projects/benchmarks/osu-collectives-benchmarking
https://charm.cs.illinois.edu/gerrit/#/admin/projects/benchmarks/osu-collectives-benchmarking


Charm++ Documentation

HYPRE-2.11.1

• High Performance Preconditioners and solvers library from LLNL. https://computation.llnl.gov/project/linear_
solvers/software.php

• Hypre-2.11.1 builds on top of AMPI using the configure command:

$ ./configure --with-MPI \
CC=~/charm/bin/ampicc \
CXX=~/charm/bin/ampicxx \
F77=~/charm/bin/ampif77 \
--with-MPI-include=~/charm/include \
--with-MPI-lib-dirs=~/charm/lib \
--with-MPI-libs=mpi --without-timing --without-print-errors

$ make -j8

• All HYPRE tests and examples pass tests with virtualization, migration, etc. except for those that use Hypre’s
timing interface, which uses a global variable internally. So just remove those calls and do not define
HYPRE_TIMING when compiling a code that uses Hypre. In the examples directory, you’ll have to set the com-
pilers to your AMPI compilers explicitly too. In the test directory, you’ll have to edit the Makefile to 1) Remove
-DHYPRE_TIMING from both CDEFS and CXXDEFS, 2) Remove both ${MPILIBS} and ${MPIFLAGS}
from MPILIBFLAGS, and 3) Remove ${LIBS} from LIBFLAGS. Then run make.

• To run the new_ij test, run: ./charmrun +p64 ./new_ij -n 128 128 128 -P 4 4 4
-intertype 6 -tol 1e-8 -CF 0 -solver 61 -agg_nl 1 27pt -Pmx 6 -ns 4 -mu 1
-hmis -rlx 13 +vp64

MFEM-3.2

• MFEM is a scalable library for Finite Element Methods developed at LLNL. http://mfem.org/

• MFEM-3.2 builds on top of AMPI (and METIS-4.0.3 and HYPRE-2.11.1). Download MFEM, HYPRE, and
METIS. Untar all 3 in the same top-level directory.

• Build HYPRE-2.11.1 as described above.

• Build METIS-4.0.3 by doing cd metis-4.0.3/ && make

• Build MFEM-3.2 serial first by doing make serial

• Build MFEM-3.2 parallel by doing:

– First, comment out #define HYPRE_TIMING in mfem/linalg/hypre.hpp. Also, you must add
a #define hypre_clearTiming() at the top of linalg/hypre.cpp, because Hypre-2.11.1 has
a bug where it doesn’t provide a definition of this function if you don’t define HYPRE_TIMING.

– make parallel MFEM_USE_MPI=YES MPICXX=~/charm/bin/ampicxx HYPRE_DIR=~/
hypre-2.11.1/src/hypre METIS_DIR=~/metis-4.0.3

• To run an example, do ./charmrun +p4 ./ex15p -m ../data/amr-quad.mesh +vp16. You
may want to add the runtime options -no-vis and -no-visit to speed things up.

• All example programs and miniapps pass with virtualization, and migration if added.

XBraid-1.1

• XBraid is a scalable library for parallel time integration using MultiGrid, developed at LLNL. https://
computation.llnl.gov/project/parallel-time-integration/software.php
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• XBraid-1.1 builds on top of AMPI (and its examples/drivers build on top of MFEM-3.2, HYPRE-2.11.1, and
METIS-4.0.3 or METIS-5.1.0).

• To build XBraid, modify the variables CC, MPICC, and MPICXX in makefile.inc to point to your AMPI com-
pilers, then do make.

• To build XBraid’s examples/ and drivers/ modify the paths to MFEM and HYPRE in their Makefiles and make.

• To run an example, do ./charmrun +p2 ./ex-02 -pgrid 1 1 8 -ml 15 -nt 128 -nx 33
33 -mi 100 +vp8 ++local.

• To run a driver, do ./charmrun +p4 ./drive-03 -pgrid 2 2 2 2 -nl 32 32 32 -nt 16
-ml 15 +vp16 ++local

Other AMPI codes

• FLASH

• BRAMS (Weather prediction model)

• CGPOP

• Fractography3D (Crack Propagation)

• JetAlloc

• PlasComCM (XPACC)

• PlasCom2 (XPACC)

• Harm3D

3.4 Installing AMPI

AMPI is included in the source distribution of Charm++. To get the latest sources from PPL, visit: http://charm.cs.
illinois.edu/software

and follow the download links. Then build Charm++ and AMPI from source.

The build script for Charm++ is called build. The syntax for this script is:

$ build <target> <version> <opts>

For building AMPI (which also includes building Charm++ and other libraries needed by AMPI), specify <target>
to be AMPI. And <opts> are command line options passed to the charmc compile script. Common compile time
options such as -g, -O, -Ipath, -Lpath, -llib are accepted.

To build a debugging version of AMPI, use the option: -g. To build a production version of AMPI, use the option:
-with-production.

<version> depends on the machine, operating system, and the underlying communication library one wants to
use for running AMPI programs. See the charm/README file for details on picking the proper version. Here is an
example of how to build a debug version of AMPI in a linux and ethernet environment:

$ ./build AMPI netlrts-linux-x86_64 -g

And the following is an example of how to build a production version of AMPI on a Cray XC system, with MPI-level
error checking in AMPI turned off:
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$ ./build AMPI gni-crayxc --with-production --disable-ampi-error-checking

AMPI can also be built with support for shared memory on any communication layer by adding “smp” as an option
after the build target. For example, on an Infiniband Linux cluster:

$ ./build AMPI verbs-linux-x86_64 smp --with-production

AMPI ranks are implemented as user-level threads with a stack size default of 1MB. If the default is not correct for
your program, you can specify a different default stack size (in bytes) at build time. The following build command
illustrates this for an Intel Omni-Path system:

$ ./build AMPI ofi-linux-x86_64 --with-production -DTCHARM_STACKSIZE_DEFAULT=16777216

The same can be done for AMPI’s RDMA messaging threshold using AMPI_RDMA_THRESHOLD_DEFAULT and,
for messages sent within the same address space (ranks on the same worker thread or ranks on different worker threads
in the same process in SMP builds), using AMPI_SMP_RDMA_THRESHOLD_DEFAULT. Contiguous messages with
sizes larger than the threshold are sent via RDMA on communication layers that support this capability. You can
also set the environment variables AMPI_RDMA_THRESHOLD and AMPI_SMP_RDMA_THRESHOLD before running
a job to override the default specified at build time.

3.5 Building and Running AMPI Programs

3.5.1 Building AMPI Programs

AMPI provides a compiler called ampicc in your charm/bin/ directory. You can use this compiler to build your AMPI
program the same way as other compilers like cc. All the command line flags that you would use for other compilers
can be used with the AMPI compilers the same way. For example:

$ ampicc -c pgm.c -O3
$ ampif90 -c pgm.f90 -O0 -g
$ ampicc -o pgm pgm.o -lm -O3

To use Isomalloc for transparently migrating user heap data, link with -memory isomalloc. To use a Charm++ load
balancer, link a strategy or a suite of strategies in with -module <LB>. For example:

$ ampicc pgm.c -o pgm -O3 -memory isomalloc -module CommonLBs

3.5.2 Running AMPI programs

AMPI offers two options to execute an AMPI program, charmrun and ampirun.

Running with charmrun

The Charm++ distribution contains a script called charmrun that makes the job of running AMPI programs portable
and easier across all parallel machines supported by Charm++. charmrun is copied to a directory where an AMPI
program is built using ampicc. It takes a command line parameter specifying number of processors, and the name
of the program followed by AMPI options (such as number of ranks to create, and the stack size of every user-level
thread) and the program arguments. A typical invocation of an AMPI program pgm with charmrun is:

$ ./charmrun +p16 ./pgm +vp64
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Here, the AMPI program pgm is run on 16 physical processors with 64 total virtual ranks (which will be mapped 4
per processor initially).

To run with load balancing, specify a load balancing strategy. If Address Space Layout Randomization is enabled on
your target system, you may need to add the flag +isomalloc_sync when running with migration. You can also
specify the size of user-level thread’s stack using the +tcharm_stacksize option, which can be used to decrease
the size of the stack that must be migrated, as in the following example:

$ ./charmrun +p16 ./pgm +vp128 +tcharm_stacksize 32K +balancer RefineLB

Running with ampirun

For compliance with the MPI standard and simpler execution, AMPI ships with the ampirun script that is similar to
mpirun provided by other MPI runtimes. As with charmrun, ampirun is copied automatically to the program
directory when compiling an application with ampicc.

The basic usage of ampirun is as follows:

$ ./ampirun -np 16 --host h1,h2,h3,h4 ./pgm

This command will create 16 (non-virtualized) ranks and distribute them on the hosts h1-h4.

When using the -vr option, AMPI will create the number of ranks specified by the -np parameter as virtual ranks,
and will create only one process per host:

$ ./ampirun -np 16 --host h1,h2,h3,h4 -vr ./pgm

Other options (such as the load balancing strategy), can be specified in the same way as for charmrun:

$ ./ampirun -np 16 ./pgm +balancer RefineLB

Other options

Note that for AMPI programs compiled with gfortran, users may need to set the following environment variable to see
program output to stdout:

$ export GFORTRAN_UNBUFFERED_ALL=1
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Fortran90 Bindings for Charm++

Contents

• Fortran90 Bindings for Charm++

– Overview

– Writing the Charm++ Interface File

– Writing the F90 Program

– Compilation and Linking

– Running the Program

Charm++ is a parallel object language based on C++. The f90charm module is to provide Fortran90 programs a f90
interface to Charm++. Using the F90Charm interface, users can write Fortran90 programs in a fashion similar to
Charm++, which allows creation of parallel object arrays (Chare Arrays) and sending messages between them.

To interface Fortran90 to Charm++ and thus obtain a parallel version of your program you need to do the following
things:

1. Write a Charm Interface file (extension .ci)

2. Write your F90 program with f90charmmain() as main program;

3. Write implementations of Chare entry methods in the F90 program;

4. Compile and Link with Charm’s Fortran library

5. Run it!

4.1 Overview

Here we suppose you already know most concepts in Charm++ and have done some Charm++ programming. Unlike
in C++, we don’t have classes in Fortran90. Thus, a Chare in F90Charm is represented as a Fortran type structure.
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Here is an example:

! ## Just replace Hello throughout with your chare's name. ##
! ## and add your chare's personal data below where indicated ##
! ## Everything else remains the same ##
MODULE HelloMod

TYPE Hello
! ## your chare's data goes here, the integer below is an example ##
integer data
END TYPE

TYPE HelloPtr
TYPE (Hello), POINTER :: obj
integer*8 aid
END TYPE

END MODULE

You can think of this module as a Chare declaration. Type [Hello] defines arbitrary user program data and HelloPtr
defines the Chare pointer which the Fortran program will use later to communicate with the F90Charm runtime library.
The [aid] is the handle of the array returned by the F90Charm library, and the user shouldn’t change it.

In F90Charm as in Charm++, you need to write a .ci interface file so that the Charm translator will generate helper
functions. The syntax of .ci files is the same as in Charm++, however, for F90Charm, there are certain constraints.
First, you don’t need to declare the main chare as in Charm++. Second, F90Charm currently only supports up to 3D
Chare arrays, and you cannot define Chare, Group, and NodeGroup types. Third, there are no message declarations in
.ci files, all the entry functions must be declared in the parameter marshalling fashion of Charm++. Essentially, users
can declare in .ci files readonly variables and 1-3D chare arrays with parameter marshalled entry methods.

It is the programmer’s responsibility to write the implementation of Chare entry methods. The decl and def files
generated by Charm++’s translator define the interface functions programmer need to write.

For each Chare defined in the .ci file, the user must write these functions for F90Charm’s runtime:

SUBROUTINE <ChareName>_allocate(objPtr, aid, index)

You can think of this function as a constructor for each array element with array index [index]. For a 3D array, for
example, you can replace index in the example by a 3D array index [index1, index2, index3]. In this function the user
must allocate memory for the Chare’s user data and perform any initialization.

For each Chare entry method you have declared, you should write the corresponding Fortran90 subroutine for it:

SUBROUTINE <ChareName>_Entry_<EntryName>(charePtr, myIndex, data1, data2 ... )

Note that the first argument is the Chare pointer as declared previously, and the second argument is the array index
which will be passed from the Charm runtime. The rest of the parameters should be the same as declared in the .ci
file. For higher dimensional arrays, replace myIndex by myIndex1, myIndex2 for example.

On the caller side, the decl/def files generated by Charm++’s translator also provide the following functions for Chare
creation and remote method invocation. For each Chare declared in .ci files, these subroutines are generated for use in
Fortran90 code:

<ChareName>_CkNew(integer n, integer*8 aid)

This subroutine creates a chare array of size n. For higher dimensional array creation, specify one integer for each
dimension. For example, to create a 3D array:

<ChareName>_CkNew(integer dim1, integer dim2, integer dim3, integer*8 aid)

For each entry method, a corresponding Invoke method is provided (1D example shown here):
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<ChareName>_Invoke_<EntryName>(charePtr, myIndex, data1, data2 ... )

This subroutine will send a message to the array element with index myIndex. Similarly, for arrays with higher
dimensions, replace myIndex by a corresponding number of array indices. Broadcasts are supported as well:

<ChareName>_Broadcast_<EntryName>(charePtr, data1, data2 ... )

There are several others things you need to know.

First, as in Charm++, each .ci file will generate two header files: .decl.h and .def.h. However, in Fortran90 charm, you
are not able to include these C++ files in Fortran90 code. Thus, currently, it is the user’s task to write a short C++ file
including these two headers files. You should also provide definitions for readonly variables in this C++ file. It can be
as simple as this:

#include "hello.decl.h"
int chunkSize; // define readonly variables here
#include "hello.def.h"

In the future, this file could be generated automatically by the translator.

Second, you can still use readonly variables as in Charm++. However, since there are no global variables as in C++
in Fortran90, you have to access them explicitly via function call. Here are the two helper functions that the translator
generates:

Take the readonly variable chunkSize as an example:

Set_Chunksize(chunkSize);
Get_Chunksize(chunkSize);

These two functions can be used in user’s Fortran program to set and get readonly variables.

Third, for the user’s convenience, several Charm++ runtime library functions have their Fortran interface defined in
the F90Charm library. These currently include:

CkExit()
CkMyPe(integer mype)
CkNumPes(integer pes)
CkPrintf(...) // note, the format string must terminated with '$$'

Here is a summary of current constraints to write F90 binding Charm++ programs:

1. Only one- to three-dimensional chare arrays are supported.

2. readonly variables must be basic types, i.e. they have to be integers, floats, etc. scalar types or array types of
these basic scalar types.

3. Instead of program main, your f90 main program starts from subroutine f90charmmain.

These details are best illustrated with an example: a hello world program. When executed, an array of several parallel
chares is created, forming a ring. Each chare prints a string when it receives a message, and then sends a message
to the next chare in the ring. The Fortran f90charmmain subroutine begins execution, and the SayHi subroutine
performs each chare’s task.

4.2 Writing the Charm++ Interface File

In this step, you need to write a Charm++ interface file (.ci). In the file you can declare parallel chare arrays and their
entry methods. The syntax is the same as in Charm++.
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// ## Just replace Hello throughout with your chare's name. ##
// ## and add your chare's entry points below where indicated ##
// ## Everything else remains the same ##
mainmodule hello {

// declare readonly variables which once set is available to all
// Chares across processors.
readonly int chunkSize;

array [1D] Hello {
entry Hello();

// Note how your Fortran function takes the above defined
// message instead of a list of parameters.
entry void SayHi(int a, double b, int n, int arr[n]);

// Other entry points go here
entry [reductiontarget] void MyReduction(int result);

};
};

Note, you cannot declare a main chare in the interface file, and you also are not supposed to declare messages.
Furthermore, the entry functions must be declared with explicit parameters instead of using messages.

4.3 Writing the F90 Program

To start, you need to create a Fortran Module to represent a chare, e.g. {ChareName}Mod.

! ## Just replace Hello throughout with your chare's name. ##
! ## and add your chare's personal data below where indicated ##
! ## Everything else remains the same ##
MODULE HelloMod

TYPE Hello
! ## your chare's data goes here ##
integer data
END TYPE

TYPE HelloPtr
TYPE (Hello), POINTER :: obj
integer*8 aid
END TYPE

END MODULE

In the Fortran file you must write an allocate function for this chare with the name: Hello_allocate.

! ## Just replace Hello throughout with your chare's name. ##
! ## Everything else remains the same ##
SUBROUTINE Hello_allocate(objPtr, aid, index)
USE HelloMod
TYPE(HelloPtr) objPtr
integer*8 aid
integer index

allocate(objPtr%obj)
(continues on next page)
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objPtr%aid = aid;
! ## you can initialize the Chare user data here
objPtr%obj%data = index
END SUBROUTINE

Now that you have the chare and the chare constructor function, you can start to write entry functions as declared in
the .ci files.

! ## p1, p2, etc represent user parameters
! ## the "objPtr, myIndex" stuff is required in every Entry Point.
! ## CkExit() must be called by the chare to terminate.
SUBROUTINE Hello_Entry_SayHi(objPtr, myIndex, data, data2, len, s)
USE HelloMod
IMPLICIT NONE

TYPE(HelloPtr) objPtr
integer myIndex
integer data
double precision data2
integer len
integer s(len)

objPtr%obj%data = 20
if (myIndex < 4) then

call Hello_Invoke_SayHi(objPtr%aid, myIndex+1, 1, data2, len, s);
else

call CkExit()
endif

Preliminary support for reductions is available as well. Support is limited to reducing from a chare array to the first
member of the same array. Only basic built-in reducers are available. For an entry method named MyReduction,
tagged as a reduction target in the interface file, a contribution can be made as follows:

external Hello_ReductionTarget_MyReduction

call Hello_contribute(objPtr%aid, myIndex, sizeof(myIndex), myValue, CHARM_SUM_INT,
→˓Hello_ReductionTarget_MyReduction)

Now, you can write the main program to create the chare array and start the program by sending the first message.

SUBROUTINE f90charmmain()
USE HelloMod
integer i
double precision d
integer*8 aid
integer s(8)

call Hello_CkNew(5, aid)

call set_ChunkSize(10);

do i=1,8
s(i) = i;

enddo
d = 2.50
call Hello_Invoke_SayHi(aid, 0, 1, d, 4, s(3:6));

(continues on next page)
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END

This main program creates an chare array Hello of size 5 and send a message with an integer, an double and array of
integers to the array element of index 0.

4.4 Compilation and Linking

Lastly, you need to compile and link the Fortran program with the Charm runtime system as follows: (Let’s say you
have written hellof.f90, hello.ci and hello.C.)

$ charmc hello.ci -language f90charm

will create hello.decl.h and hello.def.h.

$ charmc -c hello.C

will compile hello.C with hello.decl.h and hello.def.h.

$ charmc -c hellof.f90

charmc will invoke the Fortran compiler:

$ charmc -o hello hello.o hellof.o -language f90charm

will link hellof.o and hello.o against Charm’s Fortran90 library to create a new executable program, hello.

A 2D array example can be found in charm/examples/charm++/f90charm/hello2D.

4.5 Running the Program

To run the program, type:

$ ./charmrun +p2 hello

which will run hello on two PEs.
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5.1 Introduction

This manual describes Charm++ and Converse libraries. This is a work in progress towards a standard library for
parallel programming on top of the Converse and Charm++ system. All of these libraries are included in the source
and binary distributions of Charm++/Converse.

5.2 liveViz Library

5.2.1 Introduction

If array elements compute a small piece of a large 2D image, then these image chunks can be combined across
processors to form one large image using the liveViz library. In other words, liveViz provides a way to reduce 2D-
image data, which combines small chunks of images deposited by chares into one large image.

This visualization library follows the client server model. The server, a parallel Charm++ program, does all image
assembly, and opens a network (CCS) socket which clients use to request and download images. The client is a small
Java program. A typical use of this is:

cd charm/examples/charm++/wave2d
make
./charmrun ./wave2d +p2 ++server ++server-port 1234
~/ccs_tools/bin/liveViz localhost 1234

Use git to obtain a copy of ccs_tools (prior to using liveViz) and build it by:

cd ccs_tools;
ant;

5.2.2 How to use liveViz with Charm++ program

The liveViz routines are in the Charm++ header “liveViz.h”.

A typical program provides a chare array with one entry method with the following prototype:

entry void functionName(liveVizRequestMsg *m);

This entry method is supposed to deposit its (array element’s) chunk of the image. This entry method has following
structure:

void myArray::functionName (liveVizRequestMsg *m)
{

// prepare image chunk

(continues on next page)
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...

liveVizDeposit (m, startX, startY, width, height, imageBuff, this);

// delete image buffer if it was dynamically allocated
}

Here, “width” and “height” are the size, in pixels, of this array element’s portion of the image, contributed in “im-
ageBuff” (described below). This will show up on the client’s assembled image at 0-based pixel (startX,startY). The
client’s display width and height are stored in m->req.wid and m->req.ht.

By default, liveViz combines image chunks by doing a saturating sum of overlapping pixel values. If you want liveViz
to combine image chunks by using max (i.e. for overlapping pixels in deposited image chunks, final image will have the
pixel with highest intensity or in other words largest value), you need to pass one more parameter (liveVizCombine_t)
to the “liveVizDeposit” function:

liveVizDeposit (m, startX, startY, width, height, imageBuff, this,
max_image_data);

You can also reduce floating-point image data using sum_float_image_data or max_float_image_data.

5.2.3 Format of deposit image

“imageBuff” is run of bytes representing a rectangular portion of the image. This buffer represents image using a
row-major format, so 0-based pixel (x,y) (x increasing to the right, y increasing downward in typical graphics fashion)
is stored at array offset “x+y*width”.

If the image is gray-scale (as determined by liveVizConfig, below), each pixel is represented by one byte. If the image
is color, each pixel is represented by 3 consecutive bytes representing red, green, and blue intensity.

If the image is floating-point, each pixel is represented by a single ‘float’, and after assembly colorized by calling the
user-provided routine below. This routine converts fully assembled ‘float’ pixels to RGB 3-byte pixels, and is called
only on processor 0 after each client request.

extern "C"
void liveVizFloatToRGB(liveVizRequest &req,

const float *floatSrc, unsigned char *destRgb,
int nPixels);

5.2.4 liveViz Initialization

liveViz library needs to be initialized before it can be used for visualization. For initialization follow the following
steps from your main chare:

1. Create your chare array (array proxy object ’a’) with the entry method ’functionName’ (described above). You
must create the chare array using a CkArrayOptions ’opts’ parameter. For instance,

CkArrayOptions opts(rows, cols);
array = CProxy_Type::ckNew(opts);

2. Create a CkCallback object (’c’), specifying ’functionName’ as the callback function. This callback will be
invoked whenever the client requests a new image.

3. Create a liveVizConfig object (’cfg’). LiveVizConfig takes a number of parameters, as described below.
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4. Call liveVizInit (cfg, a, c, opts).

The liveVizConfig parameters are:

• The first parameter is the pixel type to be reduced:

– “false” or liveVizConfig::pix_greyscale means a greyscale image (1 byte per pixel).

– “true” or liveVizConfig::pix_color means a color image (3 RGB bytes per pixel).

– liveVizConfig::pix_float means a floating-point color image (1 float per pixel, can only be used with
sum_float_image_data or max_float_image_data).

• The second parameter is the flag “serverPush”, which is passed to the client application. If set to true, the client
will repeatedly request for images. When set to false the client will only request for images when its window is
resized and needs to be updated.

• The third parameter is an optional 3D bounding box (type CkBbox3d). If present, this puts the client into a 3D
visualization mode.

A typical 2D, RGB, non-push call to liveVizConfig looks like this:

liveVizConfig cfg(true,false);

5.2.5 Compilation

A Charm++ program that uses liveViz must be linked with ’-module liveViz’.

Before compiling a liveViz program, the liveViz library may need to be compiled. To compile the liveViz library:

• go to . . . /charm/tmp/libs/ck-libs/liveViz

• make

5.2.6 Poll Mode

In some cases you may want a server to deposit images only when it is ready to do so. For this case the server
will not register a callback function that triggers image generation, but rather the server will deposit an image at its
convenience. For example a server may want to create a movie or series of images corresponding to some timesteps
in a simulation. The server will have a timestep loop in which an array computes some data for a timestep. At the
end of each iteration the server will deposit the image. The use of LiveViz’s Poll Mode supports this type of server
generation of images.

Poll Mode contains a few significant differences to the standard mode. First we describe the use of Poll Mode, and
then we will describe the differences. liveVizPoll must get control during the creation of your array, so you call
liveVizPollInit with no parameters.

liveVizPollInit();
CkArrayOptions opts(nChares);
arr = CProxy_lvServer::ckNew(opts);

To deposit an image, the server just calls liveVizPollDeposit. The server must take care not to generate too many
images, before a client requests them. Each server generated image is buffered until the client can get the image. The
buffered images will be stored in memory on processor 0.

liveVizPollDeposit(this,
startX,startY, // Location of local piece
localSizeX,localSizeY, // Dimensions of the piece I'm depositing

(continues on next page)
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globalSizeX,globalSizeY, // Dimensions of the entire image
img, // Image byte array
sum_image_data, // Desired image combiner
3 // Bytes/pixel

);

The last two parameters are optional. By default they are set to sum_image_data and 3 bytes per pixel.

A sample liveVizPoll server and client are available at:

.../charm/examples/charm++/lvServer

.../ccs_tools/bin/lvClient

This example server uses a PythonCCS command to cause an image to be generated by the server. The client also then
gets the image.

LiveViz provides multiple image combiner types. Any supported type can be used as a parameter to live-
VizPollDeposit. Valid combiners include: sum_float_image_data, max_float_image_data, sum_image_data, and
max_image_data.

The differences in Poll Mode may be apparent. There is no callback function which causes the server to generate and
deposit an image. Furthermore, a server may generate an image before or after a client has sent a request. The deposit
function, therefore is more complicated, as the server will specify information about the image that it is generating.
The client will no longer specify the desired size or other configuration options, since the server may generate the
image before the client request is available to the server. The liveVizPollInit call takes no parameters.

The server should call Deposit with the same global size and combiner type on all of the array elements which corre-
spond to the “this” parameter.

The latest version of liveVizPoll is not backwards compatable with older versions. The old version had some funda-
mental problems which would occur if a server generated an image before a client requested it. Thus the new version
buffers server generated images until requested by a client. Furthermore the client requests are also buffered if they
arrive before the server generates the images. Problems could also occur during migration with the old version.

5.2.7 Caveats

If you use the old version of “liveVizInit” method that only receives 3 parameters, you will find a known bug caused
by how “liveVizDeposit” internally uses a reduction to build the image.

Using that version of the “liveVizInit” method, its contribute call is handled as if it were the chare calling “liveVizDe-
posit” that actually contributed to the liveViz reduction. If there is any other reduction going on elsewhere in this chare,
some liveViz contribute calls might be issued before the corresponding non-liveViz contribute is reached. This would
imply that image data would be treated as if were part of the non-liveViz reduction, leading to unexpected behavior
potentially anywhere in the non-liveViz code.

5.3 Multi-phase Shared Arrays Library

The Multiphase Shared Arrays (MSA) library provides a specialized shared memory abstraction in Charm++ that
provides automatic memory management. Explicitly shared memory provides the convenience of shared memory
programming while exposing the performance issues to programmers and the “intelligent” ARTS.

Each MSA is accessed in one specific mode during each phase of execution: read-only mode, in which any thread
can read any element of the array; write-once mode, in which each element of the array is written to (possibly
multiple times) by at most one worker thread, and no reads are allowed and accumulate mode, in which any threads
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can add values to any array element, and no reads or writes are permitted. A sync call is used to denote the end of a
phase.

We permit multiple copies of a page of data on different processors and provide automatic fetching and caching of
remote data. For example, initially an array might be put in write-once mode while it is populated with data from
a file. This determines the cache behavior and the permitted operations on the array during this phase. write-once
means every thread can write to a different element of the array. The user is responsible for ensuring that two threads
do not write to the same element; the system helps by detecting violations. From the cache maintenance viewpoint,
each page of the data can be over-written on it’s owning processor without worrying about transferring ownership
or maintaining coherence. At the sync, the data is simply merged. Subsequently, the array may be read-only
for a while, thereafter data might be accumulate’d into it, followed by it returning to read-only mode. In the
accumulate phase, each local copy of the page on each processor could have its accumulations tracked indepen-
dently without maintaining page coherence, and the results combined at the end of the phase. The accumulate
operations also include set-theoretic union operations, i.e. appending items to a set of objects would also be a valid
accumulate operation. User-level or compiler-inserted explicit prefetch calls can be used to improve perfor-
mance.

A software engineering benefit that accrues from the explicitly shared memory programming paradigm is the (relative)
ease and simplicity of programming. No complex, buggy data-distribution and messaging calculations are required to
access data.

To use MSA in a Charm++ program:

• build Charm++ for your architecture, e.g. netlrts-linux.

• cd charm/netlrts-linux/tmp/libs/ck-libs/multiphaseSharedArrays/; make

• #include “msa/msa.h” in your header file.

• Compile using charmc with the option -module msa

The API is as follows: See the example programs in charm/pgms/charm++/multiphaseSharedArrays.

5.4 3D FFT Library

The previous 3D FFT library has been deprecated and replaced with this new 3D FFT library. The new 3D FFT library
source can be downloaded with following command: git clone https://charm.cs.illinois.edu/gerrit/libs/fft

5.4.1 Introduction and Motivation

The 3D Charm-FFT library provides an interface to do parallel 3D FFT computation in a scalable fashion.

The parallelization is achieved by splitting the 3D transform into three phases, using 2D decomposition. First, 1D FFTs
are computed over the pencils; then a ’transform’ is performed and 1D FFTs are done over second dimension; again
a ’transform’ is performed and FFTs are computed over the last dimension. So this approach takes three computation
phases and two ’transform’ phases.

This library allows users to create multiple instances of the library and perform concurrent FFTs using them. Each
of the FFT instances run in background as other parts of user code execute, and a callback is invoked when FFT is
complete.

5.4.2 Features

Charm-FFT library provides the following features:

218 Chapter 5. Converse and Charm++ Libraries



Charm++ Documentation

• 2D-decomposition: Users can define fine-grained 2D-decomposition that increases the amount of available par-
allelism and improves network utilization.

• Cutoff-based smaller grid: The data grid may have a cut off. Charm-FFT improves performance by avoiding
communication and computation of the data beyond the cutoff.

• User-defined mapping of library objects: The placement of objects that constitute the library instance can be
defined by the user based on the application’s other concurrent communication and placement of other objects.

• Overlap with other computational work: Given the callback-based interface and Charm++’s asynchrony, the
FFTs are performed in the background while other application work can be done in parallel.

5.4.3 Compilation and Execution

To install the FFT library, you will need to have charm++ installed in you system. You can follow the Charm++ manual
to do that. Then, ensure that FFTW3 is installed. FFTW3 can be downloaded from http://www.fftw.org. The Charm-
FFT library source can be downloaded with following command: git clone https://charm.cs.illinois.edu/gerrit/libs/fft

Inside of Charm-FFT directory, you will find Makefile.default. Copy this file to Makefile.common, change the copy’s
variable FFT3_HOME to point your FFTW3 installation and CHARM_DIR to point your Charm++ installation then
run make. To use Charm-FFT library in an application, add the line extern module fft_Charm; to it charm interface
(.ci) file and include fft_charm.h and fftw3.h in relevant C files. Finally to compile the program, pass -lfft_charm and
-lfftw3 as arguments to charmc.

5.4.4 Library Interface

To use Charm-FFT interface, the user must start by calling Charm_createFFT with following parameters.

Charm_createFFT(N_x, N_y, N_z, z_x, z_y, y_x, y_z, x_yz, cutoff, hmati, fft_type,
→˓CkCallback);

Where:
int N_x : X dimension of FFT calculation
int N_y : Y dimension of FFT calculation
int N_z : Z dimension of FFT calculation
int z_x : X dimension of Z pencil chare array
int z_y : Y dimension of Z pencil chare array
int y_x : X dimension of Y pencil chare array
int y_z : Z dimension of Y pencil chare array
int x_yz: A dimension of X pencil chare array
double cutoff: Cutoff of FFT grid
double *hmati: Hamiltonian matrix representing cutoff
FFT_TYPE: Type of FFT to perform. Either CC for complex-to-complex or RC for real-
→˓complex
CkCallback: A Charm++ entry method for callback upon the completion of library
→˓initialization

This creates necessary proxies (Z,Y,X etc) for performing FFT of size 𝑁𝑥 ×𝑁𝑦 *𝑁𝑧 using 2D chare arrays (pencils)
of size 𝑛𝑦×𝑛𝑥 (ZPencils), 𝑛𝑧×𝑛𝑥 (YPencils), and 𝑛𝑥×𝑛𝑦 (XPencils). When done, calls 𝑚𝑦𝐶𝑎𝑙𝑙𝑏𝑎𝑐𝑘 which should
receive 𝐶𝑃𝑟𝑜𝑥𝑦_𝑓𝑓𝑡2𝑑 𝑖𝑑 as a unique identifier for the newly created set of proxies.

An example of Charm-FFT initialization using Charm_createFFT:

// .ci
extern module fft_charm;

(continues on next page)
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mainchare Main {
entry Main(CkArgMsg *m);

}

group Driver {
entry Driver(FFT_Type fft_type);
entry void proxyCreated(idMsg *msg);
entry void fftDone();

}

// .C
Main::Main(CkArgMsg *m) {

...
/* Assume FFT of size N_x, N_y, N_z */
FFT_Type fft_type = CC

Charm_createFFT(N_x, N_y, N_z, z_x, z_y, y_x, y_z, x_yz, cutoff, hmati,
fft_type, CkCallback(CkIndex_Driver::proxyCreated(NULL),

→˓driverProxy));
}

Driver::proxyCreated(idMsg *msg) {
CProxy_fft2d fftProxy = msg->id;
delete msg;

}

In this example, an entry method Driver::proxyCreated will be called when an FFT instance has been created.

Using the newly received proxy, the user can identify whether a local PE has XPencils and/or ZPencils.

void Driver::proxyCreated(idMsg *msg) {
CProxy_fft2d fftProxy = msg->id;

delete msg;

bool hasX = Charm_isOutputPE(fftProxy),
hasZ = Charm_isInputPE(fftProxy);

...
}

Then, the grid’s dimensions on a PE can be acquired by using Charm_getOutputExtents and Charm_getInputExtents.

if (hasX) {
Charm_getOutputExtents(gridStart[MY_X], gridEnd[MY_X],

gridStart[MY_Y], gridEnd[MY_Y],
gridStart[MY_Z], gridEnd[MY_Z],
fftProxy);

}

if (hasZ) {
Charm_getInputExtents(gridStart[MY_X], gridEnd[MY_X],

gridStart[MY_Y], gridEnd[MY_Y],
gridStart[MY_Z], gridEnd[MY_Z],
fftProxy);

}

(continues on next page)
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for(int i = 0; i < 3; i++) {
gridLength[i] = gridEnd[i] - gridStart[i];

}

With the grid’s dimension, the user must allocate and set the input and output buffers. In most cases, this is simply the
product of the three dimensions, but for real-to-complex FFT calcaultion, FFTW-style storage for the input buffers is
used (as shown below).

dataSize = gridLength[MY_X] * gridLength[MY_Y] * gridLength[MY_Z];

if (hasX) {
dataOut = (complex*) fftw_malloc(dataSize * sizeof(complex));

Charm_setOutputMemory((void*) dataOut, fftProxy);
}

if (hasZ) {
if (fftType == RC) {
// FFTW style storage
dataSize = gridLength[MY_X] * gridLength[MY_Y] * (gridLength[MY_Z]/2 + 1);

}

dataIn = (complex*) fftw_malloc(dataSize * sizeof(complex));

Charm_setInputMemory((void*) dataIn, fftProxy);
}

Then, from PE0, start the forward or backward FFT, setting the entry method fftDone as the callback function that will
be called when the FFT operation is complete.

For forward FFT

if (CkMyPe() == 0) {
Charm_doForwardFFT(CkCallback(CkIndex_Driver::fftDone(), thisProxy), fftProxy);

}

For backward FFT

if (CkMyPe() == 0) {
Charm_doBackwardFFT(CkCallback(CkIndex_Driver::fftDone(), thisProxy), fftProxy);

}

The sample program to run a backward FFT can be found in Your_Charm_FFT_Path/tests/simple_tests

5.5 TRAM

5.5.1 Overview

Topological Routing and Aggregation Module is a library for optimization of many-to-many and all-to-all collective
communication patterns in Charm++ applications. The library performs topological routing and aggregation of net-
work communication in the context of a virtual grid topology comprising the Charm++ Processing Elements (PEs)
in the parallel run. The number of dimensions and their sizes within this topology are specified by the user when
initializing an instance of the library.
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TRAM is implemented as a Charm++ group, so an instance of TRAM has one object on every PE used in the run. We
use the term local instance to denote a member of the TRAM group on a particular PE.

Most collective communication patterns involve sending linear arrays of a single data type. In order to more efficiently
aggregate and process data, TRAM restricts the data sent using the library to a single data type specified by the user
through a template parameter when initializing an instance of the library. We use the term data item to denote a single
object of this datatype submitted to the library for sending. While the library is active (i.e. after initialization and
before termination), an arbitrary number of data items can be submitted to the library at each PE.

On systems with an underlying grid or torus network topology, it can be beneficial to configure the virtual topology for
TRAM to match the physical topology of the network. This can easily be accomplished using the Charm++ Topology
Manager.

The next two sections explain the routing and aggregation techniques used in the library.

Routing

Let the variables 𝑗 and 𝑘 denote PEs within an N-dimensional virtual topology of PEs and 𝑥 denote a dimension of the
grid. We represent the coordinates of 𝑗 and 𝑘 within the grid as (𝑗0, 𝑗1, . . . , 𝑗𝑁−1) and (𝑘0, 𝑘1, . . . , 𝑘𝑁−1). Also, let

𝑓(𝑥, 𝑗, 𝑘) =

{︃
0, if 𝑗𝑥 = 𝑘𝑥

1, if 𝑗𝑥 ̸= 𝑘𝑥

𝑗 and 𝑘 are peers if

𝑁−1∑︁
𝑑=0

𝑓(𝑑, 𝑗, 𝑘) = 1.

When using TRAM, PEs communicate directly only with their peers. Sending to a PE which is not a peer is han-
dled inside the library by routing the data through one or more intermediate destinations along the route to the final
destination.

Suppose a data item destined for PE 𝑘 is submitted to the library at PE 𝑗. If 𝑘 is a peer of 𝑗, the data item will
be sent directly to 𝑘, possibly along with other data items for which 𝑘 is the final or intermediate destination. If 𝑘
is not a peer of 𝑗, the data item will be sent to an intermediate destination 𝑚 along the route to 𝑘 whose index is
(𝑗0, 𝑗1, . . . , 𝑗𝑖−1, 𝑘𝑖, 𝑗𝑖+1, . . . , 𝑗𝑁−1), where 𝑖 is the greatest value of 𝑥 for which 𝑓(𝑥, 𝑗, 𝑘) = 1.

Note that in obtaining the coordinates of 𝑚 from 𝑗, exactly one of the coordinates of 𝑗 which differs from the co-
ordinates of 𝑘 is made to agree with 𝑘. It follows that m is a peer of 𝑗, and that using this routing process at 𝑚
and every subsequent intermediate destination along the route eventually leads to the data item being received at 𝑘.
Consequently, the number of messages 𝐹 (𝑗, 𝑘) that will carry the data item to the destination is

𝐹 (𝑗, 𝑘) =

𝑁−1∑︁
𝑑=0

𝑓(𝑑, 𝑗, 𝑘).

Aggregation

Communicating over the network of a parallel machine involves per message bandwidth and processing overhead.
TRAM amortizes this overhead by aggregating data items at the source and every intermediate destination along the
route to the final destination.

Every local instance of the TRAM group buffers the data items that have been submitted locally or received from
another PE for forwarding. Because only peers communicate directly in the virtual grid, it suffices to have a single
buffer per PE for every peer. Given a dimension d within the virtual topology, let 𝑠𝑑 denote its size, or the number of
distinct values a coordinate for dimension d can take. Consequently, each local instance allocates up to 𝑠𝑑 − 1 buffers
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per dimension, for a total of
∑︀𝑁−1

𝑑=0 (𝑠𝑑 − 1) buffers. Note that this is normally significantly less than the total number
of PEs specified by the virtual topology, which is equal to

∏︀𝑁−1
𝑑=0 𝑠𝑑.

Sending with TRAM is done by submitting a data item and a destination identifier, either PE or array index, using a
function call to the local instance. If the index belongs to a peer, the library places the data item in the buffer for the
peer’s PE. Otherwise, the library calculates the index of the intermediate destination using the previously described
algorithm, and places the data item in the buffer for the resulting PE, which by design is always a peer of the local PE.
Buffers are sent out immediately when they become full. When a message is received at an intermediate destination,
the data items comprising it are distributed into the appropriate buffers for subsequent sending. In the process, if a
data item is determined to have reached its final destination, it is immediately delivered.

The total buffering capacity specified by the user may be reached even when no single buffer is completely filled up.
In that case the buffer with the greatest number of buffered data items is sent.

5.5.2 Application User Interface

A typical usage scenario for TRAM involves a start-up phase followed by one or more communication steps. We next
describe the application user interface and details relevant to usage of the library, which normally follows these steps:

1. Start-up Creation of a TRAM group and set up of client arrays and groups

2. Initialization Calling an initialization function, which returns through a callback

3. Sending An arbitrary number of sends using the insertData function call on the local instance of the library

4. Receiving Processing received data items through the process function which serves as the delivery interface for
the library and must be defined by the user

5. Termination Termination of a communication step

6. Re-initialization After termination of a communication step, the library instance is not active. However, re-
initialization using step 2 leads to a new communication step.

Start-Up

Start-up is typically performed once in a program, often inside the main function of the mainchare, and involves
creating an aggregator instance. An instance of TRAM is restricted to sending data items of a single user-specified
type, which we denote by dtype, to a single user-specified chare array or group.

Sending to a Group

To use TRAM for sending to a group, a GroupMeshStreamer group should be created. Either of the following two
GroupMeshStreamer constructors can be used for that purpose:

template<class dtype, class ClientType, class RouterType>
GroupMeshStreamer<dtype, ClientType, RouterType>::
GroupMeshStreamer(int maxNumDataItemsBuffered,

int numDimensions,
int *dimensionSizes,
CkGroupID clientGID,
bool yieldFlag = 0,
double progressPeriodInMs = -1.0);

template<class dtype, class ClientType, class RouterType>
GroupMeshStreamer<dtype, ClientType, RouterType>::
GroupMeshStreamer(int numDimensions,

(continues on next page)
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int *dimensionSizes,
CkGroupID clientGID,
int bufferSize,
bool yieldFlag = 0,
double progressPeriodInMs = -1.0);

Sending to a Chare Array

For sending to a chare array, an ArrayMeshStreamer group should be created, which has a similar constructor interface
to GroupMeshStreamer:

template <class dtype, class itype, class ClientType,
class RouterType>

ArrayMeshStreamer<dtype, itype, ClientType, RouterType>::
ArrayMeshStreamer(int maxNumDataItemsBuffered,

int numDimensions,
int *dimensionSizes,
CkArrayID clientAID,
bool yieldFlag = 0,
double progressPeriodInMs = -1.0);

template <class dtype, class itype, class ClientType,
class RouterType>

ArrayMeshStreamer<dtype, itype, ClientType, RouterType>::
ArrayMeshStreamer(int numDimensions,

int *dimensionSizes,
CkArrayID clientAID,
int bufferSize,
bool yieldFlag = 0,
double progressPeriodInMs = -1.0);

Description of parameters:

• maxNumDataItemsBuffered: maximum number of items that the library is allowed to buffer per PE

• numDimensions: number of dimensions in grid of PEs

• dimensionSizes: array of size numDimensions containing the size of each dimension in the grid

• clientGID: the group ID for the client group

• clientAID: the array ID for the client array

• bufferSize: size of the buffer for each peer, in terms of number of data items

• yieldFlag: when true, calls CthYield() after every 1024 item insertions; setting it true requires all data items to
be submitted from threaded entry methods. Ensures that pending messages are sent out by the runtime system
when a large number of data items are submitted from a single entry method.

• progressPeriodInMs: number of milliseconds between periodic progress checks; relevant only when periodic
flushing is enabled (see Section 5.5.2).

Template parameters:

• dtype: data item type

• itype: index type of client chare array (use int for one-dimensional chare arrays and CkArrayIndex for all other
index types)
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• ClientType: type of client group or array

• RouterType: the routing protocol to be used. The choices are:
(1) SimpleMeshRouter - original grid aggregation scheme;
(2) NodeAwareMeshRouter - base node-aware aggregation scheme;
(3) AggressiveNodeAwareMeshRouter - advanced node-aware aggregation scheme;

Initialization

A TRAM instance needs to be initialized before every communication step. There are currently three main modes
of operation, depending on the type of termination used: staged completion, completion detection, or quiescence
detection. The modes of termination are described later. Here, we present the interface for initializing a communication
step for each of the three modes.

When using completion detection, each local instance of TRAM must be initialized using the following variant of the
overloaded init function:

template <class dtype, class RouterType>
void MeshStreamer<dtype, RouterType>::
init(int numContributors,

CkCallback startCb,
CkCallback endCb,
CProxy_CompletionDetector detector,
int prio,
bool usePeriodicFlushing);

Description of parameters:

• numContributors: number of done calls expected globally before termination of this communication step

• startCb: callback to be invoked by the library after initialization is complete

• endCb: callback to be invoked by the library after termination of this communication step

• detector: an inactive CompletionDetector object to be used by TRAM

• prio: Charm++ priority to be used for messages sent using TRAM in this communication step

• usePeriodicFlushing: specifies whether periodic flushing should be used for this communication step

When using staged completion, a completion detector object is not required as input, as the library performs its own
specialized form of termination. In this case, each local instance of TRAM must be initialized using a different
interface for the overloaded init function:

template <class dtype, class RouterType>
void MeshStreamer<dtype, RouterType>::
init(int numLocalContributors,

CkCallback startCb,
CkCallback endCb,
int prio,
bool usePeriodicFlushing);

Note that numLocalContributors denotes the local number of done calls expected, rather than the global as in the first
interface of init.

A common case is to have a single chare array perform all the sends in a communication step, with each element of
the array as a contributor. For this case there is a special version of init that takes as input the CkArrayID object for
the chare array that will perform the sends, precluding the need to manually determine the number of client chares per
PE:

5.5. TRAM 225



Charm++ Documentation

template <class dtype, class RouterType>
void MeshStreamer<dtype, RouterType>::
init(CkArrayID senderArrayID,

CkCallback startCb,
CkCallback endCb,
int prio,
bool usePeriodicFlushing);

The init interface for using quiescence detection is:

template <class dtype, class RouterType>
void MeshStreamer<dtype, RouterType>::init(CkCallback startCb,

int prio);

After initialization is finished, the system invokes startCb, signaling to the user that the library is ready to accept data
items for sending.

Sending

Sending with TRAM is done through calls to insertData and broadcast.

template <class dtype, class RouterType>
void MeshStreamer<dtype, RouterType>::
insertData(const dtype& dataItem,

int destinationPe);

template <class dtype, class itype, class ClientType,
class RouterType>

void ArrayMeshStreamer<dtype, itype, ClientType, RouterType>::
insertData(const dtype& dataItem,

itype arrayIndex);

template <class dtype, class RouterType>
void MeshStreamer<dtype, RouterType>::
broadcast(const dtype& dataItem);

• dataItem: reference to a data item to be sent

• destinationPe: index of destination PE

• arrayIndex: index of destination array element

Broadcasting has the effect of delivering the data item:

• once on every PE involved in the computation for GroupMeshStreamer

• once for every array element involved in the computation for ArrayMeshStreamer

Receiving

To receive data items sent using TRAM, the user must define the process function for each client group and array:

void process(const dtype &ran);

Each item is delivered by the library using a separate call to process on the destination PE. The call is made locally, so
process should not be an entry method.
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Termination

Flushing and termination mechanisms are used in TRAM to prevent deadlock due to indefinite buffering of items.
Flushing works by sending out all buffers in a local instance if no items have been submitted or received since the
last progress check. Meanwhile, termination detection is used to send out partially filled buffers at the end of a
communication step after it has been determined that no additional items will be submitted.

Currently, three means of termination are supported: staged completion, completion detection, and quiescence detec-
tion. Periodic flushing is a secondary mechanism which can be enabled or disabled when initiating one of the primary
mechanisms.

Termination typically requires the user to issue a number of calls to the done function:

template <class dtype, class RouterType>
void MeshStreamer<dtype, RouterType>::
done(int numContributorsFinished = 1);

When using completion detection, the number of done calls that are expected globally by the TRAM instance is speci-
fied using the numContributors parameter to init. Safe termination requires that no calls to insertData or broadcast are
made after the last call to done is performed globally. Because order of execution is uncertain in parallel applications,
some care is required to ensure the above condition is met. A simple way to terminate safely is to set numContributors
equal to the number of senders, and call done once for each sender that is done submitting items.

In contrast to using completion detection, using staged completion involves setting the local number of expected calls
to done using the numLocalContributors parameter in the init function. To ensure safe termination, no insertData or
broadcast calls should be made on any PE where done has been called the expected number of times.

Another version of init for staged completion, which takes a CkArrayID object as an argument, provides a simplified
interface in the common case when a single chare array performs all the sends within a communication step, with each
of its elements as a contributor. For this version of init, TRAM determines the appropriate number of local contributors
automatically. It also correctly handles the case of PEs without any contributors by immediately marking those PEs as
having finished the communication step. As such, this version of init should be preferred by the user when applicable.

Staged completion is not supported when array location data is not guaranteed to be correct, as this can potentially
violate the termination conditions used to guarantee successful termination. In order to guarantee correct location data
in applications that use load balancing, Charm++ must be compiled with -DCMKGLOBALLOCATIONUPDATE,
which has the effect of performing a global broadcast of location data for chare array elements that migrate during
load balancing. Unfortunately, this operation is expensive when migrating large numbers of elements. As an alter-
native, completion detection and quiescence detection modes will work properly without the global location update
mechanism, and even in the case of anytime migration.

When using quiescence detection, no end callback is used, and no done calls are required. Instead, termination of
a communication step is achieved using the quiescence detection framework in Charm++, which supports passing a
callback as parameter. TRAM is set up such that quiescence will not be detected until all items sent in the current
communication step have been delivered to their final destinations.

The choice of which termination mechanism to use is left to the user. Using completion detection mode is more
convenient when the global number of contributors is known, while staged completion is easier to use if the local
number of contributors can be determined with ease, or if sending is done from the elements of a chare array. If either
mode can be used with ease, staged completion should be preferred. Unlike the other mechanisms, staged completion
does not involve persistent background communication to determine when the global number of expected done calls
is reached. Staged completion is also generally faster at reaching termination due to not being dependent on periodic
progress checks. Unlike completion detection, staged completion does incur a small bandwidth overhead (4 bytes) for
every TRAM message, but in practice this is more than offset by the persistent traffic incurred by completion detection.

Periodic flushing is an auxiliary mechanism which checks at a regular interval whether any sends have taken place
since the last time the check was performed. If not, the mechanism sends out all the data items buffered per local
instance of the library. The period is specified by the user in the TRAM constructor. A typical use case for periodic
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flushing is when the submission of a data item B to TRAM happens as a result of the delivery of another data item
A sent using the same TRAM instance. If A is buffered inside the library and insufficient data items are submitted to
cause the buffer holding A to be sent out, a deadlock could arise. With the periodic flushing mechanism, the buffer
holding A is guaranteed to be sent out eventually, and deadlock is prevented. Periodic flushing is required when using
the completion detection or quiescence detection termination modes.

Re-initialization

A TRAM instance that has terminated cannot be used for sending more data items until it has been re-initialized.
Re-initialization is achieved by calling init, which prepares the instance of the library for a new communication step.
Re-initialization is useful for iterative applications, where it is often convenient to have a single communication step
per iteration of the application.

Charm++ Registration of Templated Classes

Due to the use of templates in TRAM, the library template instances must be explicitly registered with the Charm++
runtime by the user of the library. This must be done in the .ci file for the application, and typically involves three
steps.

For GroupMeshStreamer template instances, registration is done as follows:

• Registration of the message type:

message MeshStreamerMessage<dtype>;

• Registration of the base aggregator class

group MeshStreamer<dtype, RouterType>;

• Registration of the derived aggregator class

group GroupMeshStreamer<dtype, ClientType, RouterType>;

For ArrayMeshStreamer template instances, registration is done as follows:

• Registration of the message type:

message MeshStreamerMessage<ArrayDataItem<dtype, itype> >;

• Registration of the base aggregator class

group MeshStreamer<ArrayDataItem<dtype, itype>,
RouterType>;

• Registration of the derived aggregator class

group ArrayMeshStreamer<dtype, itype, ClientType,
RouterType>;

5.5.3 Example

For example code showing how to use TRAM, see examples/charm++/TRAM and benchmarks/charm++/
streamingAllToAll in the Charm++ repository.
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5.6 GPU Manager Library

5.6.1 Overview

GPU Manager is a task offload and management library for efficient use of CUDA-enabled GPUs in Charm++ appli-
cations. CUDA code can be integrated in Charm++ just like any C program, but the resulting performance is likely
to be far from ideal. This is because overdecomposition, a core concept of Charm++, creates fine-grained objects and
tasks which causes problems on the GPU.

GPUs are throughput-oriented devices with peak computational capabilities that greatly surpass equivalent-generation
CPUs but with limited control logic. This currently constrains them to be used as accelerator devices controlled by
code on the CPU. Traditionally, programmers have had to either (a) halt the execution of work on the CPU whenever
issuing GPU work to simplify synchronization or (b) issue GPU work asynchronously and carefully manage and
synchronize concurrent GPU work in order to ensure progress and good performance. The latter option, which is
practically a requirement in Charm++ to preserve asynchrony, becomes significantly more difficult with numerous
concurrent objects that issue kernels and data transfers to the GPU.

The Charm++ programmer is strongly recommended to use CUDA streams to mitigate this problem, by assigning
separate streams to chares. This allows operations in different streams to execute concurrently. It should be noted that
concurrent data transfers are limited by the number of DMA engines, and current GPUs have one per direction of the
transfer (host-to-device, device-to-host). The concurrent kernels feature of CUDA allows multiple kernels to execute
simultaneously on the device, as long as resources are available.

An important factor of performance with using GPUs in Charm++ is that the CUDA API calls invoked by chares
to offload work should be non-blocking. The chare that just offloaded work to the GPU should yield the PE so that
other chares waiting to be executed can do so. Unfortunately, many CUDA API calls used to wait for completion
of GPU work, such as cudaStreamSynchronize and cudaDeviceSynchronize, are blocking. Since the
PEs in Charm++ are implemented as persistent kernel-level threads mapped to each CPU core, this means other
chares cannot run until the GPU work completes and the blocked chare finishes executing. To resolve this issue,
GPU Manager provides Hybrid API (HAPI) to the Charm++ user, which includes new functions to implement the
non-blocking features and a set of wrappers to the CUDA runtime API functions. The non-blocking API allows the
user to specify a Charm++ callback upon offload which will be invoked when the operations in the CUDA stream are
complete.

5.6.2 Building GPU Manager

GPU Manager is not included by default when building Charm++. In order to use GPU Manager, the user must build
Charm++ using the cuda option, e.g.

$ ./build charm++ netlrts-linux-x86_64 cuda -j8

Building GPU Manager requires an installation of the CUDA toolkit on the system.

5.6.3 Using GPU Manager

As explained in the Overview section, use of CUDA streams is strongly recommended. This allows kernels offloaded
by chares to execute simultaneously on the GPU, which boosts performance if the kernels are small enough for the
GPU to be able to allocate resources.

In a typical Charm++ application using CUDA, .C and .ci files would contain the Charm++ code, whereas a .cu
file would include the definition of CUDA kernels and a function that serves as an entry point from the Charm++
application to use GPU capabilities. CUDA/HAPI calls for data transfers or kernel invocations would be placed
inside this function, although they could also be put in a .C file provided that the right header files are included
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(<cuda_runtime.h> or "hapi.h"). The user should make sure that the CUDA kernel definitions are com-
piled by nvcc, however.

After the necessary data transfers and kernel invocations, hapiAddCallback would be placed where typically
cudaStreamSynchronize or cudaDeviceSynchronize would go. This informs the runtime that a chare
has offloaded work to the GPU, allowing the provided Charm++ callback to be invoked once it is complete. The
non-blocking API has the following prototype:

void hapiAddCallback(cudaStream_t stream, CkCallback* callback);

Other HAPI calls:

void hapiCreateStreams();
cudaStream_t hapiGetStream();

cudaError_t hapiMalloc(void** devPtr, size_t size);
cudaError_t hapiFree(void* devPtr);
cudaError_t hapiMallocHost(void** ptr, size_t size);
cudaError_t hapiFreeHost(void* ptr);

void* hapiPoolMalloc(int size);
void hapiPoolFree(void* ptr);

cudaError_t hapiMemcpyAsync(void* dst, const void* src, size_t count,
cudaMemcpyKind kind, cudaStream_t stream = 0);

hapiCheck(code);

hapiCreateStreams creates as many streams as the maximum number of concurrent kernels supported by
the GPU device. hapiGetStream hands out a stream created by the runtime in a round-robin fashion. The
hapiMalloc and hapiFree functions are wrappers to the corresponding CUDA API calls, and hapiPool func-
tions provides memory pool functionalities which are used to obtain/free device memory without interrupting the
GPU. hapiCheck is used to check if the input code block executes without errors. The given code should return
cudaError_t for it to work.

Example Charm++ applications using CUDA can be found under examples/charm++/cuda. Codes under #ifdef
USE_WR use the hapiWorkRequest scheme, which is now deprecated.
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* Can Charm++ parallelize my serial program automatically?

* I can already write parallel applications in MPI. Why should I use Charm++?

* Will Charm++ run on my machine?
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* What is the future of Charm++?
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* Should I use the GIT version of Charm++?
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* How do I compile AMPI?

* Can I remove part of charm tree after compilation to free disk space?

* If the interactive script fails, how do I compile Charm++?

* How do I specify the processors I want to use?
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* How do I use ssh instead of the deprecated rsh?

* Can I use the serial library X from a Charm program?

* How do I get the command-line switches available for a specific program?

* What should I do if my program hangs while gathering CPU topology information at startup?

– Basic Charm++ Programming

* What’s the basic programming model for Charm++?

* What is an “entry method”?

* When I invoke a remote method, do I block until that method returns?

* Why does Charm++ use asynchronous methods?

* Can I make a method synchronous? Can I then return a value?

* What is a threaded entry method? How does one make an entry method threaded?

* If I don’t want to use threads, how can an asynchronous method return a value?

* Isn’t there a better way to send data back to whoever called me?

* Why should I prefer the callback way to return data rather than using [sync] entry methods?

* How does the initialization in Charm work?

* Does Charm++ support C and Fortran?

* What is a proxy?

* What are the different ways one can create proxies?

* What is wrong if I do A *ap = new CProxy_A(handle)?

* Why is the def.h usually included at the end? Is it necessary or can I just include it at the beginning?

* How can I use a global variable across different processors?

* Can I have a class static read-only variable?

* How do I measure the time taken by a program or operation?

* What do CmiAssert and CkAssert do?

* Can I know how many messages are being sent to a chare?

* What is “quiescence”? How does it work?

* Should I use quiescence detection?

– Charm++ Arrays

* How do I know which processor a chare array element is running on?

* Should I use Charm++ Arrays in my program?

* Is there a property similar to thisIndex containing the chare array’s dimensions or total number
of elements?

* How many array elements should I have per processor?

* What does the term reduction refer to?

* Can I do multiple reductions on an array?

* Does Charm++ do automatic load balancing without the user asking for it?
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* What is the migration constructor and why do I need it?

* What happens to the old copy of an array element after it migrates?

* Is it possible to turn migratability on and off for an individual array element?

* Is it possible to insist that a particular array element gets migrated at the next AtSync()?

* When not using AtSync for LB, when does the LB start up? Where is the code that periodically
checks if load balancing can be done?

* Should I use AtSync explicitly, or leave it to the system?

– Charm++ Groups and Nodegroups

* What are groups and nodegroups used for?

* Should I use groups?

* Is it safe to use a local pointer to a group, such as from ckLocalBranch?

* What are migratable groups?

* Should I use nodegroups?

* What’s the difference between groups and nodegroups?

* Do nodegroup entry methods execute on one fixed processor of the node, or on the next available
processor?

* Are nodegroups single-threaded?

* Do we have to worry about two entry methods in an object executing simultaneously?

– Charm++ Messages

* What are messages?

* Should I use messages?

* What is the best way to pass pointers in a message?

* Can I allocate a message on the stack?

* Do I need to delete messages that are sent to me?

* Do I need to delete messages that I allocate and send?

* What can a variable-length message contain?

* Do I need to delete the arrays in variable-length messages?

* What are priorities?

* Can messages have multiple inheritance in Charm++?

– PUP Framework

* How does one write a pup for a dynamically allocated 2-dimensional array?

* When using automatic allocation via PUP::able, what do these calls mean?
PUPable_def(parent); PUPable_def(child);

* What is the difference between p|data; and p(data);? Which one should I use?

– Other PPL Tools, Libraries and Applications

* What is Structured Dagger?
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* What is Adaptive MPI?

* What is Charisma?

* Does Projections use wall time or CPU time?

– Debugging

* How can I debug Charm++ programs?

* How do I use charmdebug?

* Can I use distributed debuggers like Allinea DDT and RogueWave TotalView?

* How do I use gdb with Charm++ programs?

* When I try to use the ++debug option I get: remote host not responding...
connection closed

* My debugging printouts seem to be out of order. How can I prevent this?

* Is there a way to flush the print buffers in Charm++ (like fflush())?

* My Charm++ program is causing a seg fault, and the debugger shows that it’s crashing inside
malloc or printf or fopen!

* Everything works fine on one processor, but when I run on multiple processors it crashes!

* I get the error: “Group ID is zero-- invalid!”. What does this mean?

* I get the error: Null-Method Called. Program may have Unregistered
Module!! What does this mean?

* When I run my program, it gives this error:

* When I run my program, sometimes I get a Hangup, and sometimes Bus Error. What do these
messages indicate?

– Versions and Ports

* Has Charm++ been ported to use MPI underneath? What about OpenMP?

* How complicated is porting Charm++/Converse?

* If the source is available how feasible would it be for us to do ports ourselves?

* To what platform has Charm++/Converse been ported to?

* Is it hard to port Charm++ programs to different machines?

* How should I approach portability of C language code?

* How should I approach portability and performance of C++ language code?

* Why do I get a link error when mixing Fortran and C/C++?

* How does parameter passing work between Fortran and C?

* How do I use Charm++ on Xeon Phi?

* How do I use Charm++ on GPUs?

– Converse Programming

* What is Converse? Should I use it?

* How much does getting a random number generator “right” matter?

* What should I use to get a proper random number generator?
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– Charm++ and Converse Internals

* How is the Charm++ source code organized and built?

* I just changed the Charm++ core. How do I recompile Charm++?

* Do we have a #define charm_version somewhere? If not, which version number should I use for
the current version?

For answers to questions not on this list, please contact us at charm@cs.illinois.edu.

6.1 Big Questions

6.1.1 What is Charm++?

Charm++ is a runtime library to let C++ objects communicate with each other efficiently. The programming model is
thus an asynchronous message driven paradigm, like Java RMI, or RPC; but it is targeted towards tightly coupled, high-
performance parallel machines. Unlike MPI’s “single program, multiple data” (SPMD) programming and execution
model, Charm++ programs do not proceed in lockstep. The flow of control is determined by the order in which remote
method invocations occur. This can be controlled by the user through Structure Control Flow using Structured Dagger,
or Charisma, or compiler supported higher level languages Charj.

Charm++ has demonstrated scalability up to hundreds of thousands of processors, and provides extremely advanced
load balancing and object migration facilities.

6.1.2 Can Charm++ parallelize my serial program automatically?

No.

Charm++ is used to write explicitly parallel programs-we don’t have our own compiler, so we don’t do automatic
parallelization. We’ve found automatic parallelization useful only for a small range of very regular numerical applica-
tions.

However, you should not have to throw away your serial code; normally only a small fraction of a large program
needs to be changed to enable parallel execution. In particular, Charm++’s support for object-oriented programming
and high-level abstractions such as Charm++ Arrays make it simpler and more expressive than many other parallel
languages. So you will have to write some new code, but not as much as you might think. This is particularly true
when using one of the Charm++ frameworks.

6.1.3 I can already write parallel applications in MPI. Why should I use Charm++?

Charm++ provides several extremely sophisticated features, such as application-independent object migration, fault
tolerance, power awareness, and automatic overlap of communication with computation, that are very difficult to
provide in MPI. If you have a working MPI code but have scalability problems because of dynamic behavior, load
imbalance, or communication costs, Charm++ might dramatically improve your performance. You can even run your
MPI code on Charm++ unchanged using AMPI.

6.1.4 Will Charm++ run on my machine?

Yes.
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Charm++ supports both shared-memory and distributed-memory machines, SMPs and non-SMPs. In particular, we
support serial machines, Windows machines, Apple machines, ARM machines, clusters connected via Ethernet, or
Infiniband, IBM Power series and BlueGene/Q, Cray XC/XE/XK series, and any machine that supports MPI. We
normally do our development on Linux workstations, and our testing on large parallel machines. Programs written
using Charm++ will run on any supported machine.

6.1.5 Does anybody actually use Charm++?

Several large applications use Charm++.

• The large, production-quality molecular dynamics application NAMD.

• The cosmological simulator ChaNGa.

• The atomistic simulation framework OpenAtom.

• We have significant collaborations with groups in Materials Science, Chemistry, Astrophysics, Network Simu-
lation, Operation Research, Contagion Effects, in Illinois, New York, California, Washington, and Virginia. See
also Applications for a more complete list.

6.1.6 Who created Charm++?

Prof. L.V. Kale, of the Computer Science Department of the University of Illinois at Urbana-Champaign, and his
research group, the Parallel Programming Lab. Nearly a hundred people have contributed something to the project
over the course of approximately 20 years; a partial list of contributors appears on the people page.

6.1.7 What is the future of Charm++?

Our research group of approximately twenty people are actively engaged in maintaining and extending Charm++; and
in particular the Charm++ frameworks. Several other groups are dependent on Charm++, so we expect to continue
improving Charm++ indefinitely.

6.1.8 How is Charm++ Licensed?

Charm++ is open-source and free for research, educational, and academic use. The University of Illinois retains
the copyright to the software, and requires a license for any commercial redistribution of our software. The actual,
legal license is included with Charm++ (in charm/LICENSE). Contact Charmworks, Inc. for commercial support and
licensing of Charm++ and AMPI.

6.1.9 I have a suggestion/feature request/bug report. Who should I send it to?

Our mailing list is charm@cs.illinois.edu. We’re always glad to get feedback on our software.

6.2 Installation and Usage

6.2.1 How do I get Charm++?

See our download page.
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6.2.2 Should I use the GIT version of Charm++?

The developers of Charm++ routinely use the latest GIT versions, and most of the time this is the best case. Occasion-
ally something breaks, but the GIT version will likely contain bug fixes not found in the releases.

6.2.3 How do I compile Charm++?

Run the interactive build script ./build with no extra arguments If this fails, email charm@cs.illinois.edu with the
problem. Include the build line used (this is saved automatically in smart-build.log)

If you have a very unusual machine configuration, you will have to run ./build -help to list all possible build
options. You will then choose the closest architecture, and then you may have to modify the associated conf-mach.sh
and conv-mach.h files in src/arch to point to your desired compilers and options. If you develop a significantly different
platform, send the modified files to charm@cs.illinois.edu so we can include it in the distribution.

6.2.4 How do I compile AMPI?

Run the build script ./build and choose the option for building “Charm++ and AMPI,” or just replace “charm++”
in your full build command with “AMPI”, as in ./build AMPI netlrts-linux-x86_64.

6.2.5 Can I remove part of charm tree after compilation to free disk space?

Yes. Keep src, bin, lib, lib_so, include, tmp. You will not need tests, examples, doc, contrib for normal usage once
you have verified that your build is functional.

6.2.6 If the interactive script fails, how do I compile Charm++?

See the Charm manual for Installing Charm++.

6.2.7 How do I specify the processors I want to use?

On machines where MPI has already been wired into the job system, use the -mpiexec flag and -np arguments.

For the netlrts- versions, you need to write a nodelist file which lists all the machine hostnames available for parallel
runs.

group main
host foo1
host foo2 ++cpus 4
host foo3.bar.edu

For the MPI version, you need to set up an MPI configuration for available machines as for normal MPI applications.

You can specify the exact cores to use on each node using the +pemap option. When running in SMP or multicore
mode, this applies to the worker threads only, not communication threads. To specify the placement of communication
threads, use the +commap option. For example, to place 8 threads on 2 nodes (16 threads total) with the comm thread
on core 0 and the worker threads on cores 1 - 7, you would use the following command:

./charmrun +p14 ./pgm ++ppn 7 +commap 0 +pemap 1-7

See SMP Options of the Charm++ manual for more information.
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6.2.8 How do I use ssh instead of the deprecated rsh?

You need to set up your .ssh/authorized_keys file correctly. Setup no-password logins using ssh by putting
the correct host key (ssh-keygen) in the file .ssh/authorized_keys.

Finally, in the .nodelist file, you specify the shell to use for remote execution of a program using the keyword
++shell.

group main ++shell ssh
host foo1
host foo2
host foo3

6.2.9 Can I use the serial library X from a Charm program?

Yes. Some of the known working serial libraries include:

• The Tcl/Tk interpreter (in NAMD)

• The Python interpreter (in Cosmo prototype)

• OpenGL graphics (in graphics demos)

• Metis mesh partitioning (included with charm)

• ATLAS, BLAS, LAPACK, ESSL, FFTW, MASSV, ACML, MKL, BOOST

In general, any serial library should work fine with Charm++.

6.2.10 How do I get the command-line switches available for a specific program?

Try

./charmrun ./pgm --help

to see a list of parameters at the command line. The charmrun arguments are documented in Launching Programs with
charmrun. The arguments for the installed libraries are listed in the library manuals.

6.2.11 What should I do if my program hangs while gathering CPU topology infor-
mation at startup?

This is an indication that your cluster’s DNS server is not responding properly. Ideally, the DNS resolver configured
to serve your cluster nodes should be able to rapidly map their hostnames to their IP addresses. As an immediate
workaround, you can run your program with the +skip_cpu_topology flag, at the possible cost of reduced
performance. Another workaround is installing and running nscd, the “name service caching daemon”, on your
cluster nodes; this may add some noise on your systems and hence reduce performance. A third workaround is adding
the addresses and names of all cluster nodes in each node’s /etc/hosts file; this poses maintainability problems
for ongoing system administration.
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6.3 Basic Charm++ Programming

6.3.1 What’s the basic programming model for Charm++?

Parallel objects using “Asynchronous Remote Method Invocation”:

Asynchronous in that you do not block until the method returns-the caller continues immediately.

Remote in that the two objects may be separated by a network.

Method Invocation in that it’s just C++ classes calling each other’s methods.

6.3.2 What is an “entry method”?

Entry methods are all the methods of a chare where messages can be sent by other chares. They are declared in the .ci
files, and they must be defined as public methods of the C++ object representing the chare.

6.3.3 When I invoke a remote method, do I block until that method returns?

No! This is one of the biggest differences between Charm++ and most other “remote procedure call” systems like,
Java RMI, or RPC. “Invoke an asynchronous method” and “send a message” have exactly the same semantics and
implementation. Since the invoking method does not wait for the remote method to terminate, it normally cannot
receive any return value. (see later for a way to return values)

6.3.4 Why does Charm++ use asynchronous methods?

Asynchronous method invocation is more efficient because it can be implemented as a single message send. Unlike
with synchronous methods, thread blocking and unblocking and a return message are not needed.

Another big advantage of asynchronous methods is that it’s easy to make things run in parallel. If I execute:

a->foo();
b->bar();

Now foo and bar can run at the same time; there’s no reason bar has to wait for foo.

6.3.5 Can I make a method synchronous? Can I then return a value?

Yes. If you want synchronous methods, so the caller will block, use the [sync] keyword before the method in the
.ci file. This requires the sender to be a threaded entry method, as it will be suspended until the callee finishes. Sync
entry methods are allowed to return values to the caller.

6.3.6 What is a threaded entry method? How does one make an entry method
threaded?

A threaded entry method is an entry method for a chare that executes in a separate user-level thread. It is useful when
the entry method wants to suspend itself (for example, to wait for more data). Note that threaded entry methods have
nothing to do with kernel-level threads or pthreads; they run in user-level threads that are scheduled by Charm++ itself.

In order to make an entry method threaded, one should add the keyword threaded withing square brackets after the
entry keyword in the interface file:
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module M {
chare X {
entry [threaded] E1(void);

};
};

6.3.7 If I don’t want to use threads, how can an asynchronous method return a
value?

The usual way to get data back to your caller is via another invocation in the opposite direction:

void A::start(void) {
b->giveMeSomeData();

}
void B::giveMeSomeData(void) {
a->hereIsTheData(data);

}
void A::hereIsTheData(myclass_t data) {

...use data somehow...
}

This is contorted, but it exactly matches what the machine has to do. The difficulty of accessing remote data encourages
programmers to use local data, bundle outgoing requests, and develop higher-level abstractions, which leads to good
performance and good code.

6.3.8 Isn’t there a better way to send data back to whoever called me?

The above example is very non-modular, because b has to know that a called it, and what method to call a back on.
For this kind of request/response code, you can abstract away the “where to return the data” with a CkCallback object:

void A::start(void) {
b->giveMeSomeData(CkCallback(CkIndex_A::hereIsTheData,thisProxy));

}
void B::giveMeSomeData(CkCallback returnDataHere) {

returnDataHere.send(data);
}
void A::hereIsTheData(myclass_t data) {

...use data somehow...
}

Now b can be called from several different places in a, or from several different modules.

6.3.9 Why should I prefer the callback way to return data rather than using [sync]
entry methods?

There are a few reasons for that:

• The caller needs to be threaded, which implies some overhead in creating the thread. Moreover the threaded
entry method will suspend waiting for the data, preventing any code after the remote method invocation to
proceed in parallel.

• Threaded entry methods are still methods of an object. While they are suspended other entry methods for the
same object (or even the same threaded entry method) can be called. This allows for potential problems if the
suspending method does leave some objects in an inconsistent state.
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• Finally, and probably most important, [sync] entry methods can only be used to return a value that can be
computed by a single chare. When more flexibility is needed, such in cases where the resulting value needs to
the contribution of multiple objects, the callback methodology is the only one available. The caller could for
example send a broadcast to a chare array, which will use a reduction to collect back the results after they have
been computed.

6.3.10 How does the initialization in Charm work?

Each processor executes the following operations strictly in order:

1. All methods registered as initnode;

2. All methods registered as initproc;

3. On processor zero, all mainchares constructor method is invoked (the ones taking a CkArgMsg*);

4. The read-onlies are propagated from processor zero to all other processors;

5. The nodegroups are created;

6. The groups are created. During this phase, for all the chare arrays have been created with a block allocation, the
corresponding array elements are instantiated;

7. Initialization terminated and all messages are available for processing, including the messages responsible for
the instantiation of array elements manually inserted.

This implies that you can assume that the previous steps has completely finished before the next one starts, and any
side effect from all the previous steps are committed (and can therefore be used).

Inside a single step there is no order guarantee. This implies that, for example, two groups allocated from mainchare
can be instantiated in any order. The only exception to this is processor zero, where chare objects are instantiated
immediately when allocated in the mainchare, i.e if two groups are allocated, their order is fixed by the allocation
order in the mainchare constructing them. Again, this is only valid for processor zero, and in no other processor this
assumption should be made.

To notice that if array elements are allocated in block (by specifying the number of elements at the end of the ckNew
function), they are all instantiated before normal execution is resumed; if manual insertion is used, each element can
be constructed at any time on its home processor, and not necessarily before other regular communication messages
have been delivered to other chares (including other array elements part of the same array).

6.3.11 Does Charm++ support C and Fortran?

C and Fortran routines can be called from Charm++ using the usual API conventions for accessing them from C++.
AMPI supports Fortran directly, but direct use of Charm++ semantics from Fortran is at an immature stage, contact us
if you are interested in pursuing this further.

6.3.12 What is a proxy?

A proxy is a local C++ class that represents a remote C++ class. When you invoke a method on a proxy, it sends the
request across the network to the real object it represents. In Charm++, all communication is done using proxies.

A proxy class for each of your classes is generated based on the methods you list in the .ci file.
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6.3.13 What are the different ways one can create proxies?

Proxies can be:

• Created using ckNew. This is the only method that actually creates a new parallel object.
“CProxy_A::ckNew(. . . )” returns a proxy.

• Copied from an existing proxy. This happens when you assign two proxies or send a proxy in a message.

• Created from a “handle”. This happens when you say “CProxy_A p=thishandle;”

• Created uninitialized. This is the default when you say “CProxy_A p;”. You’ll get a runtime error “proxy has
not been initialized” if you try to use an uninitialized proxy.

6.3.14 What is wrong if I do A *ap = new CProxy_A(handle)?

This will not compile, because a CProxy_A is not an A. What you want is CProxy_A *ap = new CProxy_A(handle).

6.3.15 Why is the def.h usually included at the end? Is it necessary or can I just
include it at the beginning?

You can include the def.h file once you’ve actually declared everything it will reference- all your chares and readonly
variables. If your chares and readonlies are in your own header files, it is legal to include the def.h right away.

However, if the class declaration for a chare isn’t visible when you include the def.h file, you’ll get a confusing
compiler error. This is why we recommend including the def.h file at the end.

6.3.16 How can I use a global variable across different processors?

Make the global variable “readonly” by declaring it in the .ci file. Remember also that read-onlies can be safely
set only in the mainchare constructor. Any change after the mainchare constructor has finished will be local to the
processor that made the change. To change a global variable later in the program, every processor must modify it
accordingly (e.g by using a chare group. Note that chare arrays are not guaranteed to cover all processors)

6.3.17 Can I have a class static read-only variable?

One can have class-static variables as read-onlies. Inside a chare, group or array declaration in the .ci file, one can
have a readonly variable declaration. Thus:

chare someChare {
...
readonly CkGroupID someGroup;
...

};

is fine. In the .h declaration for class someChare, you will have to put someGroup as a public static variable, and you
are done.

You then refer to the variable in your program as someChare::someGroup.
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6.3.18 How do I measure the time taken by a program or operation?

You can use CkWallTimer() to determine the time on some particular processor. To time some parallel computa-
tion, you need to call CkWallTimer on some processor, do the parallel computation, then call CkWallTimer again on
the same processor and subtract.

6.3.19 What do CmiAssert and CkAssert do?

These are just like the standard C++ assert calls in <assert.h>- they call abort if the condition passed to them is false.

We use our own version rather than the standard version because we have to call CkAbort, and because we can turn our
asserts off when –with-production is used on the build line. These assertions are specifically controlled by –enable-
error-checking or –disable-error-checking. The –with-production flag implies –disable-error-checking, but it can still
be explicitly enabled with –enable-error-checking.

6.3.20 Can I know how many messages are being sent to a chare?

No.

There is no nice library to solve this problem, as some messages might be queued on the receiving processor, some on
the sender, and some on the network. You can still:

• Send a return receipt message to the sender, and wait until all the receipts for the messages sent have arrived,
then go to a barrier;

• Do all the sends, then wait for quiescence.

6.3.21 What is “quiescence”? How does it work?

Quiescence is When nothing is happening anywhere on the parallel machine.

A low-level background task counts sent and received messages. When, across the machine, all the messages that have
been sent have been received, and nothing is being processed, quiescence is triggered.

6.3.22 Should I use quiescence detection?

Probably not.

See the Completion Detection section of the manual for instructions on a more local inactivity detection scheme.

In some ways, quiescence is a very strong property (it guarantees nothing is happening anywhere) so if some other
library is doing something, you won’t reach quiescence. In other ways, quiescence is a very weak property, since it
doesn’t guarantee anything about the state of your application like a reduction does, only that nothing is happening.
Because quiescence detection is on the one hand so strong it breaks modularity, and on the other hand is too weak to
guarantee anything useful, it’s often better to use something else.

Often global properties can be replaced by much easier-to-compute local properties. For example, my object could
wait until all its neighbors have sent it messages (a local property my object can easily detect by counting message
arrivals), rather than waiting until all neighbor messages across the whole machine have been sent (a global property
that’s difficult to determine). Sometimes a simple reduction is needed instead of quiescence, which has the benefits of
being activated explicitly (each element of a chare array or chare group has to call contribute) and allows some data
to be collected at the same time. A reduction is also a few times faster than quiescence detection. Finally, there are a
few situations, such as some tree-search problems, where quiescence detection is actually the most sensible, efficient
solution.
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6.4 Charm++ Arrays

6.4.1 How do I know which processor a chare array element is running on?

At any given instant, you can call CkMyPe() to find out where you are. There is no reliable way to tell where another
array element is; even if you could find out at some instant, the element might immediately migrate somewhere else!

6.4.2 Should I use Charm++ Arrays in my program?

Yes! Most of your computation should happen inside array elements. Arrays are the main way to automatically
balance the load using one of the load balancers available.

6.4.3 Is there a property similar to thisIndex containing the chare array’s dimen-
sions or total number of elements?

No. In more sophisticated Charm++ algorithms and programs, array dimensions are a dynamic property, and since
Charm++ operates in a distributed system context, any such value would potentially be stale between access and use.

If the array in question has a fixed size, then that size can be passed to its elements as an argument to their constructor
or some later entry method call. Otherwise, the object(s) creating the chare array elements should perform a reduction
to count them.

6.4.4 How many array elements should I have per processor?

To do load balancing, you need more than one array element per processor. To keep the time and space overheads
reasonable, you probably don’t want more than a few thousand array elements per processor. The optimal value
depends on the program, but is usually between 10 and 100. If you come from an MPI background, this may seem
like a lot.

6.4.5 What does the term reduction refer to?

You can reduce a set of data to a single value. For example, finding the sum of values, where each array element
contributes a value to the final sum. Reductions are supported directly by Charm++ arrays, and some operations most
commonly used are predefined. Other more complicated reductions can implement if needed.

6.4.6 Can I do multiple reductions on an array?

You can have several reductions happen one after another; but you cannot mix up the execution of two reductions over
the same array. That is, if you want to reduce A, then B, every array element has to contribute to A, then contribute to
B; you cannot have some elements contribute to B, then contribute to A.

In addition, Tuple reductions provide a way of performing multiple different reductions using the same reduction
message. See the Built-in Reduction Types section of the manual for more information on Tuple reductions.

6.4.7 Does Charm++ do automatic load balancing without the user asking for it?

No. You only get load balancing if you explicitly ask for it by linking in one or more load balancers with -balancer
link-time option. If you link in more than one load balancer, you can select from the available load balancers at runtime
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with the +balancer option. In addition, you can use Metabalancer with the +MetaLB option to automatically decide
when to invoke the load balancer, as described in Available Load Balancing Strategies.

6.4.8 What is the migration constructor and why do I need it?

The migration constructor (a constructor that takes CkMigrateMessage * as parameter) is invoked when an array
element migrates to a new processor, or when chares or group instances are restored from a checkpoint. If there is
anything you want to do when you migrate, you could put it here.

A migration constructor need not be defined for any given chare type. If you try to migrate instances of a chare type
that lacks a migration constructor, the runtime system will abort the program with an error message.

The migration constructor should not be declared in the .ci file. Of course the array element will require also at least
one regular constructor so that it can be created, and these must be declared in the .ci file.

6.4.9 What happens to the old copy of an array element after it migrates?

After sizing and packing a migrating array element, the array manager deletes the old copy. As long as all the
array element destructors in the non-leaf nodes of your inheritance hierarchy are virtual destructors, with declaration
syntax:

class foo : ... {
...
virtual ~foo(); // <- virtual destructor

};

then everything will get deleted properly.

Note that deleting things in a packing pup happens to work for the current array manager, but WILL NOT work for
checkpointing, debugging, or any of the (many) other uses for packing puppers we might dream up - so DON’T DO
IT!

6.4.10 Is it possible to turn migratability on and off for an individual array element?

Yes, call setMigratable(false); in the constructor.

6.4.11 Is it possible to insist that a particular array element gets migrated at the
next AtSync()?

No, but a manual migration can be triggered using migrateMe.

6.4.12 When not using AtSync for LB, when does the LB start up? Where is the
code that periodically checks if load balancing can be done?

If not using usesAtSync, the load balancer can start up at anytime. There is a dummy AtSync for each ar-
ray element which by default tells the load balancer that it is always ready. The LDBD manager has a syncer
(LBDB::batsyncer) which periodically calls AtSync roughly every 1ms to trigger the load balancing (this time-
out can be changed with the +LBPeriod option). In this load balancing mode, users have to make sure all migratable
objects are always ready to migrate (e.g. not depending on a global variable which cannot be migrated).
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6.4.13 Should I use AtSync explicitly, or leave it to the system?

You almost certainly want to use AtSync directly. In most cases there are points in the execution where the memory
in use by a chare is bigger due to transitory data, which does not need to be transferred if the migration happens at
predefined points.

6.5 Charm++ Groups and Nodegroups

6.5.1 What are groups and nodegroups used for?

They are used for optimizations at the processor and node level respectively.

6.5.2 Should I use groups?

Probably not. People with an MPI background often overuse groups, which results in MPI-like Charm++ programs.
Arrays should generally be used instead, because arrays can be migrated to achieve load balance.

Groups tend to be most useful in constructing communication optimization libraries. For example, all the array
elements on a processor can contribute something to their local group, which can then send a combined message
to another processor. This can be much more efficient than having each array element send a separate message.

6.5.3 Is it safe to use a local pointer to a group, such as from ckLocalBranch?

Yes. Groups never migrate, so a local pointer is safe. The only caveat is to make sure you don’t migrate without
updating the pointer.

A local pointer can be used for very efficient access to data held by a group.

6.5.4 What are migratable groups?

Migratable groups are declared so by adding the “[migratable]” attribute in the .ci file. They cannot migrate from one
processor to another during normal execution, but only to disk for checkpointing purposes.

Migratable groups must declare a migration constructor (taking CkMigrateMessage * as a parameter) and a pup
routine. The migration constructor must call the superclass migration constructor as in this example:

class MyGroup : public CBase_MyGroup {
...
MyGroup (CkMigrateMessage *msg) : CBase_MyGroup(msg) { }
...

}

6.5.5 Should I use nodegroups?

Almost certainly not. You should use arrays for most computation, and even quite low-level communication optimiza-
tions are often best handled by groups. Nodegroups are very difficult to get right.
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6.5.6 What’s the difference between groups and nodegroups?

There’s one group element per processor (CkNumPes() elements); and one nodegroup element per node (Ck-
NumNodes() elements). Because they execute on a node, nodegroups have very different semantics from the rest
of Charm++.

Note that on a non-SMP machine, groups and nodegroups are identical.

6.5.7 Do nodegroup entry methods execute on one fixed processor of the node, or
on the next available processor?

Entries in node groups execute on the next available processor. Thus, if two messages were sent to a branch of a
nodegroup, two processors could execute one each simultaneously.

6.5.8 Are nodegroups single-threaded?

No. They can be accessed by multiple threads at once.

6.5.9 Do we have to worry about two entry methods in an object executing simul-
taneously?

Yes, which makes nodegroups different from everything else in Charm++.

If a nodegroup method accesses a data structure in a non-threadsafe way (such as writing to it), you need to lock it, for
example using a CmiNodeLock.

6.6 Charm++ Messages

6.6.1 What are messages?

A bundle of data sent, via a proxy, to another chare. A message is a special kind of heap-allocated C++ object.

6.6.2 Should I use messages?

It depends on the application. We’ve found parameter marshalling to be less confusing and error-prone than messages
for small parameters. Nevertheless, messages can be more efficient, especially if you need to buffer incoming data, or
send complicated data structures (like a portion of a tree).

6.6.3 What is the best way to pass pointers in a message?

You can’t pass pointers across processors. This is a basic fact of life on distributed-memory machines.

You can, of course, pass a copy of an object referenced via a pointer across processors-either dereference the pointer
before sending, or use a varsize message.

6.6.4 Can I allocate a message on the stack?

No. You must allocate messages with new.
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6.6.5 Do I need to delete messages that are sent to me?

Yes, or you will leak memory! If you receive a message, you are responsible for deleting it. This is exactly opposite
of parameter marshalling, and much common practice. The only exception are entry methods declared as [nokeep];
for these the system will free the message automatically at the end of the method.

6.6.6 Do I need to delete messages that I allocate and send?

No, this will certainly corrupt both the message and the heap! Once you’ve sent a message, it’s not yours any more.
This is again exactly the opposite of parameter marshalling.

6.6.7 What can a variable-length message contain?

Variable-length messages can contain arrays of any type, both primitive type or any user-defined type. The only
restriction is that they have to be 1D arrays.

6.6.8 Do I need to delete the arrays in variable-length messages?

No, this will certainly corrupt the heap! These arrays are allocated in a single contiguous buffer together with the
message itself, and is deleted when the message is deleted.

6.6.9 What are priorities?

Priorities are special values that can be associated with messages, so that the Charm++ scheduler will generally prefer
higher priority messages when choosing a buffered message from the queue to invoke as an entry method. Priorities are
often respected by Charm++ scheduler, but for correctness, a program must never rely upon any particular ordering
of message deliveries. Messages with priorities are typically used to encourage high performance behavior of an
application.

For integer priorities, the smaller the priority value, the higher the priority of the message. Negative value are therefore
higher priority than positive ones. To enable and set a message’s priority there is a special new syntax and CkPriori-
tyPtr function; see the manual for details. If no priority is set, messages have a default priority of zero.

6.6.10 Can messages have multiple inheritance in Charm++?

Yes, but you probably shouldn’t. Perhaps you want to consider using Generic and Meta Programming with Templates
techniques with templated chares, methods, and/or messages instead.

6.7 PUP Framework

6.7.1 How does one write a pup for a dynamically allocated 2-dimensional array?

The usual way: pup the size(s), allocate the array if unpacking, and then pup all the elements.

For example, if you have a 2D grid like this:
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class foo {
private:
int wid,ht;
double **grid;
...other data members

//Utility allocation/deallocation routines
void allocateGrid(void) {
grid=new double*[ht];
for (int y=0;y<ht;y++)

grid[y]=new double[wid];
}
void freeGrid(void) {
for (int y=0;y<ht;y++)

delete[] grid[y];
delete[] grid;
grid=NULL;

}

public:
//Regular constructor
foo() {
...set wid, ht...
allocateGrid();

}
//Migration constructor
foo(CkMigrateMessage *) {}
//Destructor
~foo() {
freeGrid();

}

//pup method
virtual void pup(PUP::er &p) {
p(wid); p(ht);
if (p.isUnpacking()) {

//Now that we know wid and ht, allocate grid
allocateGrid(wid,ht);

}
//Pup grid values element-by-element
for (int y=0;y<ht;y++)

PUParray(p, grid[y], wid);
...pup other data members...

}
};

6.7.2 When using automatic allocation via PUP::able, what do these calls mean?
PUPable_def(parent); PUPable_def(child);

For the automatic allocation described in Automatic allocation via ‘‘PUP::able‘‘ of the manual, each class needs four
things:

• A migration constructor

• PUPable_decl(className) in the class declaration in the .h file

• PUPable_def(className) at file scope in the .C file
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• PUPable_reg(className) called exactly once on every node. You typically use the initproc mechanism
to call these.

See charm/tests/charm++/megatest/marshall.[hC] for an executable example.

6.7.3 What is the difference between p|data; and p(data);? Which one should I
use?

For most system- and user-defined structure someHandle, you want p|someHandle; instead of
p(someHandle);

The reason for the two incompatible syntax varieties is that the bar operator can be overloaded outside pup.h (just
like the std::ostream’s operator<<); while the parenthesis operator can take multiple arguments (which is
needed for efficiently PUPing arrays).

The bar syntax will be able to copy any structure, whether it has a pup method or not. If there is no pup method, the
C++ operator overloading rules decay the bar operator into packing the bytes of the structure, which will work fine
for simple types on homogeneous machines. For dynamically allocated structures or heterogeneous migration, you’ll
need to define a pup method for all packed classes/structures. As an added benefit, the same pup methods will get
called during parameter marshalling.

6.8 Other PPL Tools, Libraries and Applications

6.8.1 What is Structured Dagger?

Structured Dagger is a structured notation for specifying intra-process control dependencies in message-driven pro-
grams. It combines the efficiency of message-driven execution with the explicitness of control specification. Structured
Dagger allows easy expression of dependencies among messages and computations and also among computations
within the same object using when-blocks and various structured constructs. See the Charm++ manual for the
details.

6.8.2 What is Adaptive MPI?

Adaptive MPI (AMPI) is an implementation of the MPI standard on top of Charm++. This allows MPI users to
recompile their existing MPI applications with AMPI’s compiler wrappers to take advantage of Charm++’s high level
features, such as overdecomposition, overlap of communication and computation, dynamic load balancing, and fault
tolerance. See the AMPI manual for more details on how AMPI works and how to use it.

6.8.3 What is Charisma?

Charisma++ is a prototype language for describing global view of control in a parallel program. It is designed to solve
the problem of obscured control flow in the object-based model with Charm++.

6.8.4 Does Projections use wall time or CPU time?

Wall time.
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6.9 Debugging

6.9.1 How can I debug Charm++ programs?

There are many ways to debug programs written in Charm++:

print By using CkPrintf, values from critical point in the program can be printed.

gdb This can be used both on a single processor, and in parallel simulations. In the latter, each processor has a
terminal window with a gdb connected.

charmdebug This is the most sophisticated method to debug parallel programs in Charm++. It is tailored to Charm++
and it can display and inspect chare objects as well as messages in the system. Single gdbs can be attached to
specific processors on demand.

6.9.2 How do I use charmdebug?

Currently charmdebug is tested to work only under netlrts- non-SMP versions. With other versions, testing is pending.
To get the Charm Debug tool, check out the source code from the repository. This will create a directory named
ccs_tools. Move to this directory and build Charm Debug.

git clone git://charm.cs.uiuc.edu/ccs_tools.git
cd ccs_tools
ant

This will create the executable bin/charmdebug. To start, simply substitute “charmdebug” to “charmrun”:

shell> <path>/charmdebug ./myprogram

You can find more detailed information in the debugger manual in Charm++ Debugger.

6.9.3 Can I use distributed debuggers like Allinea DDT and RogueWave TotalView?

Yes, on mpi- versions of Charm++. In this case, the program is a regular MPI application, and as such any tool
available for MPI programs can be used. Notice that some of the internal data structures (like messages in queue)
might be difficult to find.

Depending on your debugging needs, see the other notes about alternatives such as CharmDebug and directly-attached
gdb.

6.9.4 How do I use gdb with Charm++ programs?

It depends on the machine. On the netlrts- versions of Charm++, like netlrts-linux-x86_64, you can just run the serial
debugger:

shell> gdb myprogram

If the problem only shows up in parallel, and you’re running on an X terminal, you can use the ++debug or ++debug-
no-pause options of charmrun to get a separate window for each process:

shell> export DISPLAY="myterminal:0"
shell> ./charmrun ./myprogram +p2 ++debug

6.9. Debugging 251



Charm++ Documentation

6.9.5 When I try to use the ++debug option I get: remote host not responding.
.. connection closed

First, make sure the program at least starts to run properly without ++debug (i.e. charmrun is working and there are
no problems with the program startup phase). You need to make sure that gdb or dbx, and xterm are installed on all the
machines you are using (not the one that is running charmrun). If you are working from a Windows machine, you
need an X-win application such as exceed. You need to set this up to give the right permissions for X windows. You
need to make sure the DISPLAY environment variable on the remote machine is set correctly to your local machine.
I recommend ssh and putty, because it will take care of the DISPLAY environment automatically, and you can set up
ssh to use tunnels so that it even works from a private subnet(e.g. 192.168.0.8). Since the xterm is displayed from the
node machines, you have to make sure they have the correct DISPLAY set. Again, setting up ssh in the nodelist file to
spawn node programs should take care of that.

6.9.6 My debugging printouts seem to be out of order. How can I prevent this?

Printouts from different processors do not normally stay ordered. Consider the code:

...somewhere... {
CkPrintf("cause\n");
proxy.effect();

}
void effect(void) {

CkPrintf("effect\n");
}

Though you might expect this code to always print “cause, effect”, you may get “effect, cause”. This can only happen
when the cause and effect execute on different processors, so cause’s output is delayed.

If you pass the extra command-line parameter +syncprint, then CkPrintf actually blocks until the output is queued, so
your printouts should at least happen in causal order. Note that this does dramatically slow down output.

6.9.7 Is there a way to flush the print buffers in Charm++ (like fflush())?

Charm++ automatically flushes the print buffers every newline and at program exit. There is no way to manually flush
the buffers at another point.

6.9.8 My Charm++ program is causing a seg fault, and the debugger shows that it’s
crashing inside malloc or printf or fopen!

This isn’t a bug in the C library, it’s a bug in your program - you’re corrupting the heap. Link your program again with
-memory paranoid and run it again in the debugger. -memory paranoid will check the heap and detect buffer over- and
under-run errors, double-deletes, delete-garbage, and other common mistakes that trash the heap.

6.9.9 Everything works fine on one processor, but when I run on multiple proces-
sors it crashes!

It’s very convenient to do your testing on one processor (i.e., with +p1); but there are several things that only happen
on multiple processors.

A single processor has just one set of global variables, but multiple processors have different global variables. This
means on one processor, you can set a global variable and it stays set “everywhere” (i.e., right here!), while on two
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processors the global variable never gets initialized on the other processor. If you must use globals, either set them on
every processor or make them into readonly globals.

A single processor has just one address space, so you actually can pass pointers around between chares. When running
on multiple processors, the pointers dangle. This can cause incredibly weird behavior - reading from uninitialized data,
corrupting the heap, etc. The solution is to never, ever send pointers in messages - you need to send the data the pointer
points to, not the pointer.

6.9.10 I get the error: “Group ID is zero-- invalid!”. What does this mean?

The group it is referring to is the chare group. This error is often due to using an uninitialized proxy or handle; but it’s
possible this indicates severe corruption. Run with ++debug and check it you just sent a message via an uninitialized
proxy.

6.9.11 I get the error: Null-Method Called. Program may have
Unregistered Module!! What does this mean?

You are trying to use code from a module that has not been properly initialized.

So, in the .ci file for your mainmodule, you should add an “extern module” declaration:

mainmodule whatever {
extern module someModule;
...

}

6.9.12 When I run my program, it gives this error:

Charmrun: error on request socket-{}-
Socket closed before recv.

This means that the node program died without informing charmrun about it, which typically means a segmen-
tation fault while in the interrupt handler or other critical communications code. This indicates severe corruption
in Charm++’s data structures, which is likely the result of a heap corruption bug in your program. Re-linking with
-memory paranoid may clarify the true problem.

6.9.13 When I run my program, sometimes I get a Hangup, and sometimes Bus
Error. What do these messages indicate?

Bus Error and Hangup both are indications that your program is terminating abnormally, i.e. with an uncaught
signal (SEGV or SIGBUS). You should definitely run the program with gdb, or use ++debug. Bus Errors often mean
there is an alignment problem, check if your compiler or environment offers support for detection of these.

6.10 Versions and Ports

6.10.1 Has Charm++ been ported to use MPI underneath? What about OpenMP?

Charm++ supports MPI and can use it as the underlying communication library. We have tested on MPICH, OpenMPI,
and also most vendor MPI variants. Charm++ also has explicit support for SMP nodes in MPI version. Charm++ hasn’t
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been ported to use OpenMP, but OpenMP can be used from Charm++.

6.10.2 How complicated is porting Charm++/Converse?

Depends. Hopefully, the porting only involves fixing compiler compatibility issues. The LRTS abstraction layer
was designed to simplify this process and has been used for the MPI, Verbs, uGNI, PAMI and OFI layers. User
level threads and Isomalloc support may require special platform specific support. Otherwise Charm++ is generally
platform independent.

6.10.3 If the source is available how feasible would it be for us to do ports our-
selves?

The source is always available, and you’re welcome to make it run anywhere. Any kind of UNIX, Windows, and
MacOS machine should be straightforward: just a few modifications to charm/src/arch/.../conv-mach.h
(for compiler issues) and possibly a new machine.c (if there’s a new communication system involved). However,
porting to embedded hardware with a proprietary OS may be fairly difficult.

6.10.4 To what platform has Charm++/Converse been ported to?

Charm++/Converse has been ported to most UNIX and Linux OS, Windows, and MacOS.

6.10.5 Is it hard to port Charm++ programs to different machines?

Charm++ itself it fully portable, and should provide exactly the same interfaces everywhere (even if the implementa-
tions are sometimes different). Still, it’s often harder than we’d like to port user code to new machines.

Many parallel machines have old or weird compilers, and sometimes a strange operating system or unique set of
libraries. Hence porting code to a parallel machine can be suprisingly difficult.

Unless you’re absolutely sure you will only run your code on a single, known machine, we recommend you be very
conservative in your use of the language and libraries. “But it works with my gcc!” is often true, but not very useful.

Things that seem to work well everywhere include:

• Small, straightforward Makefiles. gmake-specific (e.g., “ifeq”, filter variables) or convoluted makefiles can lead
to porting problems and confusion. Calling charmc instead of the platform-specific compiler will save you many
headaches, as charmc abstracts away the platform specific flags.

• Basically all of ANSI C and fortran 77 work everywhere. These seem to be old enough to now have the bugs
largely worked out.

• C++ classes, inheritance, virtual methods, and namespaces work without problems everywhere. Not so uni-
formly supported are C++ templates, the STL, new-style C++ system headers, and the other features listed in
the C++ question below.

6.10.6 How should I approach portability of C language code?

Our suggestions for Charm++ developers are:

• Avoid the nonstandard type “long long”, even though many compilers happen to support it. Use CMK_INT8 or
CMK_UINT8, from conv-config.h, which are macros for the right thing. “long long” is not supported on many
64-bit machines (where “long” is 64 bits) or on Windows machines (where it’s “__int64”).
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• The “long double” type isn’t present on all compilers. You can protect long double code with #ifdef
CMK_LONG_DOUBLE_DEFINED if it’s really needed.

• Never use C++ “//” comments in C code, or headers included by C. This will not compile under many compilers.

• “bzero” and “bcopy” are BSD-specific calls. Use memset and memcpy for portable programs.

If you’re writing code that is expected to compile and run on Microsoft Windows using the Visual C++ compiler
(e.g. modification to NAMD that you intend to submit for integration), that compiler has limited support for the C99
standard, and Microsoft recommends using C++ instead.

Many widely-used C compilers on HPC systems have limited support for the C11 standard. If you want to use features
of C11 in your code, particularly _Atomic, we recommend writing the code in C++ instead, since C++11 standard
support is much more ubiquitous.

6.10.7 How should I approach portability and performance of C++ language code?

The Charm++ system developers are conservative about which C++ standard version is relied upon in runtime system
code and what features get used to ensure maximum portability across the broad range of HPC systems and the
compilers used on them. Through version 6.8.x, the system code requires only limited support for C++11 features,
specifically variadic templates and R-value references. From version 6.9 onwards, the system will require a compiler
and standard library with at least full C++11 support.

A good reference for which compiler versions provide what level of standard support can be found at http://en.
cppreference.com/w/cpp/compiler_support

Developers of several Charm++ applications have reported good results using features in more recent C++ standards,
with the caveat of requiring that those applications be built with a sufficiently up-to-date C++ compiler.

The containers specified in the C++ standard library are generally designed to provide a very broad API that can be
used correctly over highly-varied use cases. This often entails tradeoffs against the performance attainable for nar-
rower use cases that some applications may have. The most visible of these concerns are the tension between strict
iterator invalidation semantics and cache-friendly memory layout. We recommend that developers whose code in-
cludes container access in performance-critical elements explore alternative implementations, such as those published
by EA, Google, and Facebook, or potentially write custom implementations tailored to their application’s needs.

In benchmarks across a range of compilers, we have found that avoiding use of exceptions (i.e. throw/catch)
and disabling support for them with compiler flags can produce higher-performance code, especially with aggressive
optimization settings enabled. The runtime system does not use exceptions internally. If your goal as an application
developer is to most efficiently use large-scale computational resources, we recommend alternative error-handling
strategies.

6.10.8 Why do I get a link error when mixing Fortran and C/C++?

Fortran compilers “mangle” their routine names in a variety of ways. g77 and most compilers make names all lower-
case, and append an underscore, like “foo_”. The IBM xlf compiler makes names all lowercase without an underscore,
like “foo”. Absoft f90 makes names all uppercase, like “FOO”.

If the Fortran compiler expects a routine to be named “foo_”, but you only define a C routine named “foo”, you’ll get
a link error (“undefined symbol foo_”). Sometimes the UNIX command-line tool nm (list symbols in a .o or .a file)
can help you see exactly what the Fortran compiler is asking for, compared to what you’re providing.

Charm++ automatically detects the fortran name mangling scheme at configure time, and provides a C/C++ macro
“FTN_NAME”, in “charm-api.h”, that expands to a properly mangled fortran routine name. You pass the FTN_NAME
macro two copies of the routine name: once in all uppercase, and again in all lowercase. The FTN_NAME macro then
picks the appropriate name and applies any needed underscores. “charm-api.h” also includes a macro “FLINKAGE”
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that makes the symbol linkable from fortran (in C++, this expands to extern “C”), so a complete Fortran subroutine
looks like in C or C++:

FLINKAGE void FTN_NAME(FOO,foo)(void);

This same syntax can be used for C/C++ routines called from fortran, or for calling fortran routines from C/C++. We
strongly recommend using FTN_NAME instead of hardcoding your favorite compiler’s name mangling into the C
routines.

If designing an API with the same routine names in C and Fortran, be sure to include both upper and lowercase letters
in your routine names. This way, the C name (with mixed case) will be different from all possible Fortran manglings
(which all have uniform case). For example, a routine named “foo” will have the same name in C and Fortran when
using the IBM xlf compilers, which is bad because the C and Fortran versions should take different parameters. A
routine named “Foo” does not suffer from this problem, because the C version is “Foo, while the Fortran version is
“foo_”, “foo”, or “FOO”.

6.10.9 How does parameter passing work between Fortran and C?

Fortran and C have rather different parameter-passing conventions, but it is possible to pass simple objects back and
forth between Fortran and C:

• Fortran and C/C++ data types are generally completely interchangeable:

C/C++ Type Fortran Type
int INTEGER, LOGICAL
double DOUBLE PRECISION, REAL*8
float REAL, REAL*4
char CHARACTER

• Fortran internally passes everything, including constants, integers, and doubles, by passing a pointer to the
object. Hence a fortran “INTEGER” argument becomes an “int *” in C/C++:

/* Fortran */
SUBROUTINE BAR(i)

INTEGER :: i
x=i

END SUBROUTINE

/* C/C++ */
FLINKAGE void FTN_NAME(BAR,bar)(int *i) {

x=*i;
}

• 1D arrays are passed exactly the same in Fortran and C/C++: both languages pass the array by passing the
address of the first element of the array. Hence a fortran “INTEGER, DIMENSION(:)” array is an “int *” in C
or C++. However, Fortran programmers normally think of their array indices as starting from index 1, while in
C/C++ arrays always start from index 0. This does NOT change how arrays are passed in, so x is actually the
same in both these subroutines:

/* Fortran */
SUBROUTINE BAR(arr)

INTEGER :: arr(3)
x=arr(1)

END SUBROUTINE
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/* C/C++ */
FLINKAGE void FTN_NAME(BAR,bar)(int *arr) {

x=arr[0];
}

• There is a subtle but important difference between the way f77 and f90 pass array arguments. f90 will pass an
array object (which is not intelligible from C/C++) instead of a simple pointer if all of the following are true:

– A f90 “INTERFACE” statement is available on the call side.

– The subroutine is declared as taking an unspecified-length array (e.g., “myArr(:)”) or POINTER variable.

Because these f90 array objects can’t be used from C/C++, we recommend C/C++ routines either provide no
f90 INTERFACE or else all the arrays in the INTERFACE are given explicit lengths.

• Multidimensional allocatable arrays are stored with the smallest index first in Fortran. C/C++ do not support
allocatable multidimensional arrays, so they must fake them using arrays of pointers or index arithmetic.

/* Fortran */
SUBROUTINE BAR2(arr,len1,len2)

INTEGER :: arr(len1,len2)
INTEGER :: i,j
DO j=1,len2

DO i=1,len1
arr(i,j)=i;

END DO
END DO

END SUBROUTINE

/* C/C++ */
FLINKAGE void FTN_NAME(BAR2,bar2)(int *arr,int *len1p,int *len2p) {

int i,j; int len1=*len1p, len2=*len2p;
for (j=0;j<len2;j++)
for (i=0;i<len1;i++)

arr[i+j*len1]=i;
}

• Fortran strings are passed in a very strange fashion. A string argument is passed as a character pointer and
a length, but the length field, unlike all other Fortran arguments, is passed by value, and goes after all other
arguments. Hence

/* Fortran */
SUBROUTINE CALL_BARS(arg)

INTEGER :: arg
CALL BARS('some string',arg);

END SUBROUTINE

/* C/C++ */
FLINKAGE void FTN_NAME(BARS,bars)(char *str,int *arg,int strlen) {

char *s=(char *)malloc(strlen+1);
memcpy(s,str,strlen);
s[strlen]=0; /* nul-terminate string */
printf("Received Fortran string '%s' (%d characters)\n",s,strlen);
free(s);

}

• A f90 named TYPE can sometimes successfully be passed into a C/C++ struct, but this can fail if the compilers
insert different amounts of padding. There does not seem to be a portable way to pass f90 POINTER variables
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into C/C++, since different compilers represent POINTER variables differently.

6.10.10 How do I use Charm++ on Xeon Phi?

In general, no changes are required to use Charm++ on Xeon Phis. To compile code for Knights Landing, no spe-
cial flags are required. To compile code for Knights Corner, one should build Charm++ with the mic option. In
terms of network layers, we currently recommend building the MPI layer (mpi-linux-x86_64) except for ma-
chines with custom network layers, such as Cray systems, on which we recommend building for the custom layer
(gni-crayxc for Cray XC machines, for example). To enable AVX-512 vector instructions, Charm++ can be built
with -xMIC-AVX512 on Intel compilers or -mavx512f -mavx512er -mavx512cd -mavx512pf for GNU
compilers.

6.10.11 How do I use Charm++ on GPUs?

Charm++ users have two options when utilizing GPUs in Charm++.

The first is to write CUDA (or OpenCL, etc) code directly in their Charm++ applications. This does not take advantage
of any of the special GPU-friendly features the Charm++ runtime provides and is similar to how programmers utilize
GPUs in other parallel environments, e.g. MPI.

The second option is to leverage Charm++’s GPU library, GPU Manager. This library provides several useful features
including:

• Automated data movement

• Ability to invoke callbacks at various points

• Host side pinned memory pooling

• Asynchronous kernel invocation

• Integrated tracing in Projections

To do this, Charm++ must be built with the cuda option. Users must describe their kernels using a work request
struct, which includes the buffers to be copied, callbacks to be invoked, and kernel to be executed. Additionally,
users can take advantage of a pre-allocated host side pinned memory pool allocated by the runtime via invoking
hapi_poolMalloc. Finally, the user must compile this code using the appropriate nvcc compiler as per usual.

More details on using GPUs in Charm++ can be found in the GPU Manager Library entry in the larger Libraries
Manual.

6.11 Converse Programming

6.11.1 What is Converse? Should I use it?

Converse is the low-level portable messaging layer that Charm++ is built on, but you don’t have to know anything
about Converse to use Charm++. You might want to learn about Converse if you want a capable, portable foundation
to implement a new parallel language on.

6.11.2 How much does getting a random number generator “right” matter?

drand48 is nonportable and woefully inadequate for any real simulation task. Even if each processor seeds drand48
differently, there is no guarantee that the streams of pseduo-random numbers won’t quickly overlap. A better generator
would be required to “do it right” (See Park & Miller, CACM Oct. 88).
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6.11.3 What should I use to get a proper random number generator?

Converse provides a 64-bit pseudorandom number generator based on the SPRNG package originally written by
Ashok Shrinivasan at NCSA. For detailed documentation, please take a look at the Converse Extensions Manual on
the Charm++ website. In short, you can use CrnDrand() function instead of the unportable drand48() in Charm++.

6.12 Charm++ and Converse Internals

6.12.1 How is the Charm++ source code organized and built?

All the Charm++ core source code is soft-linked into the charm/<archname>/tmp directory when you run the
build script. The libraries and frameworks are under charm/<archname>/tmp/libs, in either ck-libs or
conv-libs.

6.12.2 I just changed the Charm++ core. How do I recompile Charm++?

cd into the charm/<archname>/tmp directory and make. If you want to compile only a subset of the entire set of
libraries, you can specify it to make. For example, to compile only the Charm++ RTS, type make charm++.

6.12.3 Do we have a #define charm_version somewhere? If not, which version
number should I use for the current version?

Yes, there is a Charm++ version number defined in the macro CHARM_VERSION.

6.12. Charm++ and Converse Internals 259



Charm++ Documentation

260 Chapter 6. Frequently Asked Questions



CHAPTER 7

Threaded Charm++ (TCharm)

Contents

• Threaded Charm++ (TCharm)

– Motivation

– Basic TCharm Programming

* Global Variables

* Input/Output

* Migration-Based Load Balancing

– Advanced TCharm Programming

* Writing a Pup Routine

* Readonly Global Variables

– Combining Frameworks

– Command-line Options

– Writing a library using TCharm

7.1 Motivation

Charm++ includes several application frameworks, such as the Finite Element Framework, the Multiblock Framework,
and AMPI. These frameworks do almost all their work in load balanced, migratable threads.

The Threaded Charm++ Framework, TCharm, provides both common runtime support for these threads and facilities
for combining multiple frameworks within a single program. For example, you can use TCharm to create a Finite
Element Framework application that also uses AMPI to communicate between Finite Element chunks.
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Specifically, TCharm provides language-neutral interfaces for:

1. Program startup, including read-only global data setup and the configuration of multiple frameworks.

2. Run-time load balancing, including migration.

3. Program shutdown.

The first portion of this manual describes the general properties of TCharm common to all the application frameworks,
such as program contexts and how to write migratable code. The second portion describes in detail how to combine
separate frameworks into a single application.

7.2 Basic TCharm Programming

Any routine in a TCharm program runs in one of two contexts:

Serial Context Routines that run on only one processor and with only one set of data. There are absolutely no
limitations on what a serial context routine can do—it is as if the code were running in an ordinary serial
program. Startup and shutdown routines usually run in the serial context.

Parallel Context Routines that run on several processors, and may run with several different sets of data on a single
processor. This kind of routine must obey certain restrictions. The program’s main computation routines always
run in the parallel context.

Parallel context routines run in a migratable, user-level thread maintained by TCharm. Since there are normally several
of these threads per processor, any code that runs in the parallel context has to be thread-safe. However, TCharm is non-
preemptive, so it will only switch threads when you make a blocking call, like “MPI_Recv” or “FEM_Update_field”.

7.2.1 Global Variables

By “global variables”, we mean anything that is stored at a fixed, preallocated location in memory. In C, this means
variables declared at file scope or with the static keyword. In Fortran, this is either variables that are part of a COM-
MON block, declared inside a MODULE or variables with the SAVE attribute.

Global variables are shared by all the threads on a processor, which makes using global variables extremely error
prone. To see why this is a problem, consider a program fragment like:

foo=a
call MPI_Recv(...)
b=foo

After this code executes, we might expect b to always be equal to a. but if foo is a global variable, MPI_Recv may
block and foo could be changed by another thread.

For example, if two threads execute this program, they could interleave like:

Thread 1 Thread 2
foo=1
block in MPI_Recv

foo=2
block in MPI_Recv

b=foo

At this point, thread 1 might expect b to be 1; but it will actually be 2. From the point of view of thread 1, the global
variable foo suddenly changed its value during the call to MPI_Recv.
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There are several possible solutions to this problem:

• Never use global variables—only use parameters or local variables. This is the safest and most general solution.
One standard practice is to collect all the globals into a C struct or Fortran type named “Globals”, and pass a
pointer to this object to all your subroutines. This also combines well with the pup method for doing migration-
based load balancing, as described in Section 7.3.1.

• Never write different values to global variables. If every thread writes the same value, global variables can be
used safely. For example, you might store some parameters read from a configuration file like the simulation
timestep ∆𝑡. See Section 7.3.2 for another, more convenient way to set such variables.

• Never issue a blocking call while your global variables are set. This will not work on a SMP version of Charm++,
where several processors may share a single set of global variables. Even on a non-SMP version, this is a
dangerous solution, because someday someone might add a blocking call while the variables are set. This is
only a reasonable solution when calling legacy code or using old serial libraries that might use global variables.

The above only applies to routines that run in the parallel context. There are no restrictions on global variables for
serial context code.

7.2.2 Input/Output

In the parallel context, there are several limitations on open files. First, several threads may run on one processor, so
Fortran Logical Unit Numbers are shared by all the threads on a processor. Second, open files are left behind when a
thread migrates to another processor—it is a crashing error to open a file, migrate, then try to read from the file.

Because of these restrictions, it is best to open files only when needed, and close them as soon as possible. In particular,
it is best if there are no open files whenever you make blocking calls.

7.2.3 Migration-Based Load Balancing

The Charm++ runtime framework includes an automatic run-time load balancer, which can monitor the performance
of your parallel program. If needed, the load balancer can “migrate” threads from heavily-loaded processors to more
lightly-loaded processors, improving the load balance and speeding up the program. For this to be useful, you need to
pass the link-time argument -balancer B to set the load balancing algorithm, and the run-time argument +vp N (use N
virtual processors) to set the number of threads. The ideal number of threads per processor depends on the problem,
but we’ve found five to a hundred threads per processor to be a useful range.

When a thread migrates, all its data must be brought with it. “Stack data”, such as variables declared locally in a
subroutine, will be brought along with the thread automatically. Global data, as described in Section 7.2.1, is never
brought with the thread and should generally be avoided.

“Heap data” in C is structures and arrays allocated using malloc or new; in Fortran, heap data is TYPEs or arrays
allocated using ALLOCATE. To bring heap data along with a migrating thread, you have two choices: write a pup
routine or use isomalloc. Pup routines are described in Section 7.3.1.

Isomalloc is a special mode which controls the allocation of heap data. You enable isomalloc allocation using the
link-time flag “-memory isomalloc”. With isomalloc, migration is completely transparent—all your allocated data
is automatically brought to the new processor. The data will be unpacked at the same location (the same virtual
addresses) as it was stored originally; so even cross-linked data structures that contain pointers still work properly.

The limitations of isomalloc are:

• Wasted memory. Isomalloc uses a special interface1 to acquire memory, and the finest granularity that can be
acquired is one page, typically 4KB. This means if you allocate a 2-entry array, isomalloc will waste an entire
4KB page. We should eventually be able to reduce this overhead for small allocations.

1 The interface used is mmap.
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• Limited space on 32-bit machines. Machines where pointers are 32 bits long can address just 4GB (232 bytes) of
virtual address space. Additionally, the operating system and conventional heap already use a significant amount
of this space; so the total virtual address space available is typically under 1GB. With isomalloc, all processors
share this space, so with just 20 processors the amount of memory per processor is limited to under 50MB! This
is an inherent limitation of 32-bit machines; to run on more than a few processors you must use 64-bit machines
or avoid isomalloc.

7.3 Advanced TCharm Programming

The preceding features are enough to write simple programs that use TCharm-based frameworks. These more ad-
vanced techniques provide the user with additional capabilities or flexibility.

7.3.1 Writing a Pup Routine

The runtime system can automatically move your thread stack to the new processor, but unless you use isomalloc, you
must write a pup routine to move any global or heap-allocated data to the new processor. A pup (Pack/UnPack) routine
can perform both packing (converting your data into a network message) and unpacking (converting the message back
into your data). A pup routine is passed a pointer to your data block and a special handle called a “pupper”, which
contains the network message.

In a pup routine, you pass all your heap data to routines named pup_type or fpup_type, where type is either a basic
type (such as int, char, float, or double) or an array type (as before, but with a “s” suffix). Depending on the direction
of packing, the pupper will either read from or write to the values you pass- normally, you shouldn’t even know which.
The only time you need to know the direction is when you are leaving a processor, or just arriving. Correspondingly,
the pupper passed to you may be deleting (indicating that you are leaving the processor, and should delete your heap
storage after packing), unpacking (indicating you’ve just arrived on a processor, and should allocate your heap storage
before unpacking), or neither (indicating the system is merely sizing a buffer, or checkpointing your values).

pup functions are much easier to write than explain- a simple C heap block and the corresponding pup function is:

typedef struct {
int n1;/*Length of first array below*/
int n2;/*Length of second array below*/
double *arr1; /*Some doubles, allocated on the heap*/
int *arr2; /*Some ints, allocated on the heap*/

} my_block;

void pup_my_block(pup_er p,my_block *m)
{

if (pup_isUnpacking(p)) { /*Arriving on new processor*/
m->arr1=malloc(m->n1*sizeof(double));
m->arr2=malloc(m->n2*sizeof(int));

}
pup_doubles(p,m->arr1,m->n1);
pup_ints(p,m->arr2,m->n2);
if (pup_isDeleting(p)) { /*Leaving old processor*/
free(m->arr1);
free(m->arr2);

}
}

This single pup function can be used to copy the my_block data into a message buffer and free the old heap storage
(deleting pupper); allocate storage on the new processor and copy the message data back (unpacking pupper); or save
the heap data for debugging or checkpointing.
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A Fortran block TYPE and corresponding pup routine is as follows:

MODULE my_block_mod
TYPE my_block
INTEGER :: n1,n2x,n2y
DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:) :: arr1
INTEGER, ALLOCATABLE, DIMENSION(:,:) :: arr2

END TYPE
END MODULE

SUBROUTINE pup_my_block(p,m)
IMPLICIT NONE
USE my_block_mod
USE pupmod
INTEGER :: p
TYPE(my_block) :: m
IF (fpup_isUnpacking(p)) THEN
ALLOCATE(m%arr1(m%n1))
ALLOCATE(m%arr2(m%n2x,m%n2y))

END IF
call fpup_doubles(p,m%arr1,m%n1)
call fpup_ints(p,m%arr2,m%n2x*m%n2y)
IF (fpup_isDeleting(p)) THEN
DEALLOCATE(m%arr1)
DEALLOCATE(m%arr2)

END IF
END SUBROUTINE

You indicate to TCharm that you want a pup routine called using the routine below. An arbitrary number of blocks
can be registered in this fashion.

void TCHARM_Register(void *block, TCharmPupFn pup_fn)

SUBROUTINE TCHARM_Register(block,pup_fn)
TYPE(varies), POINTER :: block
SUBROUTINE :: pup_fn

Associate the given data block and pup function. Can only be called from the parallel context. For the declarations
above, you call TCHARM_Register as:

/*In C/C++ driver() function*/
my_block m;
TCHARM_Register(m,(TCharmPupFn)pup_my_block);

!- In Fortran driver subroutine
use my_block_mod
interface

subroutine pup_my_block(p,m)
use my_block_mod
INTEGER :: p
TYPE(my_block) :: m

end subroutine
end interface
TYPE(my_block), TARGET :: m
call TCHARM_Register(m,pup_my_block)

Note that the data block must be allocated on the stack. Also, in Fortran, the “TARGET” attribute must be used on the
block (as above) or else the compiler may not update values during a migration, because it believes only it can access
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the block.

void TCHARM_Migrate()

subroutine TCHARM_Migrate()

Informs the load balancing system that you are ready to be migrated, if needed. If the system decides to migrate
you, the pup function passed to TCHARM_Register will first be called with a sizing pupper, then a packing, deleting
pupper. Your stack and pupped data will then be sent to the destination machine, where your pup function will be
called with an unpacking pupper. TCHARM_Migrate will then return. Can only be called from in the parallel context.

7.3.2 Readonly Global Variables

You can also use a pup routine to set up initial values for global variables on all processors. This pup routine is called
with only a pup handle, just after the serial setup routine, and just before any parallel context routines start. The pup
routine is never called with a deleting pup handle, so you need not handle that case.

A C example is:

int g_arr[17];
double g_f;
int g_n; /*Length of array below*/
float *g_allocated; /*heap-allocated array*/

void pup_my_globals(pup_er p)
{

pup_ints(p,g_arr,17);
pup_double(p,&g_f);
pup_int(p,&g_n);
if (pup_isUnpacking(p)) { /*Arriving on new processor*/
g_allocated=malloc(g_n*sizeof(float));

}
pup_floats(p,g_allocated,g_n);

}

A Fortran example is:

MODULE my_globals_mod
INTEGER :: g_arr(17)
DOUBLE PRECISION :: g_f
INTEGER :: g_n
SINGLE PRECISION, ALLOCATABLE :: g_allocated(:)

END MODULE

SUBROUTINE pup_my_globals(p)
IMPLICIT NONE
USE my_globals_mod
USE pupmod
INTEGER :: p
call fpup_ints(p,g_arr,17)
call fpup_double(p,g_f)
call fpup_int(p,g_n)
IF (fpup_isUnpacking(p)) THEN
ALLOCATE(g_allocated(g_n))

END IF
call fpup_floats(p,g_allocated,g_n)

END SUBROUTINE
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You register your global variable pup routine using the method below. Multiple pup routines can be registered the
same way.

void TCHARM_Readonly_globals(TCharmPupGlobalFn pup_fn)

SUBROUTINE TCHARM_Readonly_globals(pup_fn)
SUBROUTINE :: pup_fn

7.4 Combining Frameworks

This section describes how to combine multiple frameworks in a single application. You might want to do this, for
example, to use AMPI communication inside a finite element method solver.

You specify how you want the frameworks to be combined by writing a special setup routine that runs when the
program starts. The setup routine must be named TCHARM_User_setup. If you declare a user setup routine, the
standard framework setup routines (such as the FEM framework’s init routine) are bypassed, and you do all the setup
in the user setup routine.

The setup routine creates a set of threads and then attaches frameworks to the threads. Several different frameworks
can be attached to one thread set, and there can be several sets of threads; however, the most frameworks cannot be
attached more than once to single set of threads. That is, a single thread cannot have two attached AMPI frameworks,
since the MPI_COMM_WORLD for such a thread would be indeterminate.

void TCHARM_Create(int nThreads, TCharmThreadStartFn thread_fn)

SUBROUTINE TCHARM_Create(nThreads,thread_fn)
INTEGER, INTENT(in) :: nThreads
SUBROUTINE :: thread_fn

Create a new set of TCharm threads of the given size. The threads will execute the given function, which is normally
your user code. You should call TCHARM_Get_num_chunks() to get the number of threads from the command
line. This routine can only be called from your TCHARM_User_setup routine.

You then attach frameworks to the new threads. The order in which frameworks are attached is irrelevant, but attach
commands always apply to the current set of threads.

To attach a chare array to the TCharm array, use:

CkArrayOptions TCHARM_Attach_start(CkArrayID *retTCharmArray,int

*retNumElts)

This function returns a CkArrayOptions object that will bind your chare array to the TCharm array, in addition to
returning the TCharm array proxy and number of elements by reference. If you are using frameworks like AMPI, they
will automatically attach themselves to the TCharm array in their initialization routines.

7.5 Command-line Options

The complete set of link-time arguments relevant to TCharm is:

-memory isomalloc Enable memory allocation that will automatically migrate with the thread, as described in Section
7.2.3.

-balancer B Enable this load balancing strategy. The current set of balancers B includes RefineLB (make only small
changes each time), MetisLB (remap threads using graph partitioning library), HeapCentLB (remap threads
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using a greedy algorithm), and RandCentLB (remap threads to random processors). You can only have one
balancer.

-module F Link in this framework. The current set of frameworks F includes ampi, collide, fem, mblock, and netfem.
You can link in multiple frameworks.

The complete set of command-line arguments relevant to TCharm is:

+p N Run on N physical processors.

+vp N Create N “virtual processors”, or threads. This is the value returned by TCharmGetNumChunks.

++debug Start each program in a debugger window. See Charm++ Installation and Usage Manual for details.

+tcharm_stacksize N Create N-byte thread stacks. This value can be overridden using TCharmSetStackSize().

+tcharm_nomig Disable thread migration. This can help determine whether a problem you encounter is caused by
our migration framework.

+tcharm_nothread Disable threads entirely. This can help determine whether a problem you encounter is caused by
our threading framework. This generally only works properly when using only one thread.

+tcharm_trace F Trace all calls made to the framework F. This can help to understand a complex program. This
feature is not available if Charm++ was compiled with CMK_OPTIMIZE.

7.6 Writing a library using TCharm

Until now, things were presented from the perspective of a user—one who writes a program for a library written on
TCharm. This section gives an overview of how to go about writing a library in Charm++ that uses TCharm.

• Compared to using plain MPI, TCharm provides the ability to access all of Charm++, including arrays and
groups.

• Compared to using plain Charm++, using TCharm with your library automatically provides your users with a
clean C/F90 API (described in the preceding chapters) for basic thread memory management, I/O, and migration.
It also allows you to use a convenient “thread->suspend()” and “thread->resume()” API for blocking a thread,
and works properly with the load balancer, unlike CthSuspend/CthAwaken.

The overall scheme for writing a TCharm-based library “Foo” is:

1. You must provide a FOO_Init routine that creates anything you’ll need, which normally includes a Chare Array
of your own objects. The user will call your FOO_Init routine from their main work routine; and normally
FOO_Init routines are collective.

2. In your FOO_Init routine, create your array bound it to the running TCharm threads, by creating it using the
CkArrayOptions returned by TCHARM_Attach_start. Be sure to only create the array once, by checking if
you’re the master before creating the array.

One simple way to make the non-master threads block until the corresponding local array element is created
is to use TCharm semaphores. These are simply a one-pointer slot you can assign using TCharm::semaPut
and read with TCharm::semaGet. They’re useful in this context because a TCharm::semaGet blocks if a local
TCharm::semaGet hasn’t yet executed.

//This is either called by FooFallbackSetuo mentioned above, or by the user
//directly from TCHARM_User_setup (for multi-module programs)
void FOO_Init(void)
{
if (TCHARM_Element()==0) {

CkArrayID threadsAID; int nchunks;
CkArrayOptions opts=TCHARM_Attach_start(&threadsAID,&nchunks);

(continues on next page)
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(continued from previous page)

//actually create your library array here (FooChunk in this case)
CkArrayID aid = CProxy_FooChunk::ckNew(opt);

}
FooChunk *arr=(FooChunk *)TCharm::semaGet(FOO_TCHARM_SEMAID);

}

3. Depending on your library API, you may have to set up a thread-private variable(Ctv) to point to your library
object. This is needed to regain context when you are called by the user. A better design is to avoid the Ctv, and
instead hand the user an opaque handle that includes your array proxy.

//_fooptr is the Ctv that points to the current chunk FooChunk and is only valid
→˓in
//routines called from fooDriver()
CtvStaticDeclare(FooChunk *, _fooptr);

/* The following routine is listed as an initcall in the .ci file */
/*initcall*/ void fooNodeInit(void)
{
CtvInitialize(FooChunk*, _fooptr);

}

4. Define the array used by the library

class FooChunk: public TCharmClient1D {
CProxy_FooChunk thisProxy;

protected:
//called by TCharmClient1D when thread changes
virtual void setupThreadPrivate(CthThread forThread)
{

CtvAccessOther(forThread, _fooptr) = this;
}

FooChunk(CkArrayID aid):TCharmClient1D(aid)
{

thisProxy = this;
tCharmClientInit();
TCharm::semaPut(FOO_TCHARM_SEMAID,this);
//add any other initialization here

}

virtual void pup(PUP::er &p) {
TCharmClient1D::pup(p);
//usual pup calls

}

// ...any other calls you need...
int doCommunicate(...);
void recvReply(someReplyMsg *m);
........

}

5. Block a thread for communication using thread->suspend and thread->resume

int FooChunk::doCommunicate(...)
{

(continues on next page)
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replyGoesHere = NULL;
thisProxy[destChunk].sendRequest(...);
thread->suspend(); //wait for reply to come back
return replyGoesHere->data;

}

void FooChunk::recvReply(someReplyMsg *m)
{
if(replyGoesHere!=NULL) CkAbort("FooChunk: unexpected reply\n");
replyGoesHere = m;
thread->resume(); //Got the reply -- start client again

}

6. Add API calls. This is how user code running in the thread interacts with the newly created library. Calls to
TCHARM_API_TRACE macro must be added to the start of every user-callable method. In addition to tracing,
these disable isomalloc allocation.

The charm-api.h macros CLINKAGE, FLINKAGE and FTN_NAME should be used to provide both C and
FORTRAN versions of each API call. You should use the “MPI capitalization standard”, where the library name
is all caps, followed by a capitalized first word, with all subsequent words lowercase, separated by underscores.
This capitalization system is consistent, and works well with case-insensitive languages like Fortran.

Fortran parameter passing is a bit of an art, but basically for simple types like int (INTEGER in fortran), float
(SINGLE PRECISION or REAL*4), and double (DOUBLE PRECISION or REAL*8), things work well. Single
parameters are always passed via pointer in Fortran, as are arrays. Even though Fortran indexes arrays based at
1, it will pass you a pointer to the first element, so you can use the regular C indexing. The only time Fortran
indexing need be considered is when the user passes you an index-the int index will need to be decremented
before use, or incremented before a return.

CLINKAGE void FOO_Communicate(int x, double y, int * arr) {
TCHARM_API_TRACE("FOO_Communicate", "foo"); //2nd parameter is the name of the

→˓library
FooChunk *f = CtvAccess(_fooptr);
f->doCommunicate(x, y, arr);

}

//In fortran, everything is passed via pointers
FLINKAGE void FTN_NAME(FOO_COMMUNICATE, foo_communicate)

(int *x, double *y, int *arr)
{

TCHARM_API_TRACE("FOO_COMMUNICATE", "foo");
FooChunk *f = CtvAccess(_fooptr);
f->doCommunicate(*x, *y, arr);

}
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8.1 Introduction

The Finite Element Method (FEM) approach is used in many engineering applications with irregular domains, from
elastic deformation problems to crack propagation to fluid flow. Charm++ is a free message-passing parallel runtime
system for machines from clusters of workstations to tightly-coupled SMPs. The Charm++ FEM framework allows
you to write a parallel FEM program, in C or Fortran 90, that closely resembles a serial version but includes a few
framework calls.

Using the FEM framework also allows you to take advantage of all the features of Charm++, including run-time load
balancing, performance monitoring and visualization, and checkpoint/restart, with no additional effort. The FEM
framework also combines naturally with other Charm++ frameworks built on TCHARM.

The FEM framework has been undergoing a wave of recent improvements. A choice to rename the new version
ParFUM has been adopted. ParFUM is short for Parallel Framework for Unstructured Meshes. Section 8.10 describes
some of the new features included in ParFUM that were not present in FEM.
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8.1.1 Philosophy

The Charm++ FEM framework is designed to be flexible, in that it provided a few very general operations, such as
loading and partitioning a “mesh.” In describing these operations, we draw on examples from structural analysis, but in
fact the same calls can be used for other applications, including fluid dynamics or partial differential equations solvers,
or even general-purpose graph manipulation.

For example, the FEM framework does not specify the number of spatial dimensions. Node locations are treated as
just another kind of node data, with no restrictions on the number of data items. This allows the FEM framework to
work with problems having any number of spatial dimensions.

8.1.2 Terminology

A FEM program manipulates elements and nodes. An element is a portion of the problem domain, also known as a
cell, and is typically some simple shape like a triangle, square, or hexagon in 2D; or tetrahedron or rectangular solid
in 3D. A node is a point in the domain, and is often the vertex of several elements. Together, the elements and nodes
form a mesh, which is the central data structure in the FEM framework.

An element knows which nodes surround it via the element’s connectivity table, which lists the nodes adjacent to
each element.

7: 3-element, 5 node mesh.

4: Connectivity table for mesh in figure 7.
Element Adjacent Nodes
e1 n1 n3 n4
e2 n1 n2 n4
e3 n2 n4 n5

A typical FEM program performs some element-by-element calculations which update adjacent node values; then
some node-by-node calculations. For example, a material dynamics program has the structure:

time loop
element loop-- Element deformation applies forces to
surrounding nodes
node loop-- Forces and boundary conditions change node

(continues on next page)
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(continued from previous page)

positions
end time loop

We can parallelize such FEM programs by partitioning the serial mesh elements into several smaller meshes, or
chunks. There is normally at least one chunk per processor; and often even more. During partitioning, we give nodes
and elements new, local numbers within that chunk. In the figure below, we have partitioned the mesh above into two
chunks, A and B.

8: Partitioned mesh.

5: Connectivity table for chunk A in figure 8.
Element Adjacent Nodes
e1 n1 n3 n4
e2 n1 n2 n4

6: Connectivity table for chunk B in figure 8.
Element Adjacent Nodes
e1 n1 n2 n3

Note that chunk A’s node n2 and B’s node n1 were actually the same node in the original mesh- partitioning split this
single node into two shared copies (one on each chunk). However, since adding forces is associative, we can handle
shared nodes by computing the forces normally (ignoring the existence of the other chunk), then adding both chunks’
net force for the shared node together. This “node update” will give us the same resulting force on each shared node
as we would get without partitioning, thus the same positions, thus the same final result.

For example, under hydrostatic pressure, each chunk might compute a local net force vector for its nodes as shown in
Figure 9 (a). After adding forces across chunks, we have the consistent global forces shown in Figure 9 (b).

Hence, each chunk’s time loop has the structure:

chunk time loop
element loop-- Element deformation applies forces to
surrounding nodes
<update forces on shared nodes>
node loop-- Forces and boundary conditions change node

(continues on next page)
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9: A force calculation decomposed across chunks: (a) before update (b) after updating forces across nodes.

(continued from previous page)

positions
end time loop

This is exactly the form of the time loop for a Charm++ FEM framework program. The framework will accept a
serial mesh, partition it, distribute the chunks to each processor, then you run your time loop to perform analysis and
communication.

8.1.3 Structure of a Classic FEM Framework Program

A classic FEM framework program consists of two subroutines: init() and driver(). init() is called by the FEM
framework only on the first processor - this routine typically does specialized I/O, startup and shutdown tasks. driver()
is called for every chunk on every processor, and does the main work of the program. In the language of the TCHARM
manual, init() runs in the serial context, and driver() runs in the parallel context.

subroutine init
read the serial mesh and configuration data

end subroutine
/* after init, the FEM framework partitions the mesh */

subroutine driver
get local mesh chunk
time loop

FEM computations
communicate boundary conditions
more FEM computations

end time loop
end subroutine

In this mode, the FEM framework sets up a default writing mesh during init(), partitions the mesh after init(), and sets
up the partitioned mesh as the default reading mesh during driver().
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8.1.4 Structure of an AMPI FEM Framework Program

In addition to the classic init/driver structure above, you can write an FEM framework program using the MPI style.
This is a more general, more flexible method of running the program, but it is more complicated than the classic mode.
All FEM framework calls are available in either mode.

main program
MPI_Init
FEM_Init(MPI_COMM_WORLD)
if (I am master processor)

read mesh
partition mesh
time loop

FEM computations
communicate boundary conditions
more FEM computations

end time loop
end main program

In this mode, the FEM framework does not set a default reading or writing mesh, and does no partitioning; so you must
use the FEM_Mesh routines to create and partition your mesh. See the AMPI manual for details on how to declare the
main routine.

The driver() portion of a classic FEM program strongly resembles an MPI mode main routine—in fact, a classic FEM
program can even make MPI calls from its driver() routine, because the FEM framework is implemented directly on
top of MPI.

There is even a special shell script for collecting up the FEM framework source code to build a non-Charm, MPI-only
version of the FEM framework. To build FEM in this manner, you first build Charm++ normally, then run a script to
collect up the neccessary source files (the FEM framework, a small number of Charm configuration and utility files,
and the METIS library), and finally build the library using the usual MPI compiler commands:

$ cd charm/
$ ./src/libs/ck-libs/fem/make_fem_alone.sh
$ cd fem_alone/
$ mpicc -I. -DFEM_ALONE=1 -c *.c *.C
$ ar cr libfem_alone.a *.o

You will then have to build your application with the MPI compilers, and manually point to this “fem_alone” directory
to find include files and the new FEM library. A typical compiler invocation would be:

$ mpif90 -I$HOME/charm/fem_alone -L$HOME/charm/fem_alone foo.f90 -lfem_alone -o foo

This “standalone”, non-Charm++ method of building the FEM framework prevents the use of load balancing or the
other features of Charm++, so we do not recommend it for normal use.

8.1.5 Compilation and Execution

A FEM framework program is a Charm++ program, so you must begin by downloading the latest source version of
Charm++ from http://charm.cs.uiuc.edu/. Build the source with ./build FEM version or cd into
the build directory, version/tmp, and type make FEM. To compile a FEM program, pass the -language fem
(for C) or -language femf (for Fortran) option to charmc. You can also build using the “fem_alone” mode
described at the end of the section above.

In a charm installation, see charm/version/pgms/charm++/fem/ for several example and test programs.
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At runtime, a Charm++/FEM framework program accepts the following options, in addition to all the usual Charm++
options described in the Charm++ “Installation and Usage Manual”.

• +vp 𝑣

Create 𝑣 mesh chunks, or “virtual processors”. By default, the number of mesh chunks is equal to the number
of physical processors (set with +p 𝑝).

• -write

Skip driver(). After running init() normally, the framework partitions the mesh, writes the mesh partitions to
files, and exits. As usual, the +vp 𝑣 option controls the number of mesh partitions.

This option is only used in the classic mode—MPI-style programs are not affected.

• -read

Skip init(). The framework reads the partitioned input mesh from files and calls driver(). Together with -write,
this option allows you to separate out the mesh preparation and partitioning phase from the actual parallel
solution run.

This can be useful, for example, if init() requires more memory to hold the unpartitioned mesh than is available
on one processor of the parallel machine. To avoid this limitation, you can run the program with -write on a
machine with a lot of memory to prepare the input files, then copy the files and run with -read on a machine
with a lot of processors.

-read can also be useful during debugging or performance tuning, by skipping the (potentially slow) mesh
preparation phase. This option is only used in the classic mode—MPI-style programs are not affected.

• +tcharm_trace fem

Give a diagnostic printout on every call into the FEM framework. This can be useful for locating a sudden crash,
or understanding how the program and framework interact. Because printing the diagnostics can slow a program
down, use this option with care.

8.2 FEM Framework API Reference

Some of the routines in the FEM framework have different requirements or meanings depending on where they are
called from. When a routine is described as being “called from driver”, this means it is called in the parallel con-
text—from driver() itself, any subroutine called by driver(), or from whatever routine is run by the FEM-attached
TCHARM threads. When a routine is described as being “called from init”, this means it is called in the serial con-
text—from init() itself, from any subroutine called from init(), from a routine called by FEM_Update_mesh, or from
whatever TCHARM code executes before the FEM_Attach.

8.2.1 Utility

int FEM_Num_partitions();

INTEGER FUNCTION :: FEM_Num_partitions()

Return the number of mesh chunks in the current computation. Can only be called from the driver routine.

int FEM_My_partition();

INTEGER FUNCTION :: FEM_My_partition()

Return the number of the current chunk, from 0 to num_partitions-1. Can only be called from the driver routine.
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double FEM_Timer();

DOUBLE PRECISION FUNCTION :: FEM_Timer()

Return the current wall clock time, in seconds. Resolution is machine-dependent, but is at worst 10ms.

void FEM_Print_partition();

SUBROUTINE FEM_Print_partition()

Print a debugging representation of the current chunk’s mesh. Prints the entire connectivity array, and data associated
with each local node and element.

void FEM_Print(const char *str);

SUBROUTINE FEM_Print(str)
CHARACTER*, INTENT(IN) :: str

Print the given string, with “[<chunk number>]” printed before the text.

This routine is no longer required: you can now use the usual printf, PRINT, or WRITE statements.

8.3 Mesh Nodes and Elements

These routines describe and retrieve the finite element mesh for this computation. A mesh, from the framework’s
perspective, is a list of elements, nodes, and other data that describes the computational domain. The FEM framework
provides extensive support for creating, manipulating, and partitioning meshes.

A serial mesh consists of a single large piece. It’s usually easiest to read and write serial meshes to existing, non-
parallel file formats, and it can be easier to manipulate serial meshes. By contrast, a parallel mesh consists of several
pieces, called chunks or partitions. Different processors can work on different pieces of a parallel mesh, so most of the
computation is done using parallel meshes. A simple program might create or read in a single serial mesh in init, get
a local chunk of the partitioned1 mesh in driver, and work on that chunk for the rest of the program. A more complex
program might set an initial mesh in init; then get, work on, reassemble and repartition the mesh several times in driver
via FEM_Update_mesh.

8.3.1 Mesh Entity Types

A mesh consists of entities, such as nodes and elements. Entities always have a local number, which is just the enti-
ties’ current index in its array. Entites may also have a global number, which is the entity’s index in the unpartitioned
serial mesh. Entities have data values called attributes. For example, the location of each node might be called the
“location” attribute of the “node” entity type. Attributes are always stored in regular arrays indexed by the entity’s
local number. This table lists the different attributes that can be read or written for each type of entity.

A shared entity is a boundary entity that two or more chunks can both update—currently, only nodes can be shared.
Shared nodes are mixed in with regular nodes, and the framework currently provides no way to identify which nodes
are shared.

A ghost entity is a boundary entity that is asymmetrically shared—one side provides values for the ghost from one
of its real entities, and the other sides accept read-only copies of these values. Ghosts are described in more detail in
Section 8.5, and can be accessed by adding the constant FEM_GHOST to the corresponding real entity’s type.

1 The framework uses the excellent graph partitioning package Metis.

278 Chapter 8. Finite Element Method (FEM) Framework



Charm++ Documentation

The different kinds of entities are described in the following sections.

Real Entity Ghost Entity
FEM_NODE FEM_GHOST+FEM_NODE
FEM_ELEM+𝑒𝑙𝑇𝑦𝑝𝑒 FEM_GHOST+FEM_ELEM+𝑒𝑙𝑇𝑦𝑝𝑒
FEM_SPARSE+𝑠𝑝𝑎𝑟𝑠𝑒𝑇𝑦𝑝𝑒 FEM_GHOST+FEM_SPARSE+𝑠𝑝𝑎𝑟𝑠𝑒𝑇𝑦𝑝𝑒

Nodes

FEM_NODE is the entity code for nodes, the simplest kind of entity. A node is a single point in the domain, and
elements are defined by their nodes. Nodes can have the following attributes:

• FEM_DATA+𝑡𝑎𝑔 Uninterpreted user data, which might include material properties, boundary conditions, flags,
etc. User data can have any data type and width. 𝑡𝑎𝑔 can be any number from 0 to one billion—it allows you to
register several data fields with a single entity.

• FEM_GLOBALNO Global node numbers. Always a 1-wide index type.

• FEM_SYMMETRIES Symmetries that apply to this node. Always a 1-wide FEM_BYTE.

• FEM_NODE_PRIMARY Marker indicating that this chunk is responsible for this node. Every node is primary
in exactly one chunk. This attribute is always a 1-wide FEM_BYTE containing 0 or 1.

Elements

FEM_ELEM+𝑒𝑙𝑇𝑦𝑝𝑒 is the entity code for one kind of element. 𝑒𝑙𝑇𝑦𝑝𝑒 is a small, user-defined value that uniquely
identifies this element type. Like nodes, elements can have the attributes FEM_DATA+𝑡𝑎𝑔, FEM_GLOBALNO, or
FEM_SYMMETRIES; but every element type must have this attribute:

• FEM_CONN Lists the numbers of the nodes around this element. See the description in the ghost section
for special ghost connectivity. Always an index type-FEM_INDEX_0 for C-style 0-based node indexing, or
FEM_INDEX_1 for Fortran-style 1-based node indexing.

Sparse Elements

FEM_SPARSE+𝑠𝑝𝑎𝑟𝑠𝑒𝑇𝑦𝑝𝑒 is the entity code for one kind of sparse element. Again, 𝑠𝑝𝑎𝑟𝑠𝑒𝑇𝑦𝑝𝑒 is a small, user-
defined unique value. The only difference between ordinary elements and sparse elements regards partitioning. Ig-
noring ghosts, ordinary elements are never duplicated—each element is sent to its own chunk. Sparse elements may
be duplicated, and are always dependent on some other entity for their partitioning. Sparse elements have all the
attributes of ordinary elements: FEM_DATA+𝑡𝑎𝑔, FEM_GLOBALNO, FEM_SYMMETRIES, and FEM_CONN, as
well as the special attribute FEM_SPARSE_ELEM.

Without the FEM_SPARSE_ELEM attribute, a sparse element will be copied to every chunk that contains all the
sparse element’s nodes. This is useful for things like node-associated boundary conditions, where the sparse element
connectivity might list the nodes with boundary conditions, and the sparse element data might list the boundary
condition values.

The FEM_SPARSE_ELEM attribute lists the ordinary element each sparse element should be partitioned with. This at-
tribute consists of pairs (𝑒𝑙𝑇𝑦𝑝𝑒,𝑒𝑙𝑁𝑢𝑚), indicating that this sparse element should be sent to wherever the 𝑒𝑙𝑁𝑢𝑚’th
FEM_ELEM+𝑒𝑙𝑇𝑦𝑝𝑒 is partitioned.

• FEM_SPARSE_ELEM Lists the element we should be partitioned with. The width of this attribute is always 2,
and the data type must be an index type-FEM_INDEX_0 or FEM_INDEX_1.
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8.3.2 Mesh Entity Manipulation

int FEM_Mesh_default_read(void);

INTEGER function :: FEM_Mesh_default_read()

Return the default reading mesh. This routine is valid:

• From driver(), to return the partitioned mesh.

• During your FEM_Update_mesh routine, to return the assembled mesh.

• Anytime after a call to FEM_Mesh_set_default_read.

int FEM_Mesh_default_write(void);

INTEGER function :: FEM_Mesh_default_write()

Return the default writing mesh. This routine is valid:

• From init(), to change the new serial mesh.

• From driver(), to change the new partitioned mesh.

• During your FEM_Update_mesh routine, to change the new serial mesh.

• Anytime after a call to FEM_Mesh_set_default_write.

int FEM_Mesh_get_length(int mesh,int entity);

INTEGER function :: FEM_Mesh_get_length(mesh,entity)

Return the number of entitys that exist in this mesh.

This call can be used with any entity. For example, to get the number of nodes,

nNodes=FEM_Mesh_get_length(mesh,FEM_NODE)

To get the number of ghost nodes,

nGhostNodes=FEM_Mesh_get_length(mesh,FEM_GHOST+FEM_NODE)

To get the number of real elements of type 2,

nElem=FEM_Mesh_get_length(mesh,FEM_ELEM+2)

void FEM_Mesh_data(int mesh,int entity,int attr, void *data, int
first, int length, int datatype,int width);

SUBROUTINE FEM_Mesh_data(mesh,entity,attr,data,first,length,datatype,width)
INTEGER, INTENT(IN) :: mesh,entity,attr,first,length,datatype,width
datatype, intent(inout) :: data(width,length)

This is the one routine for getting or setting entity’s attributes on the mesh.

• mesh A FEM mesh object. Depending on whether this is a reading or writing mesh, this routine reads from or
writes to the data array you pass in.

• entity A FEM entity code, for example FEM_NODE or FEM_GHOST+FEM_ELEM+1.
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• attr A FEM attribute code, for example FEM_DATA+𝑡𝑎𝑔 or FEM_CONN.

• data The user data to get or set. Each row of this array consists of width values, and contains the data values of
the attribute for the corresponding entity. This data must be formatted as one of:

datatype :: data(width,length)
datatype :: data(width*length)

• first The first entity to affect. In C, this is normally 0; in Fortran, this is normally 1.

• length The number of entities to affect. The entities affected are thus those numbered from first to first+length-
1. For now, length must be either 1, to touch a single entity; or else the total number of entities-that is,
FEM_Mesh_get_length(mesh,entity).

• datatype The data type stored in this attribute. This is one of the standard FEM data types FEM_BYTE,
FEM_INT, FEM_FLOAT, or FEM_DOUBLE; or else the C-style 0-based index type FEM_INDEX_0 or the
Fortran-style 1-based index type FEM_INDEX_1. Alternatively, the equivalent types IDXL_BYTE, IDXL_INT,
IDXL_FLOAT, IDXL_DOUBLE, IDXL_INDEX_0, or IDXL_INDEX_1 may be used.

• width The number of data items per entity.

For example, to set the element connectivity, which is stored as 3 integer node indices in nodes, you would:

/* C version */
int *nodes=new int[3*nElems];
... fill out nodes ...
FEM_Mesh_data(mesh,FEM_ELEM+1,FEM_CONN, nodes, 0,nElems, FEM_INDEX_0, 3);
... continue to use or delete nodes ...

! F90 version
ALLOCATE(nodes(3,nElems))
... fill out nodes ...
CALL FEM_Mesh_data(mesh,FEM_ELEM+1,FEM_CONN, nodes, 1,nElems, FEM_INDEX_1, 3)
... continue to use or delete nodes ...

To add a new node property with 2 double-precision numbers from an array mat (containing, for example, material
properties), you would first pick an unused user data “tag”, for example 13, and:

/* C version */
double *mat=new double[2*nNodes];
...
FEM_Mesh_data(mesh,FEM_NODE, FEM_DATA+13, mat, 0,nNodes, FEM_DOUBLE, 2);

! F90 version
ALLOCATE(mat(2,nNodes))
CALL FEM_Mesh_data(mesh,FEM_NODE,FEM_DATA+13, mat, 1,nNodes, FEM_DOUBLE, 2)

8.3.3 Entity Inquiry

int FEM_Mesh_get_width(int mesh,int entity,int attr);

INTEGER function :: FEM_Mesh_get_width(mesh,entity,attr)
INTEGER, INTENT(IN) :: mesh,entity,attr

Return the width of the attribute attr of entity of mesh. This is the value previously passed as “width” to
FEM_Mesh_data.
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int FEM_Mesh_get_datatype(int mesh,int entity,int attr);

INTEGER function :: FEM_Mesh_get_datatype(mesh,entity,attr)
INTEGER, INTENT(IN) :: mesh,entity,attr

Return the FEM data type of the attribute attr of entity of mesh. This is the value previously passed as “datatype” to
FEM_Mesh_data.

int FEM_Mesh_get_entities(int mesh,int *entities);

INTEGER function :: FEM_Mesh_get_entities(mesh,entities)
INTEGER, INTENT(IN) :: mesh
INTEGER, INTENT(OUT) :: entities(:)

Extract an array of the different entities present in this mesh. Returns the number of entity types present. The entities
array must be big enough to hold all the different entities in the mesh.

For example, a simple mesh might have two entity types: FEM_NODE and FEM_ELEM+1.

int FEM_Mesh_get_attributes(int mesh,int entity,int *attributes);

INTEGER function :: FEM_Mesh_get_attributes(mesh,entity,attributes)
INTEGER, INTENT(IN) :: mesh, entity
INTEGER, INTENT(OUT) :: attributes(:)

Extract an array of the different attributes of this entity. Returns the number of attribute types present. The attributes
array must be big enough to hold all the attributes.

For example, a simple element might have three attributes: FEM_CONN for node connectivity, FEM_GLOBALNO
for global element numbers, and FEM_DATA+7 for a material type.

const char *FEM_Get_entity_name(int entity,char *storage);
const char *FEM_Get_attr_name(int attr,char *storage);
const char *FEM_Get_datatype_name(int datatype,char *storage);

Return a human-readable name for this FEM entity, attribute, or datatype. The storage array must point to a buffer of
at least 100 characters; this array might be used as temporary space to store the returned string.

These routines are only available in C.

8.3.4 Advanced Entity Manipulation

void FEM_Mesh_data_offset(int mesh,int entity,int attr, void *data,
int first, int length, int datatype,int width, int offsetBytes,int
distanceBytes,int skewBytes);

SUBROUTINE FEM_Mesh_data_offset(mesh,entity,attr,data,first,length,datatype,width,
offsetBytes,distanceBytes,skewBytes)
INTEGER, INTENT(IN) :: mesh,entity,attr,first,length,datatype,width
INTEGER, INTENT(IN) :: offsetBytes,distanceBytes,skewBytes
datatype, intent(inout) :: data(width,length)

This routine is a more complicated version of FEM_Mesh_data. It allows you to get or set a mesh field directly from
a user-defined structure. See the documentation of IDXL_Layout_offset in Section 8.8.2 for details on how to set
offsetBytes, distanceBytes, and skewBytes.

282 Chapter 8. Finite Element Method (FEM) Framework



Charm++ Documentation

void FEM_Mesh_data_layout(int mesh,int entity,int attr, void *data,
int firstItem, int length, IDXL_Layout_t layout);

SUBROUTINE FEM_Mesh_data_layout(mesh,entity,attr,data,first,length,layout)
INTEGER, INTENT(IN) :: mesh,entity,attr,first,length,layout
INTEGER, INTENT(IN) :: layout

This routine is a more complicated version of FEM_Mesh_data. Like FEM_Mesh_data_offset, it allows you to get
or set a mesh field directly from a user-defined structure; but this routine expects the structure to be described by an
IDXL_Layout object.

8.4 Meshes

A “mesh” is a collection of nodes and elements knit together in memory, as described in Section 8.1.2. Meshes are
always referred to by an integer that serves as a handle to the local mesh.

This section describes routines to manipulate entire meshes at once: this includes calls to create and delete meshes,
read and write meshes, partition and reassemble meshes, and send meshes between processors.

Only a few of the mesh routines are collective; most of them only describe local data and hence operate independently
on each chunk.

8.4.1 Mesh Routines

int FEM_Mesh_allocate(void);

INTEGER FUNCTION :: FEM_Mesh_allocate()

Create a new local mesh object. The mesh is initially empty, but it is a setting mesh, so call FEM_Mesh_data to fill
the mesh with data.

int FEM_Mesh_deallocate(int mesh);

SUBROUTINE FEM_Mesh_deallocate(mesh)
INTEGER, INTENT(IN) :: mesh

Destroy this local mesh object, and its associated data.

int FEM_Mesh_copy(int mesh);

INTEGER FUNCTION FEM_Mesh_copy(mesh)
INTEGER, INTENT(IN) :: mesh

Create a new mesh object with a separate copy of the data stored in this old mesh object.

void FEM_Mesh_write(int mesh,const char *prefix,int partNo,int
nParts);

SUBROUTINE FEM_Mesh_write(mesh,prefix,partNo,nParts)
INTEGER, INTENT(IN) :: mesh
INTEGER, INTENT(IN) :: partNo,nParts
character (LEN=*), INTENT(IN) :: prefix

8.4. Meshes 283



Charm++ Documentation

Write this mesh to the file “prefix_vppartNo_nParts.dat”.

By convention, partNo begins at 0; but no index conversion is performed so you can assign any meaning to partNo
and nParts. In particular, this routine is not collective-you can read any mesh from any processor. For example, if
prefix is “foo/bar”, the data for the first of 7 chunks would be stored in “foo/bar_vp0_7.dat” and could be read using
FEM_Mesh_read(’foo/bar’,0,7).

Meshes are stored in a machine-portable format internal to FEM. The format is currently ASCII based, but it is subject
to change. We strongly recommend using the FEM routines to read and write these files rather than trying to prepare
or parse them yourself.

int FEM_Mesh_read(const char *prefix,int partNo,int nParts);

INTEGER FUNCTION :: FEM_Mesh_read(prefix,partNo,nParts)
INTEGER, INTENT(IN) :: partNo,nParts
character (LEN=*), INTENT(IN) :: prefix

Read a new mesh from the file “prefix_vppartNo_nParts.dat”. The new mesh begins in getting mode, so you can read
the data out of the mesh using calls to FEM_Mesh_data.

int FEM_Mesh_broadcast(int mesh,int fromRank,FEM_Comm_t comm_context);

INTEGER FUNCTION :: FEM_Mesh_broadcast(mesh,fromRank,comm_context)
INTEGER, INTENT(IN) :: mesh,fromRank,comm_context

Take the mesh mesh on processor fromRank (normally 0), partition the mesh into one piece per processor (in the MPI
communicator comm_context, and return each processor its own piece of the partitioned mesh. This call is collective,
but only processor fromRank needs to pass in a mesh; the mesh value is ignored on other processors.

For example, if rank 0 has a mesh named “src”, we can partition src for all the processors by executing:

m=FEM_Mesh_broadcast(src,0,MPI_COMM_WORLD);

The new, partitioned mesh is in getting mode, so you can read the partitioned data using calls to FEM_Mesh_data.
This call does not affect mesh in any way.

int FEM_Mesh_reduce(int mesh,int toRank,FEM_Comm_t comm_context);

INTEGER FUNCTION :: FEM_Mesh_reduce(mesh,toRank,comm_context)
INTEGER, INTENT(IN) :: mesh,toRank,comm_context

This call is the reverse operation of FEM_Mesh_broadcast: each processor passes in a mesh in mesh, the mesh is
assembled, and the function returns the assembled mesh to processor toRank. This call is collective, but only processor
toRank is returned a mesh; all other processors are returned the non-mesh value 0.

The new, reassembled mesh is in getting mode. This call does not affect mesh.

8.4.2 Mesh Utility

int FEM_Mesh_is_get(int mesh)

INTEGER FUNCTION :: FEM_Mesh_is_get(mesh)
INTEGER, INTENT(IN) :: mesh

Return true if this mesh is in getting mode. A getting mesh returns values to FEM_Mesh_data.
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int FEM_Mesh_is_set(int mesh)

INTEGER FUNCTION :: FEM_Mesh_is_set(mesh)
INTEGER, INTENT(IN) :: mesh

Return true if this mesh is in setting mode. A setting mesh extracts values from FEM_Mesh_data.

void FEM_Mesh_become_get(int mesh)

SUBROUTINE :: FEM_Mesh_become_get(mesh)
INTEGER, INTENT(IN) :: mesh

Put this mesh in getting mode, so you can read back its values.

void FEM_Mesh_become_set(int mesh)

SUBROUTINE :: FEM_Mesh_become_set(mesh)
INTEGER, INTENT(IN) :: mesh

Put this mesh in setting mode, so you can set its values.

void FEM_Mesh_print(int mesh);

SUBROUTINE FEM_Mesh_print(mesh)
INTEGER, INTENT(IN) :: mesh

Print out a text description of the nodes and elements of this mesh.

8.4.3 Advanced Mesh Manipulation

typedef void (*FEM_Userdata_fn)(pup_er p,void *data);
void FEM_Mesh_pup(int mesh,int pupTag, FEM_Userdata_fn fn, void *data);

SUBROUTINE myPupFn(p,data)
INTEGER, INTENT(IN) :: p
TYPE(myType) :: data

SUBROUTINE FEM_Mesh_pup(mesh,pupTag,myPupFn,data)
INTEGER, INTENT(IN) :: mesh,pupTag
SUBROUTINE :: myPupFn
TYPE(myType) :: data

Store data with this mesh. data is a struct or TYPE with a pup function myPupFn—see the TCharm manual for details
on writing a pup function. pupTag is an integer used to distinguish different pieces of data associated with this mesh.

When called on a setting mesh, this routine stores data; when called on a getting mesh, this routine reads out data.

data will be associated with the mesh itself, not any entity in the mesh. This makes it useful for storing shared data,
often simulation constants such as the timestep or material properties. data is made a part of the mesh, and it will be
read and written, sent and received, partitioned and assembled with the mesh.

void FEM_Mesh_send(int mesh,int toRank,int tag,FEM_Comm_t
comm_context);
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SUBROUTINE FEM_Mesh_send(mesh,toRank,tag,comm)
INTEGER, INTENT(IN) :: mesh,toRank,tag,comm

Send the mesh mesh to the processor toRank, using the MPI tag tag and communicator comm_context. Tags are
normally only needed if you plan to mix direct MPI calls with your FEM calls.

This call does not affect mesh.

int FEM_Mesh_recv(int fromRank,int tag,FEM_Comm_t comm_context);

INTEGER FUNCTION FEM_Mesh_recv(fromRank,tag,comm)
INTEGER, INTENT(IN) :: fromRank,tag,comm

Receive a new mesh from the processor fromRank, using the MPI tag tag and communicator comm_context. You
can also use the special values MPI_ANY_SOURCE as fromRank to receive a mesh from any processor, or use
MPI_ANY_TAG for tag to match any tag.

The new mesh is returned in getting mode.

void FEM_Mesh_partition(int mesh,int nParts,int *destMeshes);

SUBROUTINE FEM_Mesh_partition(mesh,nParts,destMeshes)
INTEGER, INTENT(IN) :: mesh,nParts
INTEGER, INTENT(OUT) :: destMeshes(nParts)

Divide mesh into nParts pieces, and store the pieces into the array destMeshes.

The partitioned mesh is returned in getting mode. This is a local call; FEM_Mesh_broadcast is the collective version.
This call does not affect the source mesh mesh.

int FEM_Mesh_assemble(int nParts,const int *srcMeshes);

INTEGER FUNCTION FEM_Mesh_assemble(nParts,srcMeshes)
INTEGER, INTENT(IN) :: nParts, srcMeshes(nParts)

Assemble the nParts meshes listed in srcMeshes into a single mesh. Corresponding mesh pieces are matched using the
attribute FEM_GLOBALNO. Specifically, if the value of the integer index attribute FEM_GLOBALNO for an entity
is 𝑖, the entity will be given the number 𝑖 in the reassembled mesh. If you do not set FEM_GLOBALNO, the different
pieces of the mesh will remain separate—even “matching” nodes will not be merged.

The assembled mesh is returned in getting mode. This is a local call; FEM_Mesh_reduce is the collective version.
This call does not affect the source meshes.

void FEM_Mesh_copy_globalno(int src_mesh,int dest_mesh);

SUBROUTINE FEM_Mesh_copy_globalno(src_mesh,dest_mesh)
INTEGER, INTENT(IN) :: src_mesh,dest_mesh

Copy the FEM_GLOBALNO attribute for all the entity types in src_mesh into all the matching types in dest_mesh,
where the matching types exist. This call is often used before an FEM_Mesh_assemble or FEM_Mesh_reduce to
synchronize global numbers before reassembly.
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8.5 Mesh Ghosts

A ghost entity is a local, read-only copy of a real entity on another chunk. Ghosts are typically added to the boundary
of a chunk to allow the real (non-ghost) elements at the boundary to access values across the processor boundary. This
makes a chunk “feel” as if it was part of a complete unpartitioned mesh; and can be useful with cell-centered methods,
and in mesh modification.

10: A small mesh partitioned into two pieces.

11: The same mesh with one layer of edge-adjacent ghosts.

12: The same mesh with one layer of node-adjacent ghosts.

In Figure 10, we begin with a small mesh partitioned into pieces on the left and right. In Figure 11, we have added
ghost elements (dark hashing) that share an edge with adjacent real elements (light hatching). In Figure 12, we add
ghost elements that share at least one node with adjacent real elements.

8.5.1 Ghost Numbering

Ghosts and real entities are stored by the framework in separate lists—to access the ghost en-
tity type, add FEM_GHOST to the real entity’s type. For example, FEM_GHOST+FEM_ELEM+1
lists the ghost elements for elType 1. To get the number of ghost nodes, you would call
FEM_Mesh_get_length(mesh,FEM_GHOST+FEM_NODE).

For real elements, the element connectivity always consists of real nodes. But for ghost elements, the adjacent nodes
may be missing, or may themselves be ghosts. Thus ghost element connectivity lists may include the invalid value
-1 (in C) or 0 (in Fortran) to indicate that the corresponding node is not present; or may include values less than this,
which indicate the corresponding node is a ghost. In C, ghost node 𝑖 is indicated by the value−2− 𝑖, while in Fortran,
ghost node 𝑖 is indicated by the value −𝑖. This node indexing system is illustrated in Figure 13, This indexing system
is bizarre, but it allows us to keep the real and ghost nodes clearly separate, while still allowing real and ghost nodes
to be added in increasing order at both ends.
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13: Node indices used in the element connectivity array. There are 𝑛 real nodes and 𝑚 ghosts.

Since the C tests are complicated, in C we recommend using these macros:

• FEM_Is_ghost_index(i) returns true if 𝑖 represents a ghost node. In Fortran, use the test 𝑖 .lt. 0

• FEM_From_ghost_index(i) returns the ghost node’s index given its connectivity entry. In Fortran, use the
expression −𝑖.

• FEM_To_ghost_index(i) returns the connectivity entry for a given ghost node index. In Fortran, again use the
expression −𝑖.

For example, a quadrilateral ghost element that is adjacent to, respectively, two real nodes 23 and 17, the tenth local
ghost node, and one not-present node might have a connectivity entry of 23,17,-11,-1 (in C) or 23,17,-10,0 (in Fortran).

Applications may wish to use some other numbering, such as by storing all the ghost nodes after all the real nodes.
The code to extract and renumber the connectivity of some 3-node triangles stored in FEM_ELEM+2 would be:

/* C version */
int nReal=FEM_Mesh_get_length(mesh,FEM_ELEM+2);
int nGhost=FEM_Mesh_get_length(mesh,FEM_GHOST+FEM_ELEM+2);
typedef int intTriplet[3];
intTriplet *conn=new intTriplet[nReal+nGhost];
/* Extract real triangles into conn[0..nReal-1] */
FEM_Mesh_data(mesh,FEM_ELEM+2,FEM_CONN, &conn[0][0], 0,nReal, 3,FEM_INDEX_0);
/* Extract ghost triangles into conn[nReal..nReal+nGhost-1] */
FEM_Mesh_data(mesh,FEM_GHOST+FEM_ELEM+2,FEM_CONN, &conn[nReal][0], 0,nGhost, 3,FEM_
→˓INDEX_0);

/* Renumber the ghost triangle connectivity */
for (int t=nReal;t<nReal+nGhost;t++)
for (int i=0;i<3;i++) {
int in=conn[t][i]; /* uses FEM ghost node numbering */
int out; /* uses application's ghost numbering */
if (in==-1) {

out=some_value_for_missing_nodes;
} else if (FEM_Is_ghost_index(in)) {

out=first_application_ghost+FEM_From_ghost_index(in);
} else /*regular real node*/ {

out=in;
}
conn[t][i]=out;

}

! F90 version
INTEGER, ALLOCATABLE :: conn(3,:)
INTEGER :: nReal,nGhost,t,i,in,out

(continues on next page)
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(continued from previous page)

nReal=FEM_Mesh_get_length(mesh,FEM_ELEM+2)
nGhost=FEM_Mesh_get_length(mesh,FEM_GHOST+FEM_ELEM+2)
ALLOCATE(conn(3,nReal+nGhost))
! Extract real triangles into conn[1..nReal]
CALL FEM_Mesh_data(mesh,FEM_ELEM+2,FEM_CONN, conn, 1,nReal, 3,FEM_INDEX_1)
! Extract ghost triangles into conn[nReal+1..nReal+nGhost]
CALL FEM_Mesh_data(mesh,FEM_GHOST+FEM_ELEM+2,FEM_CONN, conn(1,nReal+1), 1,nGhost, 3,
→˓FEM_INDEX_1)

! Renumber the ghost triangle connectivity
DO t=nReal+1,nReal+nGhost

DO i=1,3
in=conn(i,t)
IF (in .EQ. 0) out=some_value_for_missing_nodes
IF (in .LT. 0) out=first_application_ghost-1+(-in)
IF (in .GT. 0) out=in
conn(i,t)=out

END DO
END DO

8.5.2 Setting up the ghost layer

The framework’s ghost handling is element-centric. You specify which kinds of elements should be ghosts and how
they connect by listing their faces before partitioning.

void FEM_Add_ghost_layer(int nodesPerFace,int doAddNodes);

SUBROUTINE FEM_Add_ghost_layer(nodesPerFace,doAddNodes)
INTEGER, INTENT(IN) :: nodesPerFace,doAddNodes

This routine creates a new layer of ghosts around each FEM chunk. nodesPerFace is the number of shared nodes that
together form a “face”. doAddNodes specifies that you want ghost nodes around your ghost elements. If doAddNodes
is 0, ghost elements will have invalid -1 (in C) or 0 (in Fortran) connectivity entries where there is no corresponding
local node.

A face is an unordered “tuple” of nodes, and is an abstract way to describe which ghosts your application needs—an
element will be added to your chunk if it connects to at least one of your elements’ faces. For example, if you have a
3D, tetrahedral element that require ghosts on all 4 of its sides, this is equivalent to requiring ghosts of every element
that shares all 3 nodes of one of your triangular faces, so for you a face is a 3-node triangle. If you have a 2D shape
and want edge-adjacency, for you a face is a 2-node edge. If you want node-adjacent ghosts, a face is a single node.

Calling this routine several times creates several layers of ghost elements, and the different layers need
not have the same parameters.

void FEM_Add_ghost_elem(int elType,int facesPerElem,const int

*elem2face);

SUBROUTINE FEM_Add_ghost_elem(elType,facesPerElem,elem2face)
INTEGER, INTENT(IN) :: elType,facesPerElem
INTEGER, INTENT(IN) :: elem2face(nodesPerFace,facesPerElem)

This call is used to specify which type of element is to be added to the current ghost layer. facesPerElem and elem2face
specify a mapping between each element and the surrounding faces. The elem2face table lists, for each face, the nodes
of this element which form the face, specified as element-local numbers—indices into this element’s connectivity
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entry. The elem2face table should have nodesPerFace*facesPerElem entries, and no entry should be greater than
nodePerEl for that element type.

Because all faces must take up the same space in the array, elem2face can include special indices— -1 for C, 0 for
Fortran—that indicate the corresponding face is actually shorter than usual. For example, if nodesPerFace for this layer
is 4, for 4-node quadrilateral faces, you could set one entry in elem2face to -1 to specify this is a 3-node triangular
face. Faces of different lengths will never match, so this is just a simple way to add ghosts from two kinds of faces at
once.

The above two routines are always used together. For example, if your elements are 3-node triangles and you only
require one shared node for inclusion in a single ghost layer, you would use:

FEM_Add_ghost_layer(1,1); /* 1 node per face: node adjacency */
const static int tri2node[]={0,1,2};
FEM_Add_ghost_elem(0,3,tri2node); /* triangles are surrounded by 3 nodes */

If you require two shared nodes (a shared edge), the code will look like:

FEM_Add_ghost_layer(2,1); /* 2 nodes per face: edge adjacency */
const static int tri2edge[]={0,1, 1,2, 2,0};
FEM_Add_ghost_elem(0,3,tri2edge); /*triangles are surrounded by 3 edges */

8.5.3 Symmetries and Ghosts-Geometric Layer

The FEM framework can create ghosts not only of things that are on other processors, but also for various problem
symmetries, like mirror reflection, and various types of periodicities. The interface for these ghosts is simple—you
ask for the symmetries to be created, then you will get extra ghosts along each symmetry boundary. The symmetry
ghosts are updated properly during any communication, even if the symmetry ghosts are ghosts of real local elements
from the same chunk.

14: Illustrating symmetry ghost elements.

Figure 14 shows a chunk of a mesh for a rectangular domain with horizontal linear translational periodicity—that is,
the domain repeats horizontally. Symmetry ghosts lie along the left and right sides; ordinary cross-processor parallel
ghosts lie along the top edge where this chunk joins up with the rest of the domain; and the external boundary along
the bottom of the chunk has no ghosts.

void FEM_Add_linear_periodicity( int nFaces,int nPer, const int

*facesA,const int *facesB, int nNodes,const double *nodeLocs );
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SUBROUTINE FEM_Add_linear_periodicity(nFaces,nPer,facesA,facesB,
nNodes,nodeLocs)
INTEGER, INTENT(IN) :: nFaces, nPer, nNodes
INTEGER, INTENT(IN) :: facesA(nPer,nFaces), facesB(nPer,nFaces)
double precision, INTENT(IN) :: nodeLocs(3,nNodes)

Make facesA and facesB match up under linear translation. Each face of facesA must match up with exactly one face
of facesB, but both the faces and the nodes within a face can be permuted in any order—the order is recovered by
matching 3d locations in the nodeLocs array.

This call can be repeated, for example if the domain is periodic along several directions. This call can only be issued
from init().

void FEM_Sym_coordinates(int elTypeOrMinusOne,double *locs);

SUBROUTINE FEM_Sym_coordinates(elTypeOrZero,locs)
INTEGER, INTENT(IN) :: elTypeOrZero
double precision, intent(inout) :: locs(3,<number of items>)

This call adjusts the 3d locations listed in locs so they respect the symmetries of their corresponding item. If elType-
OrZero is an element type, the locations are adjusted to match with the corresponding element; if elTypeOrZero is
zero, the locations are adjusted to match up with the corresponding node.

This call is needed because symmetry ghost nodes and elements initially have their original locations, which must
be adjusted to respect the symmetry boundaries. Thus this call is needed both for initial location data (e.g., from
FEM_Get_node_data) as well as any communicated location data (e.g., from FEM_Update_ghost_field).

This call can only be issued from driver().

8.5.4 Advanced Symmetries and Ghosts-Lower Layer

The geometric symmetry layer in the preceding section is actually a thin wrapper around this lower, more difficult to
use layer.

void FEM_Set_sym_nodes(const int *canon,const int *sym);

SUBROUTINE FEM_Set_sym_nodes(canon,sym)
INTEGER, INTENT(IN) :: canon(nNodes)
INTEGER, INTENT(IN) :: sym(nNodes)

This call describes all possible symmetries in an extremely terse format. It can only be called from init(). The
“canonicalization array” canon maps nodes to their canonical representative—if canon(𝑖)=canon(𝑗), nodes 𝑖 and 𝑗 are
images of each other under some symmetry. The sym array has bits set for each symmetry boundary passing through
a node.

For example, a 2d domain with 6 elements A, B, C, D, E, and F and 12 nodes numbered 1-12 that is mirror-symmetric
on the horizontal boundaries but periodic in the vertical boundaries would look like:

D^'| D^ | E^ | F^ | F^`
- 1 - 2 - 3 - 4 -
A' | A | B | C | C`
- 5 - 6 - 7 - 8 -
D' | D | E | F | F`
- 9 - 10 - 11 - 12 -
Av'| Av | Bv | Cv | Cv`

(continues on next page)

8.5. Mesh Ghosts 291



Charm++ Documentation

(continued from previous page)

v indicates the value has been shifted down (bottom boundary),
^ indicates the value has been shifted up (top boundary),
' indicates the value has been copied from the left (right boundary),
` indicates the value has been copied from the right (left boundary).

If we mark the left border with 1, the top with 2, the right with 4, and the bottom with 8, this situation is indicated by
topologically pasting the top row to the bottom row by setting their canon entries equal, and marking each node with
its symmetries.

Node canon sym
1 1 3 (left + top)
2 2 2 (top)
3 3 2 (top)
4 4 6 (top + right)
5 5 1 (left)
6 6 0 (none)
7 7 0 (none)
8 8 4 (right)
9 1 9 (left+bottom)
10 2 8 (bottom)
11 3 8 (bottom)
12 4 12 (bottom+right)

void FEM_Get_sym(int elTypeOrMinusOne,int *destSym);

SUBROUTINE FEM_Get_sym(elTypeOrZero,destSym);
INTEGER, INTENT(IN) :: elTypeOrMinusOne
INTEGER, INTENT(OUT) :: destSym(nItems)

This call extracts the list of symmetry conditions that apply to an item type. If elType is an element type, it returns
the symmetry conditions that apply to that element type; if elType is -1 (zero for Fortran), it returns the symmetry
conditions that apply to the nodes. Symmetry conditions are normally only nonzero for ghost nodes and elements.

Mirror symmetry conditions are not yet supported, nor are multiple layers of symmetry ghosts, but both should be
easy to add without changing this interface.

8.6 Older Mesh Routines

These routines have a simpler, but less flexible interface than the general routines described in Section 8.3. Because
they are easy to implement in terms of the new routines, they will remain part of the framework indefinitely. These
routines always use the default mesh, as returned by FEM_Mesh_default_read and FEM_Mesh_default_write.

void FEM_Set_elem(int elType,int nEl,int doublePerEl,int nodePerEl);
void FEM_Get_elem(int elType,int *nEl,int *doublePerEl,int

*nodePerEl);

SUBROUTINE FEM_Set_elem(elType,nEl,doublePerEl,nodePerEl)
INTEGER, INTENT(IN) :: elType,nEl,doublePerEl,nodePerEl
SUBROUTINE FEM_Get_elem(elType,nEl,doublePerEl,nodePerEl)

(continues on next page)
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INTEGER, INTENT(IN) :: elType
INTEGER, INTENT(OUT) :: nEl,doublePerEl,nodePerEl

Describe/retrieve the number and type of elements. ElType is a user-defined small, unique element type tag. nEl is the
number of elements being registered. doublesPerEl and nodePerEl are the number of doubles of user data, and nodes
(respectively) associated with each element.

doublePerEl or nodePerEl may be zero, indicating that no user data or connectivity data (respectively) is associated
with the element.

You can make this and any other mesh setup calls in any order—there is no need to make them in linearly increasing
order. However, for a given type of element FEM_Set_elem must be called before setting that element’s connectivity
or data.

void FEM_Set_elem_conn(int elType,const int *conn);
void FEM_Get_elem_conn(int elType,int *conn);

SUBROUTINE FEM_Set_elem_conn_r(elType,conn)
INTEGER, INTENT(IN) :: elType
INTEGER, INTENT(IN), dimension(nodePerEl,nEl) :: conn
SUBROUTINE FEM_Get_elem_conn_r(elType,conn)
INTEGER, INTENT(IN) :: elType
INTEGER, INTENT(OUT), dimension(nodePerEl,nEl) :: conn
SUBROUTINE FEM_Set_elem_conn_c(elType,conn)
INTEGER, INTENT(IN) :: elType
INTEGER, INTENT(IN), dimension(nEl,nodePerEl) :: conn
SUBROUTINE FEM_Get_elem_conn_c(elType,conn)
INTEGER, INTENT(IN) :: elType
INTEGER, INTENT(OUT), dimension(nEl,nodePerEl) :: conn

Describe/retrieve the element connectivity array for this element type. The connectivity array is indexed by the element
number, and gives the indices of the nodes surrounding the element. It is hence nodePerEl*nEl integers long.

The C version array indices are zero-based, and must be stored in row-major order (a given element’s surrounding
nodes are stored contiguously in the conn array). The Fortran version indices are one-based, and are available in
row-major (named _r) and column-major (named _c) versions. We recommend row-major storage because it results
in better cache utilization (because the nodes around an element are stored contiguously).

In this older interface, ghost nodes are indicated by invalid,

void FEM_Set_node(int nNode,int doublePerNode);
void FEM_Get_node(int

*nNode,int *doublePerNode);

SUBROUTINE FEM_Set_node(nNode,doublePerNode)
INTEGER, INTENT(IN) :: nNode,doublePerNode
SUBROUTINE FEM_Get_node(nNode,doublePerNode)
INTEGER, INTENT(OUT) :: nNode,doublePerNode

Describe/retrieve the number of nodes and doubles of user data associated with each node. There is only one type of
node, so no nodeType identifier is needed.

doublePerNode may be zero, indicating that no user data is associated with each node.
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8.6.1 Old Mesh Data

void FEM_Set_node_data(const double *data);
void FEM_Get_node_data(double *data);
void FEM_Set_elem_data(int elType,const double *data);
void FEM_Get_elem_data(int elType,double *data);

SUBROUTINE FEM_Set_node_data_r(data)
REAL*8, INTENT(IN), dimension(doublePerNode,nNode) :: data
SUBROUTINE FEM_Get_node_data_r(data)
REAL*8, INTENT(OUT), dimension(doublePerNode,nNode) :: data
SUBROUTINE FEM_Set_node_data_c(data)
REAL*8, INTENT(IN), dimension(nNode,doublePerNode) :: data
SUBROUTINE FEM_Get_node_data_c(data)
REAL*8, INTENT(OUT), dimension(nNode,doublePerNode) :: data
SUBROUTINE FEM_Set_elem_data_r(elType,data)
INTEGER, INTENT(IN) :: elType
REAL*8, INTENT(IN), dimension(doublePerElem,nElem) :: data
SUBROUTINE FEM_Get_elem_data_r(elType,data)
INTEGER, INTENT(IN) :: elType
REAL*8, INTENT(OUT), dimension(doublePerElem,nElem) :: data
SUBROUTINE FEM_Set_elem_data_c(elType,data)
INTEGER, INTENT(IN) :: elType
REAL*8, INTENT(IN), dimension(nElem,doublePerElem) :: data
SUBROUTINE FEM_Get_elem_data_c(elType,data)
INTEGER, INTENT(IN) :: elType
REAL*8, INTENT(OUT), dimension(nElem,doublePerElem) :: data

Describe/retrieve the optional, uninterpreted user data associated with each node and element. This user data is parti-
tioned and reassembled along with the connectivity matrix, and may include initial conditions, node locations, material
types, or any other data needed or produced by the program. The Fortran arrays can be row- or column- major (see
FEM_Set_elem_conn for details). The row-major form is preferred.

8.6.2 Old Ghost Numbering

In this older version of the framework, FEM_Get_node and FEM_Get_elem return the total number of nodes and
elements, including ghosts. The routines below return the index of the first ghost node or element, where ghosts are
numbered after all the real elements. This old ghost numbering scheme does not work well when adding new ghosts,
which is why the new ghost numbering scheme describes in Section 8.5.1 is used in the new API.

15: Old ghost element and node numbering. FEM_Get_ghost_returns 𝑔, FEM_Get_returns 𝑛.

int FEM_Get_node_ghost(void);
int FEM_Get_elem_ghost(int elemType);

The examples below iterate over the real and ghost elements using the old numbering:
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// C version:
int firstGhost,max;
FEM_Get_node(&max, &ignored);
firstGhost=FEM_Get_node_ghost();
for (i=0;i<firstGhost;i++)

//... i is a real node...
for (i=firstGhost;i<max;i++)

//... i is a ghost node ...

! Fortran version:
call FEM_Get_node(max,ignored);
firstGhost=FEM_Get_node_ghost();
do i=1,firstGhost-1
! ... i is a real node...
end do
do i=firstGhost,max
! ... i is a ghost node...
end do

8.6.3 Old Backward Compatibility

void FEM_Set_mesh(int nElem, int nNodes, int nodePerEl,const int*
conn);

This is a convenience routine equivalent to:

FEM_Set_node(nNodes,0);
FEM_Set_elem(0,nElem,0,nodePerEl);
FEM_Set_elem_Conn(0,conn);

SUBROUTINE FEM_Set_mesh(nElem,nNodes,nodePerEl,conn)

This is a convenience routine equivalent to:

CALL FEM_Set_node(nNodes,0)
CALL FEM_Set_elem(1,nElem,0,nodePerEl)
CALL FEM_Set_elem_Conn_c(1,conn)

8.6.4 Old Sparse Data

Sparse data is typically used to represent boundary conditions. For example, in a structural dynamics program typically
some nodes have an imposed force or position. The routines in this section are used to describe this kind of mesh-
associated data—data that only applies to some “sparse” subset of the nodes or elements.

void FEM_Set_sparse(int S_id,int nRec, const int *nodes,int
nodesPerRec, const void *data,int dataPerRec,int dataType);

SUBROUTINE FEM_Set_sparse(S_id,nRec,nodes,nodesPerRec,data,dataPerRec,dataType)
INTEGER, INTENT(IN) :: S_id,nRec,nodesPerRec,dataPerRec,dataType
INTEGER, INTENT(IN) :: nodes(nodesPerRec,nRec)
varies, INTENT(IN) :: data(dataPerRec,nRec)
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Register nRec sparse data records with the framework under the number S_id. The first call to FEM_Set_sparse must
give a S_id of zero in C (1 in fortran); and subsequent calls to FEM_Set_sparse must give increasing consecutive
S_ids.

One sparse data record consists of some number of nodes, listed in the nodes array, and some amount of user data,
listed in the data array. Sparse data records are copied into the chunks that contains all that record’s listed nodes.
Sparse data records are normally used to describe mesh boundary conditions- for node-associated boundary conditions,
nodesPerRec is 1; for triangle-associated boundary conditions, nodesPerRec is 3.

In general, nodePerRec gives the number of nodes associated with each sparse data record, and nodes gives the actual
node numbers. dataPerRec gives the number of data items associated with each sparse data record, and dataType, one
of FEM_BYTE, FEM_INT, FEM_REAL, or FEM_DOUBLE, gives the type of each data item. As usual, you may
change or delete the nodes and data arrays after this call returns.

For example, if the first set of sparse data is 17 sparse data records, each containing 2 nodes stored in bNodes and 3
integers stored in bDesc, we would make the call:

/*C version*/
FEM_Set_sparse(0,17, bNodes,2, bDesc,3,FEM_INT);

! Fortran version
CALL FEM_Set_sparse(1,17, bNodes,2, bDesc,3,FEM_INT)

void FEM_Set_sparse_elem(int S_id,const int *rec2elem);

SUBROUTINE FEM_Set_sparse_elem(S_id,rec2elem)
INTEGER, INTENT(IN) :: S_id
INTEGER, INTENT(IN) :: rec2elem(2,nRec)

Attach the previously-set sparse records S_id to the given elements. rec2elem consists of pairs of integers—one for
each sparse data record. The first integer in the pair is the element type to attach the sparse record to, and the second
integer gives the element number within that type. For example, to attach the 3 sparse records at S_id to the elements
numbered 10, 11, and 12 of the element type elType, use:

/*C version*/
int rec2elem[]={elType,10, elType,11, elType,12};
FEM_Set_sparse_elem(S_id,rec2elem);

! Fortran version
integer :: rec2elem(2,3);
rec2elem(1,:)=elType
rec2elem(2,1)=10; rec2elem(2,2)=11; rec2elem(2,3)=12;
CALL FEM_Set_sparse_elem(S_id,rec2elem)

int FEM_Get_sparse_length(int S_id);
void FEM_Get_sparse(int S_id,int *nodes,void *data);

function FEM_Get_sparse_length(S_id);
INTEGER, INTENT(IN) :: S_id
INTEGER, INTENT(OUT) :: FEM_Get_sparse_Length
SUBROUTINE FEM_Get_sparse(S_id,nodes,data);
INTEGER, INTENT(IN) :: S_id
INTEGER, INTENT(OUT) :: nodes(nodesPerRec,FEM_Get_sparse_Length(S_id))
varies, INTENT(OUT) :: data(dataPerRec,FEM_Get_sparse_Length(S_id))

Retrieve the previously registered sparse data from the framework. FEM_Get_sparse_length returns the number of
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records of sparse data registered under the given S_id; zero indicates no records are available. FEM_Get_sparse
returns you the actual nodes (translated to local node numbers) and unchanged user data for these sparse records.

In this old interface, there is no way to access sparse ghosts.

8.7 Mesh Modification

void FEM_Update_mesh(FEM_Update_mesh_fn routine, int
callMeshUpdated,int doWhat);

SUBROUTINE FEM_Update_mesh(routine,callMeshUpdated,doWhat)
external, INTENT(IN) :: routine
INTEGER, INTENT(IN) :: callMeshUpdated,doWhat

Reassemble the mesh chunks from each partition into a single serial mesh, and call the given routine on the assembled
mesh. In this routine, which runs on processor 0, the FEM_Get and FEM_Set routines can manipulate the serial mesh.
The parameter callMeshUpdated, which must be non-zero, is passed down to routine as routine(callMeshUpdated).

FEM_Get calls from driver() will only return the new mesh after a FEM_Update_mesh call where doWhat is
FEM_MESH_UPDATE; otherwise FEM_Get from driver() will still return the old mesh. FEM_Update_mesh can
only be called from driver; and must be called by the driver routine for every chunk.

doWhat Numeric Repartition? FEM_Update_mesh
FEM_MESH_OUTPUT 0 No driver() continues alongside routine
FEM_MESH_FINALIZE 2 No driver() blocks until routine finishes
FEM_MESH_UPDATE 1 Yes driver() blocks for the new partition

For example, FEM_Update_mesh(my_output_routine, k, FEM_MESH_OUTPUT) reassembles the mesh and calls a
routine named my_output_routine(k) while the driver routines continue with the computation. This might be useful,
for example, for writing out intermediate solutions as a single file; writing outputs from driver() is more efficient but
often results in a separate file for each mesh chunk.

To block the driver routines during a call to a routine named my_finalize_routine(k), such as at the end of
the computation when the drivers have no other work to do, use FEM_Update_mesh(my_finalize_routine, k,
FEM_MESH_FINALIZE).

To reassemble, modify, and repartition the mesh, use FEM_Update_mesh(my_update_routine, k,
FEM_MESH_UPDATE). It may be easier to perform major mesh modifications from my_update_routine(k)
than the drivers, since the entire serial mesh is available to my_update_routine(k).

FEM_Update_mesh reassembles the serial mesh with an attempt to preserve the element and node global numbering.
If the new mesh has the same number and type of elements and nodes, the global numbers (and hence serial mesh) will
be unchanged. If new elements or nodes are added at each chunk, they will be assigned new unique global numbers.
If elements or nodes are removed, their global numbers are not re-used- you can detect the resulting holes in the serial
mesh since the user data associated with the deleted elements will be all zero. Generally, however, it is less error-prone
to perform mesh modifications only in driver() or only in an update routine, rather than some in both.

8.8 IDXL Communication

The FEM framework’s communication layer is called IDXL. This small library handles sending and receiving data to
and from a sparse subset of 1D indices into a user array. The sparse index subset is called an “Index List”, hence the
name of the library.

8.7. Mesh Modification 297



Charm++ Documentation

8.8.1 Index Lists

An Index List is the fundamental data structure of the IDXL library—for example, the list of shared nodes is an Index
List. IDXL includes routines for building, combining, and sending and receiving Index Lists.

An Index List, as you might expect, is a list of indices that need to be sent and received. An Index List includes both
the indices that need to be sent, as well as the indices to be received, from each chunk.

Consider two chunks 𝑎 and 𝑏 where 𝑏 needs some information 𝑎 has, such as if 𝑏 has ghosts of real elements on 𝑎.
𝑎’s Index List thus has a send portion with the 𝑎-local indices for the elements 𝑎 sends; and 𝑏’s Index List contains a
receive portion with the 𝑏-local indices for the elements 𝑏 receives. Thus across processors, the corresponding send
and receive portions of 𝑎 and 𝑏’s Index Lists match, as shown in Figure 16.

16: Illustrating how Index Lists match up 𝑎’s source elements with 𝑏’s ghost elements.

Index List Calls

You refer to an Index List via an opaque handle—in C, the integer typedef IDXL_t; in Fortran, a bare INTEGER.

IDXL_t FEM_Comm_shared(int mesh,int entity);

INTEGER function FEM_Comm_shared(mesh,entity)
INTEGER, INTENT(IN) :: mesh,entity

Return a read-only copy of the Index List of shared nodes. The send and receive portions of this list are identical, be-
cause each shared node is both sent and received. Shared nodes are most often used with the send/sum communication
pattern.

Must be called from driver. mesh must be a reading mesh. entity must be FEM_NODE. You may not call
IDXL_Destroy on the returned list.

IDXL_t FEM_Comm_ghost(int mesh,int entity);

INTEGER function FEM_Comm_ghost(mesh,entity)
INTEGER, INTENT(IN) :: mesh,entity

Return a read-only copy of the Index List of ghost entities. The send portion of this list contains real, interior entities,
which are sent away; the receive portion of the list contains the ghost entites, which are received. Ghosts are most
often used with the send/recv communication pattern.
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Elements to be sent out are listed starting at zero (one in Fortran); but ghost elements to be received are also listed
starting at zero (one in Fortran). If real and ghost elements are kept in separate arrays, this is usable as-is; but if ghosts
and real elements are kept together, you will need to shift the ghost indices using IDXL_Combine or IDXL_Shift.

This routine must be called from driver. mesh must be a reading mesh. entity must not include FEM_GHOST-ghosts
are already included. You may not call IDXL_Destroy on the returned list.

IDXL_t IDXL_Create(void);

INTEGER function IDXL_Create()

Create a new, empty Index List. This list can then be filled up using IDXL_Copy or IDXL_Combine.

Must be called from driver. You must eventually call IDXL_Destroy on the returned list.

void IDXL_Combine(IDXL_t dest,IDXL_t src,int startSend,int startRecv);

SUBROUTINE IDXL_Combine(dest,src,startSend,startRecv)
INTEGER, INTENT(IN) :: dest,src,startSend,startRecv

Add the shifted contents of the src Index List to dest. The send portion of src is shifted so the first index sent will
be startSend; for a ghost index list this is the index of the first sent real entity. The receive portion of src is similarly
shifted so the first index received will be startRecv; for a ghost index list this is the index of the first received ghost
entity.

This routine does not check for duplicates—if an index originally appears in dest and the also in the shifted src, it will
be listed twice.

Advanced Index List Calls

void IDXL_Destroy(IDXL_t l);

SUBROUTINE IDXL_Destroy(l)
INTEGER, INTENT(IN) :: l

Destroy this Index List, and free the list storage allocated by the framework. Only call this routine with lists you
created using IDXL_Create; not lists obtained directly from the FEM framework.

void IDXL_Print(IDXL_t l);

SUBROUTINE IDXL_Print(l)
INTEGER, INTENT(IN) :: l

Print out the contents of this Index List. This routine shows both the send and receive indices on the list, for each
chunk we communicate with.

void IDXL_Copy(IDXL_t dest,IDXL_t src);

SUBROUTINE IDXL_Print(dest,src)
INTEGER, INTENT(IN) :: dest,src

Copy the contents of the source Index List into the destination Index List, which should be empty.

void IDXL_Shift(IDXL_t l,int startSend,int startRecv);
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SUBROUTINE IDXL_Shift(l,startSend,startRecv)
INTEGER, INTENT(IN) :: l,startSend,startRecv

Like IDXL_Combine, but only shifts the indices within a single list.

void IDXL_Add_entity(int newIdx,int nBetween,int *between);

SUBROUTINE IDXL_Add_node(newIdx,nBetween,between)
INTEGER, INTENT(IN) :: newIdx,nBetween
INTEGER, INTENT(IN) :: between(nBetween)

This call adds a new entity, with local index newIdx, to this Index List. The new entity is sent or received by each
chunk that sends or receives all the entities listed in the between array. For example, when adding a new node along
an edge, nBetween is 2 and between lists the endpoints of the edge; this way if the edge is shared with some chunk,
the new node will be shared with that chunk.

This routine only affects the current chunk- no other chunks are affected. To ensure the communication lists match,
IDXL_Add_entity must be called on all the chunks that send or receive the entity, to create the local copies of the
entity.

IDXL_Add_entity adds the new entity to the end of the communication list, and so must be called in the same order
on all the chunks that share the new entity. For example, if two new nodes 𝑥 and 𝑦 are added between chunks 𝑎 and 𝑏,
if chunk 𝑎 calls IDXL_Add_entity with its local number for 𝑥 before it calls IDXL_Add_entity with its local number
for 𝑦, chunk 𝑏 must also add its copy of node 𝑥 before adding 𝑦.

8.8.2 Data Layout

IDXL is designed to send and receive data directly out of your arrays, with no intermediate copying. This means IDXL
needs a completely general method for specifying how you store your data in your arrays. Since you probably don’t
change your storage layout at runtime, you can create a “data layout” once at the beginning of your program, then use
it repeatedly for communication.

IDXL Layouts are normally used to describe arrays of data associated with nodes or elements. The layout abstraction
allows you to use IDXL routines to communicate any sort of data, stored in a variety of formats.

Like Index Lists, Layouts are referred to via an opaque handle—in a C program via the integer typedef
IDXL_Layout_t, and in Fortran via a bare integer.

Layout Routines

In most programs, the data to be communicated is a dense array of data of one type. In this case, there is only one
layout routine you need to know:

IDXL_Layout_t IDXL_Layout_create(int type,int width);

INTEGER function IDXL_Layout_create(type,width)
INTEGER, INTENT(IN) :: type,width

The simplest data layout to describe—a dense array of this IDXL datatype, indexed by entity number, with width
pieces of data per entity. Note that the number of entities is not stored with the layout-the number of entities to be
communicated depends on the communication routine.

The IDXL datatypes are:
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IDXL Datatype C Datatypes Fortran Datatypes
IDXL_BYTE unsigned char INTEGER*1

char LOGICAL*1
IDXL_INT int INTEGER
IDXL_REAL float SINGLE PRECISION

REAL*4
IDXL_DOUBLE double DOUBLE PRECISION

REAL*8

For example, if you keep a dense array with 3 doubles of force per node, you’d call this routine as:

// C++ version:
double *force=new double[3*n];
IDXL_Layout_t force_layout=IDXL_Layout_create(IDXL_DOUBLE,3);

! F90 Version
double precision, allocatable :: force(:,:)
integer :: force_layout
ALLOCATE(force(3,n)) ! (could equivalently use force(3*n) )
force_layout=IDXL_Layout_create(IDXL_DOUBLE,3)

This routine was once called FEM_Create_simple_field.

Advanced Layout Routines

These advanced routines are only needed if you want to exchange data stored in an array of user-defined types. Most
programs only need IDXL_Layout_create.

IDXL_Layout_t IDXL_Layout_offset(int type, int width, int offsetBytes,
int distanceBytes,int skewBytes);

INTEGER function IDXL_Layout_offset(type,width,offsetBytes,distanceBytes,skewBytes)
INTEGER, INTENT(IN) :: type,width,offsetBytes,distanceBytes,skewBytes

The most general data layout-an array indexed by entity, containing width pieces of data per entity. This routine
expands on IDXL_Layout_create by adding support for user-defined types or other unusual data layouts. You describe
your layout by giving various in-memory byte offsets that describe the data is stored. Again, the number of entities is
not stored with the layout-the number of entities to be communicated depends on the communication routine.

• offsetBytes The number of bytes from the start of the array to the start of the data.

• distanceBytes The number of bytes taken by one entity.

• skewBytes The number of bytes between each piece of data. Since this can almost always be determined from
the size of the base data type, this parameter can be left as zero.

For example, if your node data is all stored in a struct (in fortran, a named TYPE), offsetBytes gives the distance
between the start of the struct and the force; and distanceBytes gives the size in bytes of the struct.

In C, the offsetof and sizeof keywords are useful for finding these values. In Fortran, we provide a special routine
called foffsetof that returns the distance, in bytes, between its two arguments.

// C++ version:
typedef struct {

double d[3], v[3], force[3], a[3];

(continues on next page)
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17: Describing a complex data layout.

(continued from previous page)

double m;
} node;
node *nodes=new node[n];
IDXL_Layout_t force_layout=IDXL_Layout_offset(IDXL_DOUBLE,3,

offsetof(node,force),sizeof(node),0);

! F90 Version
TYPE node

DOUBLE PRECISION :: d(3), v(3), force(3), a(3)
DOUBLE PRECISION :: m

END TYPE
integer :: force_layout
ALLOCATE(nodes(n))
force_layout=IDXL_Layout_create(IDXL_DOUBLE,3,

& foffsetof(nodes(1),nodes(1)%force),
& foffsetof(nodes(1),nodes(2)),0)

void IDXL_Layout_destroy(IDXL_Layout_t layout);

SUBROUTINE IDXL_Layout_destroy(layout)
INTEGER, INTENT(IN) :: layout

Destroy this Layout. You only need call this routine if you repeatedly create layouts.

int IDXL_Get_layout_type(IDXL_Layout_t layout);

INTEGER function IDXL_Get_layout_type(layout)

Return the IDXL datatype for this layout.

int IDXL_Get_layout_width(IDXL_Layout_t layout);

INTEGER function IDXL_Get_layout_width(layout)

Return the layout width—the number of data items that are communicated per entity.
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int IDXL_Get_layout_distance(IDXL_Layout_t layout);

INTEGER function IDXL_Get_layout_distance(layout)

Return the layout distance—the number of bytes between successive entity’s data items.

Layout Compatibility Routines

Before IDXL was made a separate library, FEM included these routines, which are still preserved for backward
compatibility.

IDXL_Layout_t FEM_Create_simple_field(int type,int width);

INTEGER function FEM_Create_simple_field(type,width)
INTEGER, INTENT(IN) :: type,width

This routine is completely interchangeable to IDXL_Layout_create.

int FEM_Create_field(int type,int width,int offset,int distance);

INTEGER function FEM_Create_field(type, width, offset, distance)
INTEGER, INTENT(IN) :: type, width, offset, distance

This routine is like a call to IDXL_Layout_offset with the rarely used skewBytes set to zero.

8.8.3 IDXL Communication

This section brings together all the pieces of IDXL: Index Lists are used to determine what to send and what to receive
and Layouts are used to determine where to get and put the communicated data.

Communication Routines

void IDXL_Comm_sendsum(IDXL_Comm_t comm,IDXL_t indices,IDXL_Layout_t
layout,void *data);

SUBROUTINE IDXL_Comm_sendsum(comm,indices,layout,data)
INTEGER, INTENT(IN) :: comm,indices,layout
varies, INTENT(INOUT) :: data

Sum these indices of shared entities across all chunks that share them. The user data array is interpreted according to
the given layout.

If comm is zero, this routine is blocking and finishes the communication immediately. If comm is not zero, this routine
is non-blocking and equivalent to a call to IDXL_Comm_send followed by a call to IDXL_Comm_sum.

This routine is typically used to sum up partial values on shared nodes. It is a more general version of the old FEM
routine FEM_Update_field. For example, to sum up the shared-node values in a 3d force vector indexed by node, you
would use:
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// C++ version:
double *force=new double[3*nNodes];
IDXL_Layout_t force_layout=IDXL_Layout_create(IDXL_DOUBLE,3);
IDXL_t shared_indices=FEM_Comm_shared(mesh,FEM_NODE);

//... in the time loop ...
IDXL_Comm_sendsum(0,shared_indices,force_layout,force);

! F90 Version
double precision, allocatable :: force(:,:)
integer :: force_layout, shared_indices
ALLOCATE(force(3,nNodes)) ! (could equivalently use force(3*nNodes) )
force_layout=IDXL_Layout_create(IDXL_DOUBLE,3)
shared_indices=FEM_Comm_shared(mesh,FEM_NODE)

!... in the time loop ...
CALL IDXL_Comm_sendsum(0,shared_indices,force_layout,force)

void IDXL_Comm_sendrecv(IDXL_Comm_t comm,IDXL_t indices,IDXL_Layout_t
layout,void *data);

SUBROUTINE IDXL_Comm_sendrecv(comm,indices,layout,data)
INTEGER, INTENT(IN) :: comm,indices,layout
varies, INTENT(INOUT) :: data

Send these (typically real) send indices and copy in these (typically ghost) receive indices. The user data array is
interpreted according to the given layout.

If comm is zero, this routine is blocking and finishes the communication immediately. If comm is not zero, this routine
is non-blocking and equivalent to a call to IDXL_Comm_send followed by a call to IDXL_Comm_sum.

This routine is typically used to obtain the values of ghost entities. It is a more general version of the old FEM routine
FEM_Update_ghost_field. For example, to obtain 7 solution values per ghost element, storing gElem ghosts in the
array just after the nElem regular elements, we could:

// C++ version:
double *elem=new double[7*(nElem+gElem)];
IDXL_Layout_t elem_layout=IDXL_Layout_create(IDXL_DOUBLE,7);
IDXL_t ghost_original=FEM_Comm_ghost(mesh,FEM_ELEM+1);
IDXL_t ghost_shifted=IDXL_Create(); // ghosts start at nElem
IDXL_Combine(ghost_shifted,ghost_original,0,nElem);

//... in the time loop ...
IDXL_Comm_sendrecv(0,ghost_shifted,elem_layout,elem);

! F90 Version
double precision, allocatable :: elem(:,:)
integer :: elem_layout, ghost_original,ghost_shifted
ALLOCATE(elem(7,nElem+gElem))
elem_layout=IDXL_Layout_create(IDXL_DOUBLE,7)
ghost_original=FEM_Comm_ghost(mesh,FEM_ELEM+1)
ghost_shifted=IDXL_Create() ! ghosts start at nElem+1
CALL IDXL_Combine(ghost_shifted,ghost_original,1,nElem+1)

!... in the time loop ...
CALL IDXL_Comm_sendrecv(0,ghost_shifted,elem_layout,elem)
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Advanced Communication Routines

IDXL_Comm_t IDXL_Comm_begin(int tag,int context);

INTEGER function IDXL_Comm_begin(tag,context)
INTEGER, INTENT(IN) :: tag,context

Start a non-blocking communication operation with this (user-defined) tag and communication context (0, or an AMPI
communicator).

Every call to this routine must eventually be matched by a call to IDXL_Comm_wait. Warning: for now, tag and
context are ignored, and there can be only one outstanding communication operation.

void IDXL_Comm_send(IDXL_Comm_t comm,IDXL_t indices,IDXL_Layout_t
layout,const void *data);

SUBROUTINE IDXL_Comm_send(comm,indices,layout,data)
INTEGER, INTENT(IN) :: comm,indices,layout
varies, INTENT(IN) :: data

When comm is flushed, send these send indices, with this layout, from this data array.

This routine is always non-blocking; as the data array passed in will not be copied out until the call to
IDXL_Comm_flush.

void IDXL_Comm_recv(IDXL_Comm_t comm,IDXL_t indices,IDXL_Layout_t
layout,void *data);

SUBROUTINE IDXL_Comm_recv(comm,indices,layout,data)
INTEGER, INTENT(IN) :: comm,indices,layout
varies, INTENT(OUT) :: data

When comm is finished, copy in these receive indices, with this layout, into this data array.

This routine is always non-blocking; as the data array passed in will not be copied into until the call to
IDXL_Comm_wait.

void IDXL_Comm_sum(IDXL_Comm_t comm,IDXL_t indices,IDXL_Layout_t
layout,void *data);

SUBROUTINE IDXL_Comm_sum(comm,indices,layout,data)
INTEGER, INTENT(IN) :: comm,indices,layout
varies, INTENT(INOUT) :: data

When comm is finished, add in the values for these receive indices, with this layout, into this data array.

This routine is always non-blocking; as the data array passed in will not be added to until the call to
IDXL_Comm_wait.

void IDXL_Comm_flush(IDXL_Comm_t comm);

SUBROUTINE IDXL_Comm_flush(comm)
INTEGER, INTENT(IN) :: comm

Send all outgoing data listed on this comm. This routine exists because there may be many calls to IDXL_Comm_send,
and sending one large message is more efficient than sending many small messages.

This routine is typically non-blocking, and may only be issued at most once per IDXL_Comm_begin.

8.8. IDXL Communication 305



Charm++ Documentation

void IDXL_Comm_wait(IDXL_Comm_t comm);

SUBROUTINE IDXL_Comm_wait(comm)
INTEGER, INTENT(IN) :: comm

Finish this communication operation. This call must be issued exactly once per IDXL_Comm_begin. This call in-
cludes IDXL_Comm_flush if it has not yet been called.

This routine always blocks until all incoming data is received, and is the last call that can be made on this comm.

8.9 Old Communication Routines

(This section is for backward compatibility only. The IDXL routines are the new, more flexible way to perform
communication.)

The FEM framework handles the updating of the values of shared nodes- that is, it combines shared nodes’ values
across all processors. The basic mechanism to do this update is the “field”- numeric data items associated with each
node. We make no assumptions about the meaning of the node data, allow various data types, and allow a mix of
communicated and non-communicated data associated with each node. The framework uses IDXL layouts to find the
data items associated with each node in memory.

Each field represents a (set of) data records stored in a contiguous array, often indexed by node number. You create a
field once, with the IDXL layout routines or FEM_Create_field, then pass the resulting field ID to FEM_Update_field
(which does the shared node communication), FEM_Reduce_field (which applies a reduction over node values), or
one of the other routines described below.

void FEM_Update_field(int Fid,void *nodes);

SUBROUTINE FEM_Update_field(Fid,nodes)
INTEGER, INTENT(IN) :: Fid
varies, INTENT(INOUT) :: nodes

Combine a field of all shared nodes with the other chunks. Sums the value of the given field across all chunks that
share each node. For the example above, once each chunk has computed the net force on each local node, this routine
will sum the net force across all shared nodes.

FEM_Update_field can only be called from driver, and to be useful, must be called from every chunk’s driver routine.

After this routine returns, the given field of each shared node will be the same across all processors that share the node.

This routine is equivalent to an IDXL_Comm_Sendsum operation.

void FEM_Read_field(int Fid,void *nodes,char *fName);

SUBROUTINE FEM_Read_field(Fid,nodes,fName)
INTEGER, INTENT(IN) :: Fid
varies, INTENT(OUT) :: nodes
CHARACTER*, INTENT(IN) :: fName

Read a field out of the given serial input file. The serial input file is line-oriented ASCII- each line begins with the
global node number (which must match the line order in the file), followed by the data to be read into the node field.
The remainder of each line is unread. If called from Fortran, the first line must be numbered 1; if called from C, the
first line must be numbered zero. All fields are separated by white space (any number of tabs or spaces).

For example, if we have called Create_field to describe 3 doubles, the input file could begin with
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1 0.2 0.7 -0.3 First node
2 0.4 1.12 -17.26 another node
...

FEM_Read_field must be called from driver at any time, independent of other chunks.

This routine has no IDXL equivalent.

void FEM_Reduce_field(int Fid,const void *nodes,void *out,int op);

SUBROUTINE FEM_Reduce_field(Fid,nodes,outVal,op)
INTEGER, INTENT(IN) :: Fid,op
varies, INTENT(IN) :: nodes
varies, INTENT(OUT) :: outVal

Combine one record per node of this field, according to op, across all chunks. Shared nodes are not double-counted-
only one copy will contribute to the reduction. After Reduce_field returns, all chunks will have identical values in
outVal, which must be vec_len copies of base_type.

May only be called from driver, and to complete, must be called from every chunk’s driver routine.

op must be one of:

• FEM_SUM- each element of outVal will be the sum of the corresponding fields of all nodes

• FEM_MIN- each element of outVal will be the smallest value among the corresponding field of all nodes

• FEM_MAX- each element of outVal will be the largest value among the corresponding field of all nodes

This routine has no IDXL equivalent.

void FEM_Reduce(int Fid,const void *inVal,void *outVal,int op);

SUBROUTINE FEM_Reduce(Fid,inVal,outVal,op)
INTEGER, INTENT(IN) :: Fid,op
varies, INTENT(IN) :: inVal
varies, INTENT(OUT) :: outVal

Combine one record of this field from each chunk, according to op, across all chunks. Fid is only used for the base_type
and vec_len- offset and dist are not used. After this call returns, all chunks will have identical values in outVal. Op
has the same values and meaning as FEM_Reduce_field.

May only be called from driver, and to complete, must be called from every chunk’s driver routine.

! C example
double inArr[3], outArr[3];
int fid=IDXL_Layout_create(FEM_DOUBLE,3);
FEM_Reduce(fid,inArr,outArr,FEM_SUM);

! f90 example
DOUBLE PRECISION :: inArr(3), outArr(3)
INTEGER fid
fid=IDXL_Layout_create(FEM_DOUBLE,3)
CALL FEM_Reduce(fid,inArr,outArr,FEM_SUM)

This routine has no IDXL equivalent.
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8.9.1 Ghost Communication

It is possible to get values for a chunk’s ghost nodes and elements from the neighbors. To do this, use:

void FEM_Update_ghost_field(int Fid, int elTypeOrMinusOne, void

*data);

SUBROUTINE FEM_Update_ghost_field(Fid,elTypeOrZero,data)
INTEGER, INTENT(IN) :: Fid,elTypeOrZero
varies, INTENT(INOUT) :: data

This has the same requirements and call sequence as FEM_Update_field, except it applies to ghosts. You specify which
type of element to exchange using the elType parameter. Specify -1 (C version) or 0 (fortran version) to exchange node
values.

8.9.2 Ghost List Exchange

It is possible to exchange sparse lists of ghost elements between FEM chunks.

void FEM_Exchange_ghost_lists(int elemType,int nIdx,const int

*localIdx);

SUBROUTINE FEM_Exchange_ghost_lists(elemType,nIdx,localIdx)
INTEGER, INTENT(IN) :: elemType,nIdx
INTEGER, INTENT(IN) :: localIdx[nIdx]

This routine sends the local element indices in localIdx to those neighboring chunks that connect to its ghost elements
on the other side. That is, if the element localIdx[i] has a ghost on some chunk c, localIdx[i] will be sent to and show
up in the ghost list of chunk c.

int FEM_Get_ghost_list_length(void);

Returns the number of entries in my ghost list—the number of my ghosts that other chunks passed to their call to
FEM_Exchange_ghost_lists.

void FEM_Get_ghost_list(int *retLocalIdx);

SUBROUTINE FEM_Get_ghost_list(retLocalIdx)
INTEGER, INTENT(OUT) :: retLocalIdx[FEM_Get_ghost_list_length()]

These routines access the list of local elements sent by other chunks. The returned indices will all refer to ghost
elements in my chunk.

8.10 ParFUM

ParFUM is the name for the latest version of FEM. ParFUM includes additional features including parallel mesh
modification and adaptivity (geometrical). ParFUM also contains functions which generate additional topological
adjacency information. ParFUM cannot be built separate from Charm++ since it uses various messaging mechanisms
that MPI does not readily support. It is important to note that ParFUM adaptivity at the moment has some limitations.
It works only for meshes which are two-dimensional. The other limitation is that the mesh on which it works on must
have one layer of node-deep ghosts. Most applications require no or one layer ghosts, so it is really not a limitation,
but for applications that need multiple layers of ghost information, the adaptivity operations cannot be used.
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8.10.1 Adaptivity Initialization

If a FEM application wants to use parallel mesh adaptivity, the first task is to call the initialization routine from the
driver function. This creates the node and element adjacency information that is essential for the adaptivity operations.
It also initializes all the mesh adaptivity related internal objects in the framework.

void FEM_ADAPT_Init(int meshID)

Initializes the mesh defined by meshID for the mesh adaptivity operations.

8.10.2 Preparing the Mesh for Adaptivity

For every element entity in the mesh, there is a desired size entry for each element. This entry is called meshSizing.
This meshSizing entry contains a metric that decides the element quality. The default metric is the average of the size
of the three edges of an element. This section provides various mechanisms to set this field. Some of the adaptive
operations actually use these metrics to maintain quality. Though there is another metric which is computer for each
element and maintained on the fly and that is the ratio of the largest length to the smallest altitude and this value during
mesh adaptivity is not allowed to go beyond a certain limit. Because the larger this value after a certain limit, the
worse the element quality.

void FEM_ADAPT_SetElementSizeField(int meshID, int elem, double size);

For the mesh specified by meshID, for the element elem, we set the desired size for each element to be size.

void FEM_ADAPT_SetElementSizeField(int meshID, double *sizes);

For the mesh specified by meshID, for the element elem, we set the desired size for each element from the correspond-
ing entry in the sizes array.

void FEM_ADAPT_SetReferenceMesh(int meshID);

For each element int this mesh defined by meshID set its size to the average edge length of the corresponding element.

void FEM_ADAPT_GradateMesh(int meshID, double smoothness);

Resize mesh elements to avoid jumps in element size. i.e. avoid discontinuities in the desired sizes for elements
of a mesh by smoothing them out. Algorithm based on h-shock correction, described in Mesh Gradation Control,
Borouchaki et al.

8.10.3 Modifying the Mesh

Once the elements in the mesh has been prepared by specifying their desired sizes, we are ready to use the actual adap-
tivity operations. Currently we provide Delaunay flip operations, edge bisect operations and edge-coarsen operations
all of which are implemented in parallel, but the user has access to these wrapper functions which intelligently decide
when and in which region of the mesh to use the adaptivity operations to generate a mesh with higher quality elements
while achieving the desired size (which is usually average edge length per element), or it could even be the area of
each element.

void FEM_ADAPT_Refine(int meshID, int qm, int method, double
factor,double *sizes);

Perform refinements on the mesh specified by meshId. Tries to maintain/improve element quality by refining the mesh
as specified by a quality measure qm. If method = 0, refine areas with size larger than factor down to factor If method
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= 1, refine elements down to sizes specified in the sizes array. In this array each entry corresponds to the corresponding
element. Negative entries in sizes array indicate no refinement.

void FEM_ADAPT_Coarsen(int meshID, int qm, int method, double
factor,double *sizes);

Perform refinements on the mesh specified by meshId. Tries to maintain/improve element quality by coarsening the
mesh as specified by a quality measure qm. If method = 0, coarsen areas with size smaller than factor down to factor
If method = 1, coarsen elements up to sizes specified in the sizes array. In this array each entry corresponds to the
corresponding element. Negative entries in sizes array indicate no coarsening.

void FEM_ADAPT_AdaptMesh(int meshID, int qm, int method, double
factor,double *sizes);

It has the same set of arguments as required by the previous two operations, namely refine and coarsen. This function
keeps using the above two functions till we have all elements in the mesh with as close to the desired quality. Apart
from using the above two operations, it also performs a mesh repair operation where it gets rid of some bad quality
elements by Delaunay flip or coarsening as the geometry in the area demands.

int FEM_ADAPT_SimpleRefineMesh(int meshID, double targetA, double xmin,
double ymin, double xmax, double ymax);

A region is defined by (xmax, xmin, ymax, ymin) and the target area to be achieved for all elements in this region in
the mesh specified by meshID is given by targetA. This function only performs a series of refinements on the elements
in this region. If the area is larger, then no coarsening is done.

int FEM_ADAPT_SimpleCoarsenMesh(int meshID, double targetA, double xmin,
double ymin, double xmax, double ymax);

A region is defined by (xmax, xmin, ymax, ymin) and the target area to be achieved for all elements in this region in
the mesh specified by meshID is given by targetA. This function only performs a series of coarsenings on the elements
in this region. If the area is smaller, then no refinement is done.

8.10.4 Verify correctness of the Mesh

After adaptivity operations are performed and even before adaptivity operations, it is important to first verify that
we are working on a mesh that is consistent geometrically with the types of mesh that the adaptivity algorithms are
designed to work on. There is a function that can be used to test various properties of a mesh, like area, quality,
geometric consistency, idxl list correctness, etc.

void FEM_ADAPT_TestMesh(int meshID);

This provides a series of tests to determine the consistency of the mesh specified by meshID.

These four simple steps define what needs to be used by a program that wishes to use the adaptivity features of
ParFUM.

8.10.5 ParFUM developers

This manual is meant for ParFUM users, so developers should look at the source code and the doxygen generated
documentation.
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Iterative Finite Element Matrix (IFEM) Framework

Contents

• Iterative Finite Element Matrix (IFEM) Framework

– Introduction

* Terminology

– Solvers

* Conjugate Gradient Solver

– Solving Shared-Node Systems

* IFEM_Solve_shared

* IFEM_Solve_shared_bc

9.1 Introduction

This manual presents the Iterative Finite Element Matrix (IFEM) library, a library for easily solving matrix problems
derived from finite-element formulations. The library is designed to be matrix-free, in that the only matrix operation
required is matrix-vector product, and hence the entire matrix need never be assembled

IFEM is built on the mesh and communication capabilities of the Charm++ FEM Framework, so for details on the
basic runtime, problem setup, and partitioning see the FEM Framework manual.

9.1.1 Terminology

A FEM program manipulates elements and nodes. An element is a portion of the problem domain, also known as a
cell, and is typically some simple shape like a triangle, square, or hexagon in 2D; or tetrahedron or rectangular solid

311



Charm++ Documentation

in 3D. A node is a point in the domain, and is often the vertex of several elements. Together, the elements and nodes
form a mesh, which is the central data structure in the FEM framework. See the FEM manual for details.

9.2 Solvers

A IFEM solver is a subroutine that controls the search for the solution.

Solvers often take extra parameters, which are listed in a type called in C ILSI_Param, which in Fortran is an array
of ILSI_PARAM doubles. You initialize these solver parameters using the subroutine ILSI_Param_new, which
takes the parameters as its only argument. The input and output parameters in an ILSI_Param are listed in Table 7
and Table 8.

7: ILSI_Param solver input parameters.
C Field Name Fortran Field Offset Use
maxResidual 1 If nonzero, termination criteria: magnitude of residual.
maxIterations 2 If nonzero, termination criteria: number of iterations.
solverIn[8] 3-10 Solver-specific input parameters.

8: ILSI_Param solver output parameters.
C Field Name Fortran Field Offset Use
residual 11 Magnitude of residual of final solution.
iterations 12 Number of iterations actually taken.
solverOut[8] 13-20 Solver-specific output parameters.

9.2.1 Conjugate Gradient Solver

The only solver currently written using IFEM is the conjugate gradient solver. This linear solver requires the matrix
to be real, symmetric and positive definite.

Each iteration of the conjugate gradient solver requires one matrix-vector product and two global dot products. For
well-conditioned problems, the solver typically converges in some small multiple of the diameter of the mesh-the
number of elements along the largest side of the mesh.

You access the conjugate gradient solver via the subroutine name ILSI_CG_Solver.

9.3 Solving Shared-Node Systems

Many problems encountered in FEM analysis place the entries of the known and unknown vectors at the nodes-the
vertices of the domain. Elements provide linear relationships between the known and unknown node values, and the
entire matrix expresses the combination of all these element relations.

For example, in a structural statics problem, we know the net force at each node, 𝑓 , and seek the displacements of each
node, 𝑢. Elements provide the relationship, often called a stiffness matrix 𝐾, between a nodes’ displacements and its
net forces:

𝑓 = 𝐾𝑢

We normally label the known vector 𝑏 (in the example, the forces), the unknown vector 𝑥 (in the example, the dis-
placements), and the matrix 𝐴:

𝑏 = 𝐴𝑥
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IFEM provides two routines for solving problems of this type. The first routine, IFEM_Solve_shared, solves
for the entire 𝑥 vector based on the known values of the 𝑏 vector. The second, IFEM_Solve_shared_bc, allows
certain entries in the 𝑥 vector to be given specific values before the problem is solved, creating values for the 𝑏 vector.

9.3.1 IFEM_Solve_shared

void IFEM_Solve_shared(ILSI_Solver s, ILSI_Param *p, int fem_mesh, int
fem_entity, int length, int width, IFEM_Matrix_product_c A, void *ptr,
const double *b, double *x);

subroutine IFEM_Solve_shared(s, p, fem_mesh, fem_entity, length, width, A, ptr, b, x)
external solver subroutine :: s
double precision, intent(inout) :: p(ILSI PARAM)
integer, intent(in) :: fem mesh, fem entity, length, width
external matrix-vector product subroutine :: A
TYPE(varies), pointer :: ptr
double precision, intent(in) :: b(width,length)
double precision, intent(inout) :: x(width,length)

This routine solves the linear system 𝐴𝑥 = 𝑏 for the unknown vector 𝑥. s and p give the particular linear solver to
use, and are described in more detail in Section 9.2. fem_mesh and fem_entity give the FEM framework mesh (often
FEM_Mesh_default_read()) and entity (often FEM_NODE) with which the known and unknown vectors are
listed.

width gives the number of degrees of freedom (entries in the vector) per node. For example, if there is one degree of
freedom per node, width is one. length should always equal the number of FEM nodes.

A is a local matrix-vector product routine you must write. Its interface is described in Section 9.3.1. ptr is a pointer
passed down to A-it is not otherwise used by the framework.

b is the known vector. x, on input, is the initial guess for the unknown vector. On output, x is the final value for
the unknown vector. b and x should both have length * width entries. In C, DOF 𝑖 of node 𝑛 should be indexed as
𝑥[𝑛*width+𝑖]. In Fortran, these arrays should be allocated like x(width,length).

When this routine returns, x is the final value for the unknown vector, and the output values of the solver parameters p
will have been written.

// C++ Example
int mesh=FEM_Mesh_default_read();
int nNodes=FEM_Mesh_get_length(mesh,FEM_NODE);
int width=3; //A 3D problem
ILSI_Param solverParam;
struct myProblemData myData;

double *b=new double[nNodes*width];
double *x=new double[nNodes*width];
... prepare solution target b and guess x ...

ILSI_Param_new(&solverParam);
solverParam.maxResidual=1.0e-4;
solverParam.maxIterations=500;

IFEM_Solve_shared(IFEM_CG_Solver,&solverParam,
mesh,FEM_NODE,nNodes,width,
myMatrixVectorProduct,&myData,b,x);
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! F90 Example
include 'ifemf.h'
INTEGER :: mesh, nNodes,width
DOUBLE PRECISION, ALLOCATABLE :: b(:,:), x(:,:)
DOUBLE PRECISION :: solverParam(ILSI_PARAM)
TYPE(myProblemData) :: myData

mesh=FEM_Mesh_default_read()
nNodes=FEM_Mesh_get_length(mesh,FEM_NODE)
width=3 ! A 3D problem

ALLOCATE(b(width,nNodes), x(width,nNodes))
... prepare solution target b and guess x ..

ILSI_Param_new(&solverParam);
solverParam(1)=1.0e-4;
solverParam(2)=500;

IFEM_Solve_shared(IFEM_CG_Solver,solverParam,
mesh,FEM_NODE,nNodes,width,
myMatrixVectorProduct,myData,b,x);

Matrix-vector product routine

IFEM requires you to write a matrix-vector product routine that will evaluate 𝐴𝑥 for various vectors 𝑥. You may use
any subroutine name, but it must take these arguments:

void IFEM_Matrix_product(void *ptr, int length, int width, const double

*src, double *dest);

subroutine IFEM_Matrix_product(ptr, length, width, src, dest)
TYPE(varies), pointer :: ptr
integer, intent(in) :: length, width
double precision, intent(in) :: src(width, length)
double precision, intent(out) :: dest(width, length)

The framework calls this user-written routine when it requires a matrix-vector product. This routine should compute
𝑑𝑒𝑠𝑡 = 𝐴𝑠𝑟𝑐, interpreting 𝑠𝑟𝑐 and 𝑑𝑒𝑠𝑡 as vectors. length gives the number of nodes and width gives the number of
degrees of freedom per node, as above.

In writing this routine, you are responsible for choosing a representation for the matrix 𝐴. For many problems, there
is no need to represent 𝐴 explicitly-instead, you simply evaluate 𝑑𝑒𝑠𝑡 by looping over local elements, taking into
account the values of 𝑠𝑟𝑐. This example shows how to write the matrix-vector product routine for simple 1D linear
elastic springs, while solving for displacement given net forces.

After calling this routine, the framework will handle combining the overlapping portions of these vectors across
processors to arrive at a consistent global matrix-vector product.

// C++ Example
#include "ifemc.h"

typedef struct {
int nElements; //Number of local elements
int *conn; // Nodes adjacent to each element: 2*nElements entries
double k; //Uniform spring constant

(continues on next page)
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(continued from previous page)

} myProblemData;

void myMatrixVectorProduct(void *ptr,int nNodes,int dofPerNode,
const double *src,double *dest)

{
myProblemData *d=(myProblemData *)ptr;
int n,e;
// Zero out output force vector:
for (n=0;n<nNodes;n++) dest[n]=0;
// Add in forces from local elements
for (e=0;e<d->nElements;e++) {
int n1=d->conn[2*e+0]; // Left node
int n2=d->conn[2*e+1]; // Right node
double f=d->k * (src[n2]-src[n1]); //Force
dest[n1]+=f;
dest[n2]-=f;

}
}

! F90 Example
TYPE(myProblemData)
INTEGER :: nElements
INTEGER, ALLOCATABLE :: conn(2,:)
DOUBLE PRECISION :: k

END TYPE

SUBROUTINE myMatrixVectorProduct(d,nNodes,dofPerNode,src,dest)
include 'ifemf.h'
TYPE(myProblemData), pointer :: d
INTEGER :: nNodes,dofPerNode
DOUBLE PRECISION :: src(dofPerNode,nNodes), dest(dofPerNode,nNodes)
INTEGER :: e,n1,n2
DOUBLE PRECISION :: f

dest(:,:)=0.0
do e=1,d%nElements
n1=d%conn(1,e)
n2=d%conn(2,e)
f=d%k * (src(1,n2)-src(1,n1))
dest(1,n1)=dest(1,n1)+f
dest(1,n2)=dest(1,n2)+f

end do
END SUBROUTINE

9.3.2 IFEM_Solve_shared_bc

void IFEM_Solve_shared_bc(ILSI_Solver s, ILSI_Param *p, int fem_mesh,
int fem_entity, int length, int width, int bcCount, const int *bcDOF,
const double *bcValue, IFEM_Matrix_product_c A, void *ptr, const
double *b, double *x);

subroutine IFEM_Solve_shared_bc(s, p, fem_mesh, fem_entity, length, width,
bcCount, bcDOF, bcValue, A, ptr, b, x)
external solver subroutine :: s

(continues on next page)
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(continued from previous page)

double precision, intent(inout) :: p(ILSI_PARAM)
integer, intent(in) :: fem_mesh, fem_entity, length,width
integer, intent(in) :: bcCount
integer, intent(in) :: bcDOF(bcCount)
double precision, intent(in) :: bcValue(bcCount)
external matrix-vector product subroutine :: A
TYPE(varies), pointer :: ptr
double precision, intent(in) :: b(width,length)
double precision, intent(inout) :: x(width,length)

Like IFEM_Solve_shared, this routine solves the linear system 𝐴𝑥 = 𝑏 for the unknown vector 𝑥. This routine,
however, adds support for boundary conditions associated with 𝑥. These so-called “essential” boundary conditions
restrict the values of some unknowns. For example, in structural dynamics, a fixed displacement is such an essential
boundary condition.

The only form of boundary condition currently supported is to impose a fixed value on certain unknowns, listed by
their degree of freedom-that is, their entry in the unknown vector. In general, the 𝑖’th DOF of node 𝑛 has DOF number
𝑛 * 𝑤𝑖𝑑𝑡ℎ + 𝑖 in C and (𝑛 − 1) * 𝑤𝑖𝑑𝑡ℎ + 𝑖 in Fortran. The framework guarantees that, on output, for all 𝑏𝑐𝐶𝑜𝑢𝑛𝑡
boundary conditions, 𝑥(𝑏𝑐𝐷𝑂𝐹 (𝑓)) = 𝑏𝑐𝑉 𝑎𝑙𝑢𝑒(𝑓).

For example, if 𝑤𝑖𝑑𝑡ℎ is 3 in a 3d problem, we would set node 𝑛𝑦’s y coordinate to 4.6 and node 𝑛𝑧’s z coordinate to
7.3 like this:

// C++ Example
int bcCount=2;
int bcDOF[bcCount];
double bcValue[bcCount];
// Fix node ny's y coordinate
bcDOF[0]=ny*width+1; // y is coordinate 1
bcValue[0]=4.6;
// Fix node nz's z coordinate
bcDOF[1]=nz*width+2; // z is coordinate 2
bcValue[1]=2.0;

! F90 Example
integer :: bcCount=2;
integer :: bcDOF(bcCount);
double precision :: bcValue(bcCount);
// Fix node ny's y coordinate
bcDOF(1)=(ny-1)*width+2; // y is coordinate 2
bcValue(1)=4.6;
// Fix node nz's z coordinate
bcDOF(2)=(nz-1)*width+3; // z is coordinate 3
bcValue(2)=2.0;

Mathematically, what is happening is we are splitting the partially unknown vector 𝑥 into a completely unknown
portion 𝑦 and a known part 𝑓 :

𝐴𝑥 = 𝑏

𝐴(𝑦 + 𝑓) = 𝑏

𝐴𝑦 = 𝑏−𝐴𝑓

We can then define a new right hand side vector 𝑐 = 𝑏−𝐴𝑓 and solve the new linear system 𝐴𝑦 = 𝑐 normally. Rather
than renumbering, we do this by zeroing out the known portion of 𝑥 to make 𝑦. The creation of the new linear system,
and the substitution back to solve the original system are all done inside this subroutine.
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One important missing feature is the ability to specify general linear constraints on the unknowns, rather than imposing
specific values.
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NetFEM Framework

Contents

• NetFEM Framework

– Introduction

– Compiling and Installing

– Running NetFEM Online

– Running NetFEM Offline

– NetFEM with other Visualization Tools

– Interface Basics

– Simple Interface

– Advanced “Field” Interface

10.1 Introduction

NetFEM was built to provide an easy way to visualize the current state of a finite-element simulation, or any parallel
program that computes on an unstructured mesh. NetFEM is designed to require very little effort to add to a program,
and connects to the running program over the network via the network protocol CCS (Converse Client/Server).

10.2 Compiling and Installing

NetFEM is part of Charm++, so it can be downloaded as part of charm. To build NetFEM, just build FEM normally,
or else do a make in charm/netlrts-linux/tmp/libs/ck-libs/netfem/.

319



Charm++ Documentation

To link with NetFEM, add -module netfem to your program’s link line. Note that you do not need to use the FEM
framework to use NetFEM.

The netfem header file for C is called “netfem.h”, the header for fortran is called ‘netfemf.h’. A sim-
ple example NetFEM program is in charm/pgms/charm++/fem/simple2D/. A more complicated example is in
charm/pgms/charm++/fem/crack2D/.

10.3 Running NetFEM Online

Once you have a NetFEM program, you can run it and view the results online by starting the program with CCS
enabled:

foo.bar.edu> ./charmrun ./myprogram +p2 ++server ++server-port 1234

“++server-port” controls the TCP port number to use for CCS—here, we use 1234. Currently, NetFEM only works
with one chunk per processor—that is, the -vp option cannot be used.

To view the results online, you then start the NetFEM client, which can be downloaded for Linux or Windows from
http://charm.cs.illinois.edu/research/fem/netfem/.

Enter the name of the machine running charmrun and the TCP port number into the NetFEM client—for example, you
might run:

netfem foo.bar.edu:1234

The NetFEM client will then connect to the program, download the most recent mesh registered with Net-
FEM_POINTAT, and display it. At any time, you can press the “update” button to reload the latest mesh.

10.4 Running NetFEM Offline

Rather than using CCS as above, you can register your meshes using NetFEM_WRITE, which makes the server write
out binary output dump files. For example, to view timestep 10, which is written to the “NetFEM/10/“ directory, you’d
run the client program as:

netfem NetFEM/10

In offline mode, the “update” button fetches the next extant timestep directory.

10.5 NetFEM with other Visualization Tools

You can use a provided converter program to convert the offline NetFEM files into an XML format compatible with the
powerful offline visualization tool ParaView (http://paraview.org). The converter is located in . . . /charm/src/libs/ck-
libs/netfem/ParaviewConverter/. Build the converter by simply issuing a “make” command in that directory(assuming
NetFEM already has been built).

Run the converter from the parent directory of the “NetFEM” directory to be converted. The converter will generate
a directory called “ParaViewData”, which contains subdirectories for each timestep, along with a “timestep”directory
for index files for each timestep. All files in the ParaViewData directory can be opened by ParaView. To open all
chunks for a given timestep, open the desired timestep file in “ParaViewData/timesteps”. Also, individual partition
files can also be opened from “ParaViewData / <timestep> / <partition_num>”.
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10.6 Interface Basics

You publish your data via NetFEM by making a series of calls to describe the current state of your data. There are
only 6 possible calls you can make.

NetFEM_Begin is the first routine you call. NetFEM_End is the last routine to call. These two calls bracket all the
other NetFEM calls.

NetFEM_Nodes describes the properties of the nodes, or vertices of the domain. NetFEM_Elements describes the
properties of your elements (triangles, tetrahedra, etc.). After making one of these calls, you list the different data
arrays associated with your nodes or elements by making calls to NetFEM_Scalar or NetFEM_Vector.

For example, a typical finite element simulation might have a scalar mass and vector position, velocity, and net force
associated with each node; and have a scalar stress value associated with each element. The sequence of NetFEM calls
this application would make would be:

NetFEM_Begin
NetFEM_Nodes -- lists position of each node
NetFEM_Vector -- lists velocity of each node
NetFEM_Vector -- lists net force on each node
NetFEM_Scalar -- lists mass of each node

NetFEM_Elements -- lists the nodes of each element
NetFEM_Scalar -- lists the stress of each element

NetFEM_End

x
y
z

x
y
z

x
y
z

Velocity

Position

Net Force
Stress

Connectivity

Mass

Elements

Nodes

18: These arrays, typical of a finite element analysis program, might be passed into NetFEM.

10.7 Simple Interface

The details of how to make each call are:

NetFEM NetFEM_Begin(int source, int step, int dim, int flavor);

integer function NetFEM_Begin(source,step,dim,flavor)
integer, intent(in) :: source,step,dim,flavor

Begins describing a single piece of a mesh. Returns a handle that is used for each subsequent call until NetFEM_End.
This call, like all NetFEM calls, is collective—every processor should make the same calls in the same order.

source identifies the piece of the mesh—use FEM_My_partition or CkMyPe.
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step identifies which version of the mesh this is—for example, you might use the timestep number. This is only used
to identify the mesh in the client.

dim is the number of spatial dimensions. For example, in a 2D computation, you’d pass dim==2; in a 3D computation,
dim==3. The client currently only supports 2D or 3D computations.

flavor specifies what to do with the data. This can take the value NetFEM_POINTAT, which is used in online visual-
ization, and specifies that NetFEM should only keep a pointer to your data rather than copy it out of your arrays. Or
it can take the value NetFEM_WRITE, which writes out the data to files named “NetFEM/step/source.dat” for offline
visualization.

void NetFEM_End(NetFEM n);

subroutine NetFEM_End(n)
integer, intent(in) :: n

Finishes describing a single piece of a mesh, which then makes the mesh available for display.

void NetFEM_Nodes(NetFEM n,int nNodes,const double *loc,const char *name);

subroutine NetFEM_Nodes(n,nNodes,loc,name)
integer, intent(in) :: n, nNodes
double precision, intent(in) :: loc(dim,nNodes)
character*(*), intent(in) :: name

Describes the nodes in this piece of the mesh.

n is the NetFEM handle obtained from NetFEM_Begin.

nNodes is the number of nodes listed here.

loc is the location of each node. This must be double-precision array, laid out with the same number of dimensions as
passed to NetFEM_Begin. For example, in C the location of a 2D node 𝑛 is stored in loc[2*n+0] (x coordinate) and
loc[2*n+1] (y coordinate). In Fortran, location of a node 𝑛 is stored in loc(:,n).

name is a human-readable name for the node locations to display in the client. We recommend also including the
location units here, for example “Position (m)”.

void NetFEM_Elements(NetFEM n,int nElements,int nodePerEl,const int *conn,const char
→˓*name);

subroutine NetFEM_Elements(n,nElements,nodePerEl,conn,name)
integer, intent(in) :: n, nElements, nodePerEl
integer, intent(in) :: conn(nodePerEl,nElements)
character*(*), intent(in) :: name

Describes the elements in this piece of the mesh. Unlike NetFEM_Nodes, this call can be repeated if there are different
types of elements (For example, some meshes contain a mix of triangles and quadrilaterals).

n is the NetFEM handle obtained from NetFEM_Begin.

nElements is the number of elements listed here.

nodePerEl is the number of nodes for each element. For example, a triangle has 3 nodes per element; while tetrahedra
have 4.

conn gives the index of each element’s nodes. Note that when called from C, the first node is listed in conn as 0 (0-based
node indexing), and element 𝑒’s first node is stored in conn[e*nodePerEl+0]. When called from Fortran, the first node
is listed as 1 (1-based node indexing), and element 𝑒’s first node is stored in conn(1,e) or conn((e-1)*nodePerEl+1).
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name is a human-readable name for the elements to display in the client. For example, this might be “Linear-Strain
Triangles”.

void NetFEM_Vector(NetFEM n,const double *data,const char *name);

subroutine NetFEM_Vector(n,data,name)
integer, intent(in) :: n
double precision, intent(in) :: data(dim,lastEntity)
character*(*), intent(in) :: name

Describes a spatial vector associated with each node or element in the mesh. Attaches the vector to the most recently
listed node or element. You can repeat this call several times to describe different vectors.

n is the NetFEM handle obtained from NetFEM_Begin.

data is the double-precision array of vector values. The dimensions of the array have to match up with the node or
element the data is associated with-in C, a 2D element 𝑒’s vector starts at data[2*e]; in Fortran, element 𝑒’s vector is
data(:,e).

name is a human-readable name for this vector data. For example, this might be “Velocity (m/s)”.

void NetFEM_Scalar(NetFEM n,const double *data,int dataPer,const char *name);

subroutine NetFEM_Scalar(n,data,dataPer,name)
integer, intent(in) :: n, dataPer
double precision, intent(in) :: data(dataPer,lastEntity)
character*(*), intent(in) :: name

Describes some scalar data associated with each node or element in the mesh. Like NetFEM_Vector, this data is
attached to the most recently listed node or element and this call can be repeated. For a node or element, you can make
the calls to NetFEM_Vector and NetFEM_Scalar in any order.

n is the NetFEM handle obtained from NetFEM_Begin.

data is the double-precision array of values. In C, an element 𝑒’s scalar values start at data[dataPer*e]; in Fortran,
element 𝑒’s values are in data(:,e).

dataPer is the number of values associated with each node or element. For true scalar data, this is 1; but can be any
value. Even if dataPer happens to equal the number of dimensions, the client knows that this data does not represent a
spatial vector.

name is a human-readable name for this scalar data. For example, this might be “Mass (Kg)” or “Stresses (pure)”.

10.8 Advanced “Field” Interface

This more advanced interface can be used if you store your node or element data in arrays of C structs or Fortran
TYPEs. To use this interface, you’ll have to provide the name of your struct and field. Each “field” routine is just an
extended version of a regular NetFEM call described above, and can be used in place of the regular NetFEM call. In
each case, you pass a description of your field in addition to the usual NetFEM parameters.

In C, use the macro “NetFEM_Field(theStruct,theField)” to describe the FIELD. For example, to describe the field
“loc” of your structure named “node_t”,

node_t *myNodes=...;
..., NetFEM_Field(node_t,loc), ...
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In Fortran, you must pass as FIELD the byte offset from the start of the structure to the start of the field, then the size
of the structure. The FEM “foffsetof” routine, which returns the number of bytes between its arguments, can be used
for this. For example, to describe the field “loc” of your named type “NODE”,

TYPE(NODE), ALLOCATABLE :: n(:)
..., foffsetof(n(1),n(1)%loc),foffsetof(n(1),n(2)), ...

void NetFEM_Nodes_field(NetFEM n,int nNodes,FIELD,const void *loc,const char *name);

subroutine NetFEM_Nodes_field(n,nNodes,FIELD,loc,name)

A FIELD version of NetFEM_Nodes.

void NetFEM_Elements_field(NetFEM n,int nElements,int nodePerEl,FIELD,int idxBase,
→˓const int *conn,const char *name);

subroutine NetFEM_Elements_field(n,nElements,nodePerEl,FIELD,idxBase,conn,name)

A FIELD version of NetFEM_Elements. This version also allows you to control the starting node index of the con-
nectivity array—in C, this is normally 0; in Fortran, this is normally 1.

void NetFEM_Vector_field(NetFEM n,const double *data,FIELD,const char *name);

subroutine NetFEM_Vector_field(n,data,FIELD,name)

A FIELD version of NetFEM_Vector.

void NetFEM_Scalar_field(NetFEM n,const double *data,int dataPer,FIELD,const char
→˓*name);

subroutine NetFEM_Scalar(n,data,dataPer,FIELD,name)

A FIELD version of NetFEM_Scalar.
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11.1 Motivation

A large class of problems can be solved by first decomposing the problem domain into a set of structured grids. For
simplicity, each structured grid is often made rectangular, when it is called a block. These blocks may face one another
or various parts of the outside world, and taken together comprise a multiblock computation.

There are two main types of multiblock computations – implicit and explicit. In an implicit computation, a global
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matrix, which represents the entire problem domain, is formed and solved. Implicit computations require a fast sparse
matrix solver, and are typically used for steady-state problems. In an explicit computation, the solution proceeds
locally, computing new values based on the values of nearby points. Explicit computations often have stability criteria,
and are typically used for time-dependent problems.

The Charm++ multiblock framework allows you to write a parallel explicit multiblock program, in C or Fortran 90,
by concentrating on what happens to a single block of the domain. Boundary condition housekeeping and “ghost cell”
exchange are all handled transparently by the framework. Using the multiblock framework also allows you to take
advantage of all the features of Charm++, including adaptive computation and communication overlap, run-time load
balancing, performance monitoring and visualization, and checkpoint/restart, with no additional effort.

11.2 Introduction/Terminology

A block is a distorted rectangular grid that represents a portion of the problem domain. A volumetric cell in the grid
is called a voxel. Each exterior side of a block is called a face. Each face may consist of several rectangular patches,
which all abut the same block and experience the same boundary conditions.

19: Terminology used by the framework.

For example, Figure 19 shows a 3D 4x8x7-voxel block, with a face and 6x3 patch indicated.

The computational domain is tiled with such blocks, which are required to be conformal – the voxels must match
exactly. The blocks need not be the same size or orientation, however, as illustrated in the 2D domain of Figure 20.

Figure 20 also shows the computation from the point of view of block A, which has two external boundary conditions
(on the left and top sides) and two “internal” boundary conditions (on the right and bottom sides). During the compu-
tation, the external boundary conditions can be imposed independent of any other blocks; while the internal boundary
conditions must be obtained from the other blocks.

To simplify the computation on the interior, these boundary conditions are typically written into special extra “ghost”
(or dummy) cells around the outside of the real interior cells. The array indexing for these ghost cells is illustrated in
Figure 21.

The Multiblock framework manages all the boundary conditions – both internal and external. Internal boundary
conditions are sent across processors, and require you to register the data “fields” you wish exchanged. External
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20: A 2D domain decomposed into three blocks: A (5x3), B (3x6), and C (5x4). Also shows the computation as seen
from block A.

21: The ghost cells around a 5x3-voxel 2D block
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boundary conditions are not communicated, but require you to register a function to apply that boundary condition to
your data. Either type of boundary condition can have arbitrary thickness.

Finally, the Multiblock framework manages nothing but boundary conditions. The rest of the computation, such as
deciding on and implementing timestepping, stencils, numerics, and interpolation schemes are all left up to the user.

11.3 Input Files

The Multiblock framework reads, in parallel, a partitioned set of blocks from block input files. Each block consists of
a file with extension “.mblk” for the interior data (grid coordinates and initial conditions) and “.bblk” for the boundary
condition data (patches where boundaries should be applied).

These block files are generated with a separate, offline tool called “makemblock”, which is documented elsewhere.

11.4 Structure of a Multiblock Framework Program

A Multiblock framework program consists of several subroutines: init, driver, finalize, and external bound-
ary condition subroutines.

init and finalize are called by the Multiblock framework only on the first processor – these routines typically
do specialized I/O, startup and shutdown tasks.

A separate driver subroutine runs for each block, doing the main work of the program. Because there may be several
blocks per processor, several driver routines may execute as threads simultaneously.

The boundary condition subroutines are called by the framework after a request from the driver.

subroutine init
read configuration data

end subroutine

subroutine bc1
apply first type of boundary condition

end subroutine bc1

subroutine bc2
apply second type of boundary condition

end subroutine bc2

subroutine driver
allocate and initialize the grid
register boundary condition subroutines bc1 and bc2
time loop

apply external boundary conditions
apply internal boundary conditions
perform serial internal computation

end time loop
end subroutine

subroutine finalize
write results

end subroutine
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11.5 Compilation and Execution

A Multiblock framework program is a Charm++ program, so you must begin by downloading the latest source version
of Charm++ from https://charm.cs.illinois.edu. Build the source with ./build MBLOCK version or cd into
the build directory, <version>/tmp, and type make MBLOCK. To compile a MULTIBLOCK program, pass the
-language mblock (for C) or -language mblockf (for Fortran) option to charmc.

In a charm installation, see charm/<version>/pgms/charm++/mblock/ for example and test programs.

11.6 Preparing Input Files

The Multiblock framework reads its description of the problem domain from input “block” files, which are in a
Multiblock-specific format. The files are named with the pattern prefixnumber.ext, where prefix is a arbitrary string
prefix you choose, number is the number of this block (virtual processor), and ext is either “mblk”, which contains
binary data with the block coordinates, or “bblk”, which contains ASCII data with the block’s boundary conditions.

You generate these Multiblock input files using a tool called makemblock, which can be found in charm/
<version>/pgms/charm++/makemblock. makemblock can read a description of the problem domain gen-
erated by the structured meshing program Gridgen (from Pointwise) in .grd and .inp format; or read a binary .msh
format. makemblock divides this input domain into the number of blocks you specify, then writes out .mblk and .bblk
files.

For example, to divide the single binary mesh “in1.msh” into 20 pieces “out00001.[mb]blk”..“out00020.[mb]blk”,
you’d use

$ makemblock in1.msh 20 out

You would then run this mesh using 20 virtual processors.

11.7 Multiblock Framework API Reference

The Multiblock framework is accessed from a program via a set of routines. These routines are available in both C
and Fortran90 versions. The C versions are all functions, and always return an error code of MBLK_SUCCESS or
MBLK_FAILURE. The Fortran90 versions are all subroutines, and take an extra integer parameter “err” which will
be set to MBLK_SUCCESS or MBLK_FAILURE.

11.7.1 Initialization

All these methods should be called from the init function by the user. The values passed to these functions are typically
read from a configuration file or computed from command-line parameters.

int MBLK_Set_prefix(const char *prefix);

subroutine MBLK_Set_prefix(prefix,err)
character*, intent(in)::prefix
integer, intent(out)::err

This function is called to set the block filename prefix. For example, if the input block files are named
“gridX00001.mblk” and “gridX00002.mblk”, the prefix is the string “gridX”.
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int MBLK_Set_nblocks(const int n);

subroutine MBLK_Set_nblocks(n,err)
integer, intent(in)::n
integer, intent(out)::err

This call is made to set the number of partitioned blocks to be used. Each block is read from an input file and a separate
driver is spawned for each. The number of blocks determines the available parallelism, so be sure to have at least as
many blocks as processors. We recommend using several times more blocks than processors, to ease load balancing
and allow adaptive overlap of computation and communication.

Be sure to set the number of blocks equal to the number of virtual processors (+vp command-line option).

int MBLK_Set_dim(const int n);

subroutine MBLK_Set_dim(n, err)
integer, intent(in)::n
integer, intent(out)::err

This call is made to set the number of spatial dimensions. Only three dimensional computations are currently sup-
ported.

11.7.2 Utility

int MBLK_Get_nblocks(int* n);

subroutine MBLK_Get_nblocks(n,err)
integer,intent(out)::n
integer,intent(out)::err

Get the total number of blocks in the current computation. Can only be called from the driver routine.

int MBLK_Get_myblock(int* m);

subroutine MBLK_Get_myblock(m,err)
integer,intent(out)::m
integer,intent(out)::err

Get the id of the current block, an integer from 0 to the number of blocks minus one. Can only be called from the
driver routine.

int MBLK_Get_blocksize(int* dims);

subroutine MBLK_Get_blocksize(dimsm,err)
integer,intent(out)::dims(3)
integer,intent(out)::err

Get the interior dimensions of the current block, in voxels. The size of the array dims should be 3, and will be filled
with the 𝑖, 𝑗, and 𝑘 dimensions of the block. Can only be called from the driver routine.

int MBLK_Get_nodelocs(const int* nodedim,double *nodelocs);
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subroutine MBLK_Get_blocksize(nodedim,nodelocs,err)
integer,intent(in)::nodedims(3)
double precision,intent(out)::nodedims(3,nodedims(0),nodedims(1),nodedims(2))
integer,intent(out)::err

Get the (𝑥, 𝑦, 𝑧) locations of the nodes of the current block. The 3-array nodedim should be the number of nodes you
expect, which must be exactly one more than the number of interior voxels.

Voxel
0 0 0

Voxel
0 1 0

Voxel
1 1 0

Voxel
1 0 0

Node
0 0 0

Node
0 1 0

Node
1 1 0

Node
1 0 0 2 0 0

Node

2 1 0
Node

Node
2 2 0

Node 
1 2 0

Node
0 2 0

i

j

22: The C node and voxel (𝑖, 𝑗, 𝑘) numbering for a 2 x 2 voxel block. For the fortran numbering, add 1 to all indices.
Ghost voxels are omitted.

You cannot obtain the locations of ghost nodes via this routine. To get the locations of ghost nodes, create a node-
centered field containing the node locations and do an update field. Can only be called from the driver routine.

double MBLK_Timer(void);

function double precision :: MBLK_Timer()

Return the current wall clock time, in seconds. Resolution is machine-dependent, but is at worst 10ms.

void MBLK_Print_block(void);

subroutine MBLK_Print_block()

Print a debugging representation of the framework’s information about the current block.

void MBLK_Print(const char *str);

subroutine MBLK_Print(str)
character*, intent(in) :: str

Print the given string, prepended by the block id if called from the driver. Works on all machines, unlike printf or
print *, which may not work on all parallel machines.

11.7.3 Internal Boundary Conditions and Block Fields

The Multiblock framework handles the exchange of boundary values between neighboring blocks. The basic mecha-
nism to do this exchange is the field – numeric data items associated with each cell of a block. These items must be
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arranged in a regular 3D grid, but otherwise we make no assumptions about the meaning of a field.

You create a field once, with MBLK_Create_Field, then pass the resulting field ID to MBLK_Update_Field (which
does the overlapping block communication) and/or MBLK_Reduce_Field (which applies a reduction over block val-
ues).

int MBLK_Create_Field(int *dimensions,int isVoxel,const int
base_type,const int vec_len,const int offset,const int dist, int

*fid);

subroutine MBLK_Create_Field(dimensions, isVoxel,base_type, vec_len, offset, dist,
→˓err)
integer, intent(in) :: dimensions, isVoxel, base_type, vec_len, offset, dist
integer, intent(out) :: fid, err

Creates and returns a Multiblock field ID, which can be passed to MBLK_Update_Field and MBLK_Reduce_Field.
Can only be called from driver().

dimensions describes the size of the array the field is in as an array of size 3, giving the 𝑖, 𝑗, and 𝑘 sizes. The
size should include the ghost regions – i.e., pass the actual allocated size of the array. isVoxel describes whether
the data item is to be associated with a voxel (1, a volume-centered value) or the nodes (0, a node-centered value).
base_type describes the type of each data item, one of:

• MBLK_BYTE – unsigned char, INTEGER*1, or CHARACTER*1

• MBLK_INT – int or INTEGER*4

• MBLK_REAL – float or REAL*4

• MBLK_DOUBLE – double, DOUBLE PRECISION, or REAL*8

vec_len describes the number of data items associated with each cell, an integer at least 1.

offset is the byte offset from the start of the array to the first interior cell’s data items, a non-negative in-
teger. This can be calculated using the offsetof() function, normally with offsetof(array(1,1,1),
array(interiorX,interiorY,interiorZ)). Be sure to skip over any ghost regions.

dist is the byte offset from the first cell’s data items to the second, a positive integer (normally the size of
the data items). This can also be calculated using offsetof(); normally with offsetof(array(1,1,1),
array(2,1,1)).

fid is the identifier for the field that is created by the function.

In the example below, we register a single double-precision value with each voxel. The ghost region is 2 cells deep
along all sides.

!In Fortran
double precision, allocatable :: voxData(:,:,:)
integer :: size(3), ni,nj,nk
integer :: fid, err

!Find the dimensions of the grid interior
MBLK_Get_blocksize(size,err);

!Add ghost region width to the interior dimensions
size=size+4; ! 4 because of the 2-deep region on both sides

!Allocate and initialize the grid
allocate(voxData(size(1),size(2),size(3)))
voxData=0.0

(continues on next page)
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!Create a field for voxData
call MBLK_Create_field(&

&size,1, MBLK_DOUBLE,3,&
&offsetof(grid(1,1,1),grid(3,3,3)),&
&offsetof(grid(1,1,1),grid(2,1,1)),fid,err)

This example uses the Fortran-only helper routine offsetof, which returns the offset in bytes of memory between
its two given variables. C users can use the built-in sizeof keyword or pointer arithmetic to achieve the same result.

void MBLK_Update_field(const int fid,int ghostwidth, void *grid);

subroutine MBLK_Update_field(fid,ghostwidth, grid,err)
integer, intent(in) :: fid, ghostwidth
integer,intent(out) :: err
varies, intent(inout) :: grid

Update the values in the ghost regions specified when the field was created. This call sends this block’s interior region
out, and receives this block’s boundary region from adjoining blocks.

ghostwidth controls the thickness of the ghost region. To exchange only one cell on the boundary, pass 1. To
exchange two cells, pass 2. To include diagonal regions, make the ghost width negative. A ghost width of zero would
communicate no data.

23: The 2D ghost cells communicated for various ghost widths. The heavy line is the block interior boundary – this is
the lower left portion of the block.

MBLK_Update_field can only be called from the driver, and to be useful, must be called from every block’s driver
routine.

MBLK_Update_field blocks until the field has been updated. After this routine returns, the given field will updated. If
the update was successful MBLK_SUCCESS is returned, otherwise MBLK_FAILURE is returned in case of error.

void MBLK_Iupdate_field(const int fid,int ghostwidth, void *ingrid, void* outgrid);

subroutine MBLK_Iupdate_field(fid,ghostwidth, ingrid, outgrid,err)
integer, intent(in) :: fid, ghostwidth
integer,intent(out) :: err
varies,intent(in) :: ingrid
varies,intent(out) :: outgrid

Update the values in the ghost regions which were specified when the field was created. For the example above the
ghost regions will be updated once for each step in the time loop.

MBLK_Iupdate_field can only be called from the driver, and to be useful, must be called from every block’s driver
routine.
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MBLK_Iupdate_field is a non blocking call similar to MPI_Irecv. After the routine returns the update may not yet be
complete and the outgrid may be in an inconsistent state. Before using the values, the status of the update must be
checked using MBLK_Test_update or MBLK_Wait_update.

There can be only one outstanding Iupdate call in progress at any time.

int MBLK_Test_update(int *status);

subroutine MBLK_Test_update(status,err)
integer, intent(out) :: status,err

MBLK_Test_update is a call that is used in association with MBLK_Iupdate_field from the driver subroutine. It
tests whether the preceding Iupdate has completed or not. status is returned as MBLK_DONE if the update was
completed or MBLK_NOTDONE if the update is still pending. Rather than looping if the update is still pending, call
MBLK_Wait_update to relinquish the CPU.

void MBLK_Wait_update(void);

subroutine MBLK_Wait_update()

MBLK_Wait_update call is a blocking call and is used in association with MBLK_Iupdate_field call. It blocks until
the update is completed.

void MBLK_Reduce_field(int fid,void *grid, void *out,int op);

subroutine MBLK_Reduce_field(fid,grid,outVal,op)
integer, intent(in) :: fid,op
varies, intent(in) :: grid
varies, intent(out) :: outVal

Combine a field from each block, according to op, across all blocks. Only the interior values of the field will be
combined, not the ghost cells. After Reduce_Field returns, all blocks will have identical values in outVal, which
must be vec_len copies of base_type.

May only be called from the driver, and to complete, must be called from every chunk’s driver routine.

op must be one of:

• MBLK_SUM – each element of outVal will be the sum of the corresponding fields of all blocks

• MBLK_MIN – each element of outVal will be the smallest value among the corresponding field of all blocks

• MBLK_MAX – each element of outVal will be the largest value among the corresponding field of all blocks

void MBLK_Reduce(int fid,void *inVal,void *outVal,int op);

subroutine MBLK_Reduce(fid,inVal,outVal,op)
integer, intent(in) :: fid,op
varies, intent(in) :: inVal
varies, intent(out) :: outVal

Combine a field from each block, acoording to op, across all blocks. fid is only used for base_type and vec_len
– offset and dist are not used. After this call returns, all blocks will have identical values in outVal. op has
the same values and meaning as MBLK_Reduce_Field. May only be called from the driver, and to complete, must be
called from every block’s driver routine.
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11.7.4 External Boundary Conditions

Most problems include some sort of boundary conditions. These conditions are normally applied in the ghost cells
surrounding the actual computational domain. Examples of boundary conditions are imposed values, reflection walls,
symmetry planes, inlets, and exits.

The Multiblock framework keeps track of where boundary conditions are to be applied. You register a subroutine that
the framework will call to apply each type of external boundary condition.

int MBLK_Register_bc(const int bcnum, int ghostWidth, const MBLK_BcFn bcfn);

subroutine MBLK_Register_bc(bcnum, ghostwidth, bcfn, err)
integer,intent(in) :: bcnum, ghostWidth
integer,intent(out) :: err
subroutine :: bcfn

This call is used to bind an external boundary condition subroutine, written by you, to a boundary condition number.
MBLK_Register_bc should only be called from the driver.

• bcnum – The boundary condition number to be associated with the function.

• ghostWidth – The width of the ghost cells where this boundary condition is to be applied.

• bcfn – The user subroutine to be called to apply this boundry condition.

When you ask the framework to apply boundary conditions, it will call this routine. The routine should be declared
like:

!In Fortran
subroutine applyMyBC(param1,param2,start,end)
varies :: param1, param2
integer :: start(3), end(3)
end subroutine

/* In C */
void applyMyBC(void *param1,void *param2,int *start,int *end);

param1 and param2 are not used by the framework – they are passed in unmodified from MBLK_Apply_bc and
MBLK_Apply_bc_all. param1 and param2 typically contain the block data and dimensions.

start and end are 3-element arrays that give the 𝑖,𝑗, 𝑘 block locations where the boundary condition is to be
applied. They are both inclusive and both relative to the block interior – you must shift them over your ghost cells.
The C versions are 0-based (the first index is zero), while the Fortran versions are 1-based (the first index is one).

For example, a Fortran subroutine to apply the constant value 1.0 across the boundary, with a 2-deep ghost region,
would be:

!In Fortran
subroutine applyMyBC(grid,size,start,end)
integer :: size(3), i,j,k
double precision :: grid(size(1),size(2),size(3))
integer :: start(3), end(3)
start=start+2 ! Back up over ghost region
end=end+2
do i=start(1),end(1)
do j=start(2),end(2)
do k=start(3),end(3)

grid(i,j,k)=1.0
end do

(continues on next page)

11.7. Multiblock Framework API Reference 335



Charm++ Documentation

(continued from previous page)

end do
end do

end subroutine

int MBLK_Apply_bc(const int bcnum, void *param1,void *param2);

subroutine MBLK_Apply_bc(bcnum, param1,param2,err)
integer,intent(in)::bcnum
varies,intent(inout)::param1
varies,intent(inout)::param2
integer,intent(out)::err

MBLK_Apply_bc call is made to apply all boundary condition functions of type bcnum to the block. param1 and
param2 are passed unmodified to the boundary condition function.

int MBLK_Apply_bc_all(void* param1, void* param2);

subroutine MBLK_Apply_bc_all(param1,param2, err)
integer,intent(out)::err
varies,intent(inout)::param1
varies,intent(inout)::param2

This call is same as MBLK_Apply_bc except it applies all external boundary conditions to the block.

11.7.5 Migration

The Charm++ runtime system includes automated, runtime load balancing, which will automatically monitor the
performance of your parallel program. If needed, the load balancer can “migrate” mesh chunks from heavily-loaded
processors to more lightly-loaded processors, improving the load balance and speeding up the program. For this to be
useful, pass the +vpN argument with a larger number of blocks N than processors Because this is somewhat involved,
you may refrain from calling MBLK_Migrate and migration will never take place.

The runtime system can automatically move your thread stack to the new processor, but you must write a PUP function
to move any global or heap-allocated data to the new processor. (Global data is declared at file scope or static in
C and COMMON in Fortran77. Heap allocated data comes from C malloc, C++ new, or Fortran90 ALLOCATE.) A
PUP (Pack/UnPack) function performs both packing (converting heap data into a message) and unpacking (converting
a message back into heap data). All your global and heap data must be collected into a single block (struct in C,
user-defined TYPE in Fortran) so the PUP function can access it all.

Your PUP function will be passed a pointer to your heap data block and a special handle called a “pupper”, which
contains the network message to be sent. Your PUP function returns a pointer to your heap data block. In a PUP
function, you pass all your heap data to routines named pup_type, where type is either a basic type (such as int,
char, float, or double) or an array type (as before, but with a “s” suffix). Depending on the direction of packing,
the pupper will either read from or write to the values you pass – normally, you shouldn’t even know which. The only
time you need to know the direction is when you are leaving a processor or just arriving. Correspondingly, the pupper
passed to you may be deleting (indicating that you are leaving the processor, and should delete your heap storage
after packing), unpacking (indicating you’ve just arrived on a processor, and should allocate your heap storage before
unpacking), or neither (indicating the system is merely sizing a buffer, or checkpointing your values).

PUP functions are much easier to write than explain – a simple C heap block and the corresponding PUP function is:
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typedef struct {
int n1; /*Length of first array below*/
int n2; /*Length of second array below*/
double *arr1; /*Some doubles, allocated on the heap*/
int *arr2; /*Some ints, allocated on the heap*/

} my_block;

my_block *pup_my_block(pup_er p,my_block *m)
{

if (pup_isUnpacking(p)) m=malloc(sizeof(my_block));
pup_int(p, &m->n1);
pup_int(p, &m->n2);
if (pup_isUnpacking(p)) {
m->arr1=malloc(m->n1*sizeof(double));
m->arr2=malloc(m->n2*sizeof(int));

}
pup_doubles(p,m->arr1,m->n1);
pup_ints(p,m->arr2,m->n2);
if (pup_isDeleting(p)) {
free(m->arr1);
free(m->arr2);
free(m);

}
return m;

}

This single PUP function can be used to copy the my_block data into a message buffer and free the old heap storage
(deleting pupper), allocate storage on the new processor and copy the message data back (unpacking pupper), or save
the heap data for debugging or checkpointing.

A Fortran TYPE block and corresponding PUP routine is as follows:

MODULE my_block_mod
TYPE my_block
INTEGER :: n1,n2x,n2y
REAL*8, POINTER, DIMENSION(:) :: arr1
INTEGER, POINTER, DIMENSION(:,:) :: arr2

END TYPE
END MODULE

SUBROUTINE pup_my_block(p,m)
IMPLICIT NONE
USE my_block_mod
USE pupmod
INTEGER :: p
TYPE(my_block) :: m
call pup_int(p,m%n1)
call pup_int(p,m%n2x)
call pup_int(p,m%n2y)
IF (pup_isUnpacking(p)) THEN
ALLOCATE(m%arr1(m%n1))
ALLOCATE(m%arr2(m%n2x,m%n2y))

END IF
call pup_doubles(p,m%arr1,m%n1)
call pup_ints(p,m%arr2,m%n2x*m%n2y)
IF (pup_isDeleting(p)) THEN
DEALLOCATE(m%arr1)

(continues on next page)
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DEALLOCATE(m%arr2)
END IF

END SUBROUTINE

int MBLK_Register(void *block, MBLK_PupFn pup_ud, int* rid)

subroutine MBLK_Register(block,pup_ud, rid)
integer, intent(out)::rid
TYPE(varies), POINTER :: block
SUBROUTINE :: pup_ud

Associates the given data block and PUP function. Returns a block ID, which can be passed to MBLK_Get_registered
later. Can only be called from driver. It returns MBLK_SUCESS if the call was successful and MBLK_FAILURE in
case of error. For the declarations above, you call MBLK_Register as:

/*C/C++ driver() function*/
int myId, err;
my_block *m=malloc(sizeof(my_block));
err =MBLK_Register(m,(MBLK_PupFn)pup_my_block,&rid);

!- Fortran driver subroutine
use my_block_mod
interface

subroutine pup_my_block(p,m)
use my_block_mod
INTEGER :: p
TYPE(my_block) :: m

end subroutine
end interface
TYPE(my_block) :: m
INTEGER :: myId,err
MBLK_Register(m,pup_my_block,myId,err)

Note that Fortran blocks must be allocated on the stack in driver, while C/C++ blocks may be allocated on the heap.

void MBLK_Migrate()

subroutine MBLK_Migrate()

Informs the load balancing system that you are ready to be migrated, if needed. If the system decides to migrate you,
the PUP function passed to MBLK_Register will be called with a sizing pupper, then a packing and deleting pupper.
Your stack (and pupped data) will then be sent to the destination machine, where your PUP function will be called
with an unpacking pupper. MBLK_Migrate will then return, whereupon you should call MBLK_Get_registered to get
your unpacked data block. Can only be called from the driver.

int MBLK_Get_Userdata(int n, void** block)

Return your unpacked userdata after migration – that is, the return value of the unpacking call – to your PUP function.
Takes the userdata ID returned by MBLK_Register. Can be called from the driver at any time.

Since Fortran blocks are always allocated on the stack, the system migrates them to the same location on the new
processor, so no Get_Registered call is needed from Fortran.
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12.1 Introduction

POSE (Parallel Object-oriented Simulation Environment) is a tool for parallel discrete event simulation (PDES) based
on Charm++. You should have a background in object-oriented programming (preferably C++) and know the basic
principles behind discrete event simulation. Familiarity with simple parallel programming in Charm++ is also a plus.

POSE uses the approach of message-driven execution of Charm++, but adds the element of discrete timestamps to
control when, in simulated time, a message is executed.

Users may choose synchronization strategies (conservative or several optimistic variants) on a per class basis, depend-
ing on the desired behavior of the object. However, POSE is intended to perform best with a special type of adaptive
synchronization strategy which changes it’s behavior on a per object basis. Thus, other synchronization strategies
may not be properly maintained. There are two significant versions of the adaptive strategy, adapt4, a simple, stable
version, and adept, the development version.

12.1.1 Developing a model in POSE

Modeling a system in POSE is similar to how you would model in C++ or any OOP language. Objects are entities that
hold data, and have a fixed set of operations that can be performed on them (methods).

Charm++ provides the parallelism we desire, but the model does not differ dramatically from C++. The primary
difference is that objects may exist on a set of processors, and so invoking methods on them requires communication
via messages. These parallel objects are called chares.

POSE adds to Charm++ by putting timestamps on method invocations (events), and executing events in timestamp
order to preserve the validity of the global state.

Developing a model in POSE involves identifying the entities we wish to model, determining their interactions with
other entities and determining how they change over time.

12.1.2 PDES in POSE

A simulation in POSE consists of a set of Charm++ chares performing timestamped events in parallel. In POSE, these
chares are called posers. POSE is designed to work with many such entities per processor. The more a system can be
broken down into its parallel components when designing the simulation model, the more potential parallelism in the
final application.

A poser class is defined with a synchronization strategy associated with it. We encourage the use of the adaptive
strategies, as mentioned earlier. Adaptive strategies are optimistic, and will potentially execute events out of order, but
have rollback and cancellation messages as well as checkpointing abilities to deal with this behind the scenes.

Execution is driven by events. An event arrives for a poser and is sorted into a queue by timestamp. The poser has
a local time called object virtual time (OVT) which represents its progress through the simulation. When an event
arrives with a timestamp 𝑡 >OVT, the OVT is advanced to 𝑡. If the event has timestamp 𝑡 <OVT, it may be that other
events with greater timestamps were executed. If this is the case, a rollback will occur. If not, the event is simply
executed along with the others in the queue.
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Time can also pass on a poser within the course of executing an event. An elapse function is used to advance the OVT.

POSE maintains a global clock, the global virtual time (GVT), that represents the progress of the entire simulation.

Currently, POSE has no way to directly specify event dependencies, so if they exist, the programmer must handle
errors in ordering carefully. POSE provides a delayed error message print and abort function that is only performed if
there is no chance of rolling back the dependency error. Another mechanism provided by POSE is a method of tagging
events with sequence numbers. This allows the user to determine the execution order of events which have the same
timestamp.

12.2 Compiling, Running and Debugging a Sample POSE program

Sample code is available in the Charm++ source distribution. Assuming a netlrts-linux build of Charm++, look in
charm/netlrts-linux/examples/pose. The SimBenchmark directory contains a synthetic benchmark sim-
ulation and is fairly straightforward to understand.

12.2.1 Compiling

To build a POSE simulation, run etrans.pl on each POSE module to get the new source files. etrans.pl is a source
to source translator. Given a module name it will translate the module.h, module.ci, and module.C files into
module_sim.h, module_sim.ci, and module_sim.C files. The translation operation adds wrapper classes
for POSE objects and handles the interface with strategies and other poser options.

To facilitate code organization, the module.C file can be broken up into multiple files and those files can appended
to the etrans.pl command line after the module name. These additional .C files will be translated and their output
appended to the module_sim.C file.

The -s switch can be passed to use the sequential simulator feature of POSE on your simulation, but you must also
build a sequential version when you compile (see below).

Once the code has been translated, it is a Charm++ program that can be compiled with charmc. Please refer to
the CHARM++/CONVERSE Installation and Usage Manual for details on the charmc command. You should build
the new source files produced by etrans.pl along with the main program and any other source needed with charmc,
linking with -module pose (or -module seqpose for a sequential version) and -language charm++. The
SimBenchmark example has a Makefile that shows this process.

12.2.2 Running

To run the program in parallel, a charmrun executable was created by charmc. The flag +p is used to specify a
number of processors to run the program on. For example:

$ ./charmrun pgm +p4

This runs the executable pgm on 4 processors. For more information on how to use charmrun and set up your
environment for parallel runs, see the CHARM++/CONVERSE Installation and Usage Manual.

12.2.3 Debugging

Because POSE is translated to Charm++, debugging is a little more challenging than normal. Multi-processor debug-
ging can be achieved with the charmrun ++debug option, and debugging is performed on the module_sim.C
source files. The user thus has to track down problems in the original POSE source code. A long-term goal of the
POSE developers is to eliminate the translation phase and rely on the interface translator of Charm++ to provide
similar functionality.

12.2. Compiling, Running and Debugging a Sample POSE program 341



Charm++ Documentation

12.2.4 Sequential Mode

As mentioned above, the same source code can be used to generate a purely sequential POSE executable by using
the -s flag to etrans.pl and linking with -module seqpose. This turns off all aspects of synchronization,
checkpointing and GVT calculation that are needed for optimistic parallel execution. Thus you should experience
better one-processor times for executables built for sequential execution than those built for parallel execution. This
is convenient for examining how a program scales in comparison to sequential time. It is also helpful for simulations
that are small and fast, or in situations where multiple processors are not available.

12.3 Programming in POSE

This section details syntax and usage of POSE constructs with code samples.

12.3.1 POSE Modules

A POSE module is similar to a Charm++ module. It is comprised of an interface file with suffix .ci, a header .h
file, and the implementation in .C files. Several posers can be described in one module, and the module can include
regular chares as well. The module is translated into Charm++ before the simulation can be compiled. This translation
is performed by a Perl script called etrans.pl which is included with POSE. It generates files suffixed _sim.ci,
_sim.h, and _sim.C.

12.3.2 Event Message and Poser Interface Description

Messages, be they event messages or otherwise, are described in the .ci file exactly the way they are in Charm++.
Event messages cannot make use of Charm++’s parameter marshalling, and thus you must declare them in the .h file.
Charm++ varsize event messages are currently not implemented in POSE.

All event messages inherit from a POSE type eventMsg which includes data for timestamps and miscellaneous
POSE statistics.

A message is declared in the .ci file as follows:

message myMessage;

Posers are described similar to chares, with a few exceptions. First, the poser keyword is used to denote that
the class is a POSE simulation object class. Second, event methods are tagged with the keyword event in square
brackets. Finally, three components are specified which indicate how objects of the poser class are to be simulated.
The sim component controls the wrapper class and event queue used by the object. The strat component controls
the synchronization strategy the object should use (i.e. adaptive or basic optimistic). The rep component specifies
the global state representation, which controls how the global state is kept accurate depending on the synchronization
strategy being used (i.e. checkpointing or no checkpointing). Currently, there is only one wrapper type, sim. This
3-tuple syntax is likely to become obsolete, replaced simply by synchronization strategy only. Keeping the global state
accurate is largely a function of the synchronization strategy used.

poser mySim : sim strat rep {
entry mySim(myMessage *);``
entry [event] void myEventMethod(eventMsg *);
...

};

A typical .ci file poser specification might look like this:
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poser Worker : sim adapt4 chpt {
entry Worker(WorkerCreationMsg *);
entry [event] void doWork(WorkMsg *);
...

};

Note that the constructors and event methods of a poser must take an event message as parameter. If there is no
data (and thereby no message defined) that needs to be passed to the method, then the parameter should be of type
eventMsg *. This ensures that POSE will be able to timestamp the event.

12.3.3 Declaring Event Messages and Posers

Currently, event messages are declared with no reference to what they might inherit from (unlike in Charm++). The
translator takes care of this. In addition, they must define operator=.

class myMessage {
public:
int someData;
myMessage& operator=(const myMessage& obj) {
eventMsg::operator=(obj);
someData = obj.someData;
return *this;

}
};

Similarly, posers do not refer to a base class when they are declared. Posers are required to have a void constructor
declared that simply initializes the data to sensible values. A destructor must be provided as well. In addition, a pup
and operator= must be provided. The pup method should call the pup method of the global state representation
class being used.

class mySim {
int anInt; float aFloat; char aString[20];
public:
mySim();
mySim(myMessage *m);
~mySim();
void pup(PUP::er &p);
mySim& operator=(const mySim& obj);
void myEventMethod(eventMsg *m);
void myEventMethod_anti(eventMsg *m);
void myEventMethod_commit(eventMsg *m);
...

};

Further, for each event method, a commit method should be declared, and if the synchronization strategy being used is
optimistic or involves any sort of rollback, an anti-method should also be provided. The syntax of these declarations
is shown above. Their usage and implementation will be described next.

12.3.4 Implementing Posers

The void constructor for a poser should be defined however the user sees fit. It could be given an empty body and
should still work for POSE. Poser entry constructors (those described in the .ci file) should follow the template
below:
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mySim::mySim(myMessage *m)
{

// initializations from $m$
...
delete m;
...

};

Note that while the incoming message 𝑚 may be deleted here in the constructor, event messages received on event
methods should not be deleted. The PDES fossil collection will take care of those.

An event method should have the following form:

void mySim::myEventMethod(eventMsg *m) {
// body of method

};

Again, 𝑚 is never deleted in the body of the event. A side effect of optimistic synchronization and rollback is that we
would like the effects of event execution to be dependent only upon the state encapsulated in the corresponding poser.
Thus, accessing arbitrary states outside of the simulation, such as by calling rand, is forbidden. We are planning to
fix this problem by adding a POSE_rand() operation which will generate a random number the first time the event
is executed, and will checkpoint the number for use in subsequent re-executions should a rollback occur.

12.3.5 Creation of Poser Objects

Posers are created within a module using the following syntax:

int hdl = 13; // handle should be unique
myMessage *m = new myMessage;
m->someData = 34;
POSE_create(mySim(m), hdl, 0);

This creates a mySim object that comes into existence at simulation time zero, and can be referred to by the handle
13.

Creating a poser from outside the module (i.e. from main) is somewhat more complex:

int hdl = 13;
myMessage *m = new myMessage;
m->someData = 34;
m->Timestamp(0);
(*(CProxy_mySim *) & POSE_Objects)[hdl].insert(m);

This is similar to what the module code ultimately gets translated to and should be replaced by a macro with similar
syntax soon.

12.3.6 Event Method Invocations

Event method invocations vary significantly from entry method invocations in Charm++, and various forms should
be used depending on where the event method is being invoked. In addition, event messages sent to an event method
should be allocated specifically for an event invocation, and cannot be recycled or deleted.

There are three ways to send events within a POSE module. The first and most commonly used way involves specifying
and offset in simulation time from the current time. The syntax follows:
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aMsg = new eventMsg;
POSE_invoke(myEventMethod(aMsg), mySim, hdl, 0);

Here, we’ve created an eventMsg and sent it to myEventMethod, an event entry point on mySim. mySim was
created at handle hdl, and we want the event to take place now, i.e. at the current simulation time, so the offset is
zero.

The second way to send an event is reserved for use by non-poser objects within the module. It should not be used by
posers. This version allows you to specify an absolute simulation time at which the event happens (as opposed to an
offset to the current time). Since non-poser objects are not a part of the simulation, they do not have a current time, or
OVT, by which to specify an offset. The syntax is nearly identical to that above, only the last parameter is an absolute
time.

aMsg = new eventMsg;
POSE_invoke_at(myEventMethod(aMsg), mySim, hdl, 56);

Posers should not use this approach because of the risk of specifying an absolute time that is earlier than the current
time on the object sending the event.

Using this method, event methods can be injected into the system from outside any module, but this is not recom-
mended.

The third approach is useful when an object send events to itself. It is simply a slightly shorter syntax for the same
thing as POSE_invoke:

aMsg = new eventMsg;
POSE_local_invoke(myEventMethod(aMsg), offset);

12.3.7 Elapsing Simulation Time

We’ve seen in the previous section how it is possible to advance simulation time by generating events with non-zero
offsets of current time. When such events are received on an object, if the object is behind, it advances its local
simulation time (object virtual time or OVT) to the timestamp of the event.

It is also possible to elapse time on an object while the object is executing an event. This is accomplished thus:

elapse(42);

The example above would simulate the passage of forty-two time units by adding as much to the object’s current OVT.

12.3.8 Interacting with a POSE Module and the POSE System

POSE modules consist of <modname>.ci, <modname>.h and <modname>.C files that are translated via
etrans.pl into <modname>_sim.ci, <modname>_sim.h and <modname>_sim.C files. To interface these
with a main program module, say 𝑃𝑔𝑚 in files pgm.ci, pgm.h and pgm.C, the pgm.ci file must declare the POSE
module as extern in the mainmodule Pgm block. For example:

mainmodule Pgm {
extern module modname;
readonly CkChareID mainhandle;

mainchare main {
entry main();

};
};
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The pgm.C file should include pose.h and <modname>_sim.h along with its own headers, declarations and
whatever else it needs.

Somewhere in the main function, POSE_init() should be called. This initializes all of POSE’s internal data
structures. The parameters to POSE_init() specify a termination method. POSE programs can be terminated in
two ways: with inactivity detection or with an end time. Inactivity detection terminates after a few iterations of the
GVT if no events are being executed and virtual time is not advancing. When an end time is specified, and the GVT
passes it, the simulation exits. If no parameters are provided to POSE_init(), then the simulation will use inactivity
detection. If a time is provided as the parameter, this time will be used as the end time.

Now POSE is ready for posers. All posers can be created at this point, each with a unique handle. The programmer
is responsible for choosing and keeping track of the handles created for posers. Once all posers are created, the
simulation can be started:

POSE_start();

12.4 Configuring POSE

POSE can be configured in two different ways. Fundamental behaviors are controlled by altering values in the
pose_config.h file in the POSE installation, and rebuilding POSE. Many of these configuration options can (and
should) be controlled by command line options. These will be designated here by an asterisk (*). See section 12.4.1
for the command line options.

• POSE_STATS_ON *
∘ Turn on timing and statistics gathering for internal POSE operations. Produces a small slowdown in program.

• POSE_DOP_ON *
∘ Turn on timing and statistics gathering for degree of parallelism calculations. Generates log files that can be
loaded by ploticus scripts to produce graphs plotting active entities over time. Slows down program
dramatically.

• POSE_COMM_ON

∘ Turn on streaming communication optimization for small message packing.

• COMM_TIMEOUT

∘ Used by streaming communication library. Time to wait (in ?) before sending buffered messages.

• COMM_MAXMSG

∘ Used by streaming communication library. Number of messages to buffer before packing and sending as one.

• LB_ON *
∘ Turn on POSE load balancing.

• STORE_RATE *
∘ Default checkpointing rate: 1 for every STORE_RATE events.

• SPEC_WINDOW *
∘ Speculative window size: this is how far (in virtual time units) ahead of GVT posers are allowed to go.

• MIN_LEASH * and MAX_LEASH *
∘ Bounds on the speculative window, these are adjusted by adaptive synchronization strategies.

• LEASH_FLEX *
∘ Granularity of flexibility when speculative window is shrunk or expanded.

• MAX_POOL_SIZE
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∘Memory used by event messages is recycled. This controls how many messages of a particular size will be
kept on hand.

• MAX_RECYCLABLE

∘ This is the largest size of message that will be recycled.

• LB_SKIP *
∘ This controls the frequency of load balance invocation. 1 in every LB_SKIP executions of the GVT
algorithm will invoke load balancing.

• LB_THRESHOLD *
∘What the heck does this number mean? I can’t remember. I’ll have to look through the code. . . later.
Meanwhile, I think this indicates some sort of threshold a single processor has to cross before we even bother
with analyzing the load.

• LB_DIFF *
∘ Once the load has been analyzed, we compute the difference between the max and min PE loads. Only if this
difference exceeds LB_DIFF do we bother migrating posers.

Several of the above flags and constants will be eliminated as the adaptive strategy is expanded. What remains will
eventually become run-time options.

12.4.1 POSE Command Line Options

Command line options are handled like Charm++ command line parameters. For namespace purity all POSE command
line options have a _pose suffix. They can be inspected by appending a -h to an execution of a POSE program.
Command line options override any defaults set in the pose_config.h file

• +stats_pose

∘ Turn on timing and statistics gathering for internal POSE operations. Produces a small slowdown in program.

• +dop_pose

∘ Turn on timing and statistics gathering for degree of parallelism calculations. Generates log files that can be
loaded by ploticus scripts to produce graphs plotting active entities over time. Slows down program
dramatically.

• +lb_on_pose

∘ Turn on POSE load balancing.

• +store_rate_pose N

∘ Default checkpointing rate: 1 for every STORE_RATE events.

• +spec_window_pose N

∘ Speculative window size: this is how far (in virtual time units) ahead of GVT posers are allowed to go.

• +min_leash_pose N and +min_leash_pose N

∘ Bounds on the speculative window, these are adjusted by adaptive synchronization strategies.

• +leash_flex_pose N

∘ Granularity of flexibility when speculative window is shrunk or expanded.

• +lb_skip_pose N

∘ This controls the frequency of load balance invocation. 1 in every LB_SKIP executions of the GVT
algorithm will invoke load balancing.

• +lb_threshold_pose N

∘Minimum threshold for load balancing, default is 4000

• +lb_diff_pose N
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∘ Once the load has been analyzed, we compute the difference between the max and min PE loads. Only if this
difference exceeds LB_DIFF do we bother migrating posers.

• +checkpoint_gvt_pose N

∘ Checkpoint to disk approximately every N GVT ticks (N is an integer). The default is 0, which indicates no
checkpointing.

• +checkpoint_time_pose N

∘ Checkpoint to disk every N seconds (N is an integer). The default is 0, which indicates no checkpointing. If
both this parameter and +checkpoint_gvt_pose are greater than 0, a warning will be given, the value of this
parameter will be set to 0, and POSE will checkpoint based on GVT ticks.

As a technical point, pose command line parsing is done inside the POSE_init() call. Therefore, the most con-
sistent behavior for interleaving pose command line options with user application options will be achieved by calling
POSE_init() before handling user application command line arguments.

12.5 Communication Optimizations

12.6 Load Balancing

12.7 Glossary of POSE-specific Terms

• void POSE_init()

∘ Initializes various items in POSE; creates the load balancer if load balancing is turned on; initializes the
statistics gathering facility if statistics are turned on.
∘Must be called in user’s main program prior to creation of any simulation objects or reference to any other
POSE construct.

• void POSE_start()

∘ Sets busy wait to default if none specified; starts quiescence detection; starts simulation timer.
∘Must be called in user’s main program when simulation should start.

• void POSE_registerCallBack(CkCallback cb)

∘ Registers callback function with POSE - when program ends or quiesces, function is called.
∘ CkCallback is created with the index of the callback function and a proxy to the object that function is to be
called on. For example, to register the function wrapUp in the main module as a callback:

CProxy_main M(mainhandle);
POSE_registerCallBack(CkCallback(CkIndex_main::wrapUp(), M));

• void POSE_stop()

∘ Commits remaining events; prints final time and statistics (if on); calls callback function.
∘ Called internally when quiescence is detected or program reaches POSE_endtime.

• void POSE_exit()

∘ Similar to CkExit().

• void POSE_set_busy_wait(int n)

∘ Used to control granularity of events; when calling POSE_busy_wait, program busywaits for time to
compute 𝑓𝑖𝑏(𝑛).

• void POSE_busy_wait()

∘ Busywait for time to compute 𝑓𝑖𝑏(𝑛) where n is either 1 or set by POSE_set_busy_wait.
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• POSE_useET(t)

∘ Set program to terminate when global virtual time (GVT) reaches 𝑡.

• POSE_useID()

∘ Set program to terminate when no events are available in the simulation.

• void POSE_create(constructorName(eventMsg *m), int handle, int atTime)

∘ Creates a poser object given its constructor, an event message 𝑚 of the appropriate type, any integer as the
handle (by which the object will be referred from then on), and a time (in simulation timesteps) at which it
should be created.
∘ The handle can be thought of as a chare array element index in Charm++.

• void POSE_invoke_at(methodName(eventMsg *m), className, int handle, int
atTime)

∘ Send a methodName event with message 𝑚 to an object of type className designated by handle ℎ𝑎𝑛𝑑𝑙𝑒 at
time specified by 𝑎𝑡𝑇 𝑖𝑚𝑒.
∘ This can be used by non-poser objects in the POSE module to inject events into the system being simulated.
It should not be used by a poser object to generate an event.

• void POSE_invoke(methodName(eventMsg *m), className, int handle, int
timeOffset)

∘ Send a methodName event with message 𝑚 to an object of type className designated by handle ℎ𝑎𝑛𝑑𝑙𝑒 at
current OVT + 𝑡𝑖𝑚𝑒𝑂𝑓𝑓𝑠𝑒𝑡.
∘ This is used by poser objects to send events from one poser to another.

• void POSE_local_invoke(methodName(eventMsg *m), int timeOffset)

∘ Send a methodName event with message 𝑚 to this object at current OVT + 𝑡𝑖𝑚𝑒𝑂𝑓𝑓𝑠𝑒𝑡.
∘ This is used by poser objects to send events to themselves.

• void CommitPrintf(char *s, args...)

∘ Buffered print statement; prints when event is committed (i.e. will not be rolled back).
∘ Currently, must be called on the wrapper class (parent) to work properly, but a fix for this is in the works.

• void CommitError(char *s, args...)

∘ Buffered error statement; prints and aborts program when event is committed.
∘ Currently, must be called on the wrapper class (parent) to work properly, but a fix for this is in the works.

• void elapse(int n)

∘ Elapse 𝑛 simulation time units.

• poser

∘ Keyword (used in place of chare) to denote a poser object in the .ci file of a POSE module.

• event

∘ Keyword used in square brackets in the .ci file of a POSE module to denote that the entry method is an
event method.

• eventMsg

∘ Base class for all event messages; provides timestamp, priority and many other properties.

• sim

∘ Base class of all wrapper classes.

• strat

∘ Base class of all strategy classes.

• con

∘ Simple conservative strategy class.
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• opt, opt2, opt3, spec, adapt, adapt2

∘ Optimistic strategy classes.

• rep

∘ Base class for all representation classes.

• chpt

∘ Simple checkpointing representation class.

• OVT()

∘ Returns the object virtual time (OVT) of the poser in which it is called

• void MySim::terminus()

∘When simulation has terminated and program is about to exit, this method is called on all posers.
Implemented as an empty method in the base rep class, the programmer may choose to override this with
whatever actions may need to be performed per object at the end of the simulation.

350 Chapter 12. Parallel Object-Oriented Simulation Environment (POSE)



CHAPTER 13

BigSim Parallel Simulator
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13.1 Introduction

Parallel machines with an extremely large number of processors are now being designed and built. For example, the
BlueGene/L (BG/L) machine built by IBM has 64,000 dual-processor nodes with 360 teraflops of peak performance.
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Another more radical design from IBM, code-named Cyclops (BlueGene/C), had over one million floating point units,
fed by 8 million instructions streams supported by individual thread units, targeting 1 petaflops of peak performance.

It is important that one can study the programming issues and performance of parallel applications on such machines
even before the machine is built. Thus, we have developed a parallel simulator - BigSim, to facilitate this research.

Since our research was initiated by the BlueGene/C project, in previous editions of this manual we also called our sim-
ulator as Blue Gene Simulator. Our simulator is capable of simulating a broad class of “Massively Parallel Processors-
In-Memory”, or MPPIM machines.

13.1.1 Simulator system components

Our simulator system includes these components:

1. a parallel emulator which emulates a low level machine API targeting an architecture like BlueGene;

2. a message driven programming language (Charm++) running on top of the emulator;

3. the Adaptive MPI (an implementation of MPI on top of Charm++) environment;

4. a parallel post-mortem mode simulator for performance prediction, including network simulation.

13.1.2 History

The first version of the BlueGene emulator was written in Charm++, a parallel object language, in fall 2001. The
second version of the BlueGene emulator was completely rewritten on top of Converse instead of Charm++ in spring
2002. While the API supported by the original emulator remains almost the same, many new features were added. The
new emulator was implemented on a portable low layer communication library - Converse, in order to achieve better
performance by avoiding the cross layer overhead.

Charm++ was ported to the emulator in 2002, providing the first parallel language model on top of the emulator.

A performance simulation capability was added to the emulator in spring 2003. The new simulator was renamed to
BigSim at the same time. During the same year, we developed a POSE-based postmortem mode network simulator
called BigNetSim. In fall 2006, we renamed BigNetSim as simply BigSim simulator.

In the following sections, we will first describe how to download and compile the BigSim system (Section 13.2).
Section 13.3 describes the BigSim Emulator and the low level machine API in detail.

13.2 BigSim Emulator Installation and Usage

13.2.1 Installing Charm++ and BigSim

The BigSim Emulator is distributed as part of the Charm++ standard distribution. One needs to download Charm++
and compile the BigSim Simulator. This process should begin with downloading Charm++ from the website: http:
//charm.cs.uiuc.edu.

Please refer to “Charm++ Installation and Usage Manual” and also the file README in the source code for detailed
instructions on how to compile Charm++. In short, the “build” script is the main tool for compiling Charm++. One
needs to provide target and platform selections:

$ ./build <target> <platform> [options ...] [charmc-options ...]

For example, to compile on a 64-bit Linux machine, one would type:
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$ ./build charm++ netlrts-linux-x86_64 -O2

which builds essential Charm++ kernel using UDP sockets as the communication method; alternatively, it is possible
to build the Charm++ kernel on MPI using:

$ ./build charm++ mpi-linux-x86_64 -O2

For other platforms, netlrts-linux-x86_64 should be replaced by whatever platform is being used. See the
charm/README file for a complete list of supported platforms.

Building Only the BigSim Emulator

The BigSim Emulator is implemented on top of Converse in Charm++. To compile the BigSim Emulator, one can
compile Emulator libraries directly on top of normal Charm++ using “bgampi” as the compilation target, like

$ ./build bgampi netlrts-linux-x86_64 -O2

With Emulator libraries, one can write BigSim applications using its low level machine API (defined in 13.3).

Building Charm++ or AMPI on the BigSim Emulator

In order to build Charm++ or AMPI on top of BigSim Emulator (which itself is implemented on top of Converse), a
special build option “bigemulator” needs to be specified:

$ ./build bgampi netlrts-linux-x86_64 bigemulator -O2

The “bgampi” option is the compilation target that tells “build” to compile BigSim Emulator libraries in addition to
Charm++ kernel libraries. The “bigemulator” option is a build option to platform “netlrts-linux”, which tells “build”
to build Charm++ on top of the BigSim Emulator.

The above “build” command creates a directory named “netlrts-linux-x86_64-bigemulator” under charm, which con-
tains all the header files and libraries needed for compiling a user application. With this version of Charm++, one can
run normal Charm++ and AMPI application on top of the emulator (in a virtualized environment).

13.2.2 Compiling BigSim Applications

Charm++ provides a compiler script charmc to compile all programs. As will be described in this subsection, there
are three methods to write a BigSim application: (a) using the low level machine API, (b) using Charm++ or (c) using
AMPI. Methods (b) and (c) are essentially used to obtain traces from the BigSim Emulator, such that one can use those
traces in a post-mortem simulation as explained in Section 14.1.

Writing a BigSim application using low level machine API

The original goal of the low level machine API was to mimic the BlueGene/C low level programming API. It is defined
in section 13.3. Writing a program in the low level machine API, one just needs to link Charm++’s BigSim emulator
libraries, which provide the emulation of the machine API using Converse as the communication layer.

In order to link against the BigSim library, one must specify -language bigsim as an argument to the charmc
command, for example:

$ charmc -o hello hello.C -language bigsim

Sample applications in low level machine API can be found in the directory charm/examples/bigsim/emulator/.
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Writing a BigSim application in Charm++

One can write a normal Charm++ application which can automatically run on the BigSim Emulator after compila-
tion. Charm++ implements an object-based message-driven execution model. In Charm++ applications, there are
collections of C++ objects, which communicate by remotely invoking methods on other objects via messages.

To compile a program written in Charm++ on the BigSim Emulator, one specifies -language charm++ as an
argument to the charmc command:

$ charmc -o hello hello.C -language charm++

This will link both Charm++ runtime libraries and BigSim Emulator libraries.

Sample applications in Charm++ can be found in the directory charm/examples/bigsim, specifically
charm/examples/bigsim/emulator/littleMD.

Writing a BigSim application in MPI

One can also write an MPI application for the BigSim Emulator. Adaptive MPI, or AMPI, is implemented on top
of Charm++, supporting dynamic load balancing and multithreading for MPI applications. Those are based on the
user-level migrating threads and load balancing capabilities provided by the Charm++ framework. This allows legacy
MPI programs to run on top of BigSim Charm++ and take advantage of the Charm++’s virtualization and adaptive
load balancing capability.

Currently, AMPI implements most features in the MPI version 1.0, with a few extensions for migrating threads and
asynchronous reduction.

To compile an AMPI application for the BigSim Emulator, one needs to link against the AMPI library as well as the
BigSim Charm++ runtime libraries by specifying -language ampi as an argument to the charmc command:

$ charmc -o hello hello.C -language ampi

Sample applications in AMPI can be found in the directory charm/examples/ampi. See also charm/
benchmarks/ampi/pingpong.

13.2.3 Running a BigSim Application

To run a parallel BigSim application, Charm++ provides a utility program called charmrun that starts the parallel
execution. For detailed description on how to run a Charm++ application, refer to the file charm/README in the
source code distribution.

To run a BigSim application, one needs to specify the following parameters to charmrun to define the simulated
machine size:

1. +vp: define the number of processors of the hypothetical (future) system

2. +x, +y and +z: optionally define the size of the machine in three dimensions, these define the number of nodes
along each dimension of the machine (assuming a torus/mesh topology);

3. +wth and +cth: For one node, these two parameters define the number of worker processors (+wth) and the
number of communication processors (+cth).

4. +bgwalltime: used only in simulation mode, when specified, use wallclock measurement of the time taken
on the simulating machine to estimate the time it takes to run on the target machine.

5. +bgcounter: used only in simulation mode, when specified, use the performance counter to estimate the time
on target machine. This is currently only supported when perfex is installed, like Origin2000.

354 Chapter 13. BigSim Parallel Simulator



Charm++ Documentation

6. +bglog: generate BigSim trace log files, which can be used with BigNetSim.

7. +bgcorrect: starts the simulation mode to predict performance. Without this option, a program simply
runs on the emulator without doing any performance prediction. Note: this option is obsolete, and no longer
maintained, use +bglog to generate trace logs, and use BigNetSim for performance prediction.

For example, to simulate a parallel machine of size 64K as 40x40x40, with one worker processor and one communi-
cation processor on each node, and use 100 real processors to run the simulation, the command to be issued should
be:

$ ./charmrun +p100 ./hello +x40 +y40 +z40 +cth1 +wth1

To run an AMPI program, one may also want to specify the number of virtual processors to run the MPI code by using
+vp. As an example,

$ ./charmrun +p100 ./hello +x40 +y40 +z40 +cth1 +wth1 +vp 128000

starts the simulation of a machine of size 40x40x40 with one worker processor in each node, running 128000 MPI
tasks (2 MPI tasks on each node), using 100 real processors to run the simulation. In this case, MPI_Comm_size()
returns 128000 for MPI_COMM_WORLD. If the +vp option is not specified, the number of virtual processors will be
equal to the number of worker processors of the simulated machine, in this case 64000.

13.3 BigSim Emulator

The BigSim emulator environment is designed with the following objectives:

1. To support a realistic BigSim API on existing parallel machines

2. To obtain first-order performance estimates of algorithms

3. To facilitate implementations of alternate programming models for Blue Gene

The machine supported by the emulator consists of three-dimensional grid of 1-chip nodes. The user may specify the
size of the machine along each dimension (e.g. 34x34x36). The chip supports 𝑘 threads (e.g. 200), each with its own
integer unit. The proximity of the integer unit with individual memory modules within a chip is not currently modeled.

The API supported by the emulator can be broken down into several components:

1. Low-level API for chip-to-chip communication

2. Mid-level API that supports local micro-tasking with a chip level scheduler with features such as: read-only
variables, reductions, broadcasts, distributed tables, get/put operations

3. Migratable objects with automatic load balancing support

Of these, the first two have been implemented. The simple time stamping algorithm, without error correction, has been
implemented. More sophisticated timing algorithms, specifically aimed at error correction, and more sophisticated
features (2, 3, and others), as well as libraries of commonly needed parallel operations are part of the proposed work
for future.

The following sections define the appropriate parts of the API, with example programs and instructions for executing
them.

13.3.1 BigSim Programming Environment

The basic philosophy of the BigSim Emulator is to hide intricate details of the simulated machine from the application
developer. Thus, the application developer needs to provide initialization details and handler functions only and gets
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the result as though running on a real machine. Communication, Thread creation, Time Stamping, etc are done by the
emulator.

BigSim API: Level 0

void addBgNodeInbuffer(bgMsg *msgPtr, int nodeID)

low-level primitive invoked by Blue Gene emulator to put the message to the inbuffer queue of a node.

msgPtr - pointer to the message to be sent to target node;

nodeID - node ID of the target node, it is the serial number of a bluegene node in the emulator’s physical node.

void addBgThreadMessage(bgMsg *msgPtr, int threadID)

add a message to a thread’s affinity queue, these messages can be only executed by a specific thread indicated by
threadID.

void addBgNodeMessage(bgMsg *msgPtr)

add a message to a node’s non-affinity queue, these messages can be executed by any thread in the node.

boolean checkReady()

invoked by communication thread to see if there is any unattended message in inBuffer.

bgMsg * getFullBuffer()

invoked by communication thread to retrieve the unattended message in inBuffer.

CmiHandler msgHandlerFunc(char *msg)

Handler function type that user can register to handle the message.

void sendPacket(int x, int y, int z, int msgSize,bgMsg *msg)

chip-to-chip communication function. It send a message to Node[x][y][z].

bgMsg is the message type with message envelope used internally.

Initialization API: Level 1a

All the functions defined in API Level 0 are used internally for the implementation of bluegene node communication
and worker threads.

From this level, the functions defined are exposed to users to write bluegene programs on the emulator.

Considering that the emulator machine will emulate several Bluegene nodes on each physical node, the emulator pro-
gram defines this function BgEmulatorInit(int argc, char **argv) to initialize each emulator node. In this function, user
program can define the Bluegene machine size, number of communication/worker threads, and check the command
line arguments.

The size of the simulated machine being emulated and the number of thread per node is determined either by the
command line arguments or calling following functions:

void BgSetSize(int sx, int sy, int sz)

set Blue Gene Machine size;

void BgSetNumWorkThread(int num)

set number of worker threads per node;

void BgSetNumCommThread(int num)

356 Chapter 13. BigSim Parallel Simulator



Charm++ Documentation

set number of communication threads per node;

int BgRegisterHandler(BgHandler h)

register user message handler functions;

For each simulated node, the execution starts at BgNodeStart(int argc, char **argv) called by the em-
ulator, where application handlers can be registered and computation is triggered by creating a task at required nodes.

Similar to pthread’s thread specific data, each bluegene node has its own node specific data associated with it. To do
this, the user needs to define its own node-specific variables encapsulated in a struct definition and register the pointer
to the data with the emulator by following function:

void BgSetNodeData(char *data)

To retrieve the node specific data, call:

char *BgGetNodeData()

After completion of execution, user program invokes a function:

void BgShutdown()

to terminate the emulator.

Handler Function API: Level 1a

The following functions can be called in user’s application program to retrieve the simulated machine information, get
thread execution time, and perform the communication.

void BgGetSize(int *sx, int *sy, int *sz)

int BgGetNumWorkThread()

int BgGetNumCommThread()

int BgGetThreadID()

double BgGetTime()

void BgSendPacket(int x, int y, int z, int threadID, int handlerID, WorkType
type, int numbytes, char* data)

This sends a trunk of data to Node[x, y, z] and also specifies the handler function to be used for this message i.e. the
handlerID; threadID specifies the desired thread to handle the message, ANYTHREAD means no preference.

To specify the thread category:

1: a small piece of work that can be done by communication thread itself, so NO scheduling overhead.

0: a large piece of work, so communication thread schedules it for a worker thread

13.3.2 Writing a BigSim Application

Application Skeleton

Handler function prototypes;
Node specific data type declarations;

void BgEmulatorInit(int argc, char **argv) function
Configure bluegene machine parameters including size, number of threads, etc.
You also need to register handlers here.

(continues on next page)
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void *BgNodeStart(int argc, char **argv) function
The usual practice in this function is to send an initial message to trigger
the execution.
You can also register node specific data in this function.

Handler Function 1, void handlerName(char *info)
Handler Function 2, void handlerName(char *info)
..
Handler Function N, void handlerName(char *info)

Sample Application 1

/* Application:

* Each node starting at [0,0,0] sends a packet to next node in

* the ring order.

* After node [0,0,0] gets message from last node

* in the ring, the application ends.

*/

#include "blue.h"

#define MAXITER 2

int iter = 0;
int passRingHandler;

void passRing(char *msg);

void nextxyz(int x, int y, int z, int *nx, int *ny, int *nz)
{

int numX, numY, numZ;

BgGetSize(&numX, &numY, &numZ);

*nz = z+1; *ny = y; *nx = x;
if (*nz == numZ) {

*nz = 0; (*ny) ++;
if (*ny == numY) {

*ny = 0; (*nx) ++;
if (*nx == numX) *nx = 0;

}
}

}

void BgEmulatorInit(int argc, char **argv)
{

passRingHandler = BgRegisterHandler(passRing);
}

/* user defined functions for bgnode start entry */
void BgNodeStart(int argc, char **argv)
{

int x,y,z;
int nx, ny, nz;

(continues on next page)
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int data, id;

BgGetXYZ(&x, &y, &z);
nextxyz(x, y, z, &nx, &ny, &nz);
id = BgGetThreadID();
data = 888;
if (x == 0 && y==0 && z==0) {
BgSendPacket(nx, ny, nz, -1,passRingHandler, LARGE_WORK,

sizeof(int), (char *)&data);
}

}

/* user write code */
void passRing(char *msg)
{

int x, y, z;
int nx, ny, nz;
int id;
int data = *(int *)msg;

BgGetXYZ(&x, &y, &z);
nextxyz(x, y, z, &nx, &ny, &nz);
if (x==0 && y==0 && z==0) {
if (++iter == MAXITER) BgShutdown();

}
id = BgGetThreadID();
BgSendPacket(nx, ny, nz, -1, passRingHandler, LARGE_WORK,

sizeof(int), (char *)&data);
}

Sample Application 2

/* Application:

* Find the maximum element.

* Each node computes maximum of it's elements and

* the max values it received from other nodes

* and sends the result to next node in the reduction sequence.

* Reduction Sequence: Reduce max data to X-Y Plane

* Reduce max data to Y Axis

* Reduce max data to origin.

*/

#include <stdlib.h>
#include "blue.h"

#define A_SIZE 4

#define X_DIM 3
#define Y_DIM 3
#define Z_DIM 3

int REDUCE_HANDLER_ID;
int COMPUTATION_ID;

(continues on next page)
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extern "C" void reduceHandler(char *);
extern "C" void computeMax(char *);

class ReductionMsg {
public:

int max;
};

class ComputeMsg {
public:

int dummy;
};

void BgEmulatorInit(int argc, char **argv)
{

if (argc < 2) {
CmiAbort("Usage: <program> <numCommTh> <numWorkTh>\n");

}

/* set machine configuration */
BgSetSize(X_DIM, Y_DIM, Z_DIM);
BgSetNumCommThread(atoi(argv[1]));
BgSetNumWorkThread(atoi(argv[2]));

REDUCE_HANDLER_ID = BgRegisterHandler(reduceHandler);
COMPUTATION_ID = BgRegisterHandler(computeMax);

}

void BgNodeStart(int argc, char **argv) {
int x, y, z;
BgGetXYZ(&x, &y, &z);

ComputeMsg *msg = new ComputeMsg;
BgSendLocalPacket(ANYTHREAD, COMPUTATION_ID, LARGE_WORK,

sizeof(ComputeMsg), (char *)msg);
}

void reduceHandler(char *info) {
// assumption: THey are initialized to zero?
static int max[X_DIM][Y_DIM][Z_DIM];
static int num_msg[X_DIM][Y_DIM][Z_DIM];

int i,j,k;
int external_max;

BgGetXYZ(&i,&j,&k);
external_max = ((ReductionMsg *)info)->max;
num_msg[i][j][k]++;

if ((i == 0) && (j == 0) && (k == 0)) {
// master node expects 4 messages:
// 1 from itself;
// 1 from the i dimension;
// 1 from the j dimension; and
// 1 from the k dimension
if (num_msg[i][j][k] < 4) {

(continues on next page)
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// not ready yet, so just find the max
if (max[i][j][k] < external_max) {

max[i][j][k] = external_max;
}

} else {
// done. Can report max data after making last comparison
if (max[i][j][k] < external_max) {

max[i][j][k] = external_max;
}
CmiPrintf("The maximal value is %d \n", max[i][j][k]);
BgShutdown();
return;

}
} else if ((i == 0) && (j == 0) && (k != Z_DIM - 1)) {
// nodes along the k-axis other than the last one expects 4 messages:
// 1 from itself;
// 1 from the i dimension;
// 1 from the j dimension; and
// 1 from the k dimension
if (num_msg[i][j][k] < 4) {

// not ready yet, so just find the max
if (max[i][j][k] < external_max) {

max[i][j][k] = external_max;
}

} else {
// done. Forwards max data to node i,j,k-1 after making last comparison
if (max[i][j][k] < external_max) {

max[i][j][k] = external_max;
}
ReductionMsg *msg = new ReductionMsg;
msg->max = max[i][j][k];
BgSendPacket(i,j,k-1,ANYTHREAD,REDUCE_HANDLER_ID,LARGE_WORK,

sizeof(ReductionMsg), (char *)msg);
}

} else if ((i == 0) && (j == 0) && (k == Z_DIM - 1)) {
// the last node along the k-axis expects 3 messages:
// 1 from itself;
// 1 from the i dimension; and
// 1 from the j dimension
if (num_msg[i][j][k] < 3) {

// not ready yet, so just find the max
if (max[i][j][k] < external_max) {

max[i][j][k] = external_max;
}

} else {
// done. Forwards max data to node i,j,k-1 after making last comparison
if (max[i][j][k] < external_max) {

max[i][j][k] = external_max;
}
ReductionMsg *msg = new ReductionMsg;
msg->max = max[i][j][k];
BgSendPacket(i,j,k-1,ANYTHREAD,REDUCE_HANDLER_ID,LARGE_WORK,

sizeof(ReductionMsg), (char *)msg);
}

} else if ((i == 0) && (j != Y_DIM - 1)) {
// for nodes along the j-k plane except for the last and first row of j,
// we expect 3 messages:

(continues on next page)
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// 1 from itself;
// 1 from the i dimension; and
// 1 from the j dimension
if (num_msg[i][j][k] < 3) {

// not ready yet, so just find the max
if (max[i][j][k] < external_max) {

max[i][j][k] = external_max;
}

} else {
// done. Forwards max data to node i,j-1,k after making last comparison
if (max[i][j][k] < external_max) {

max[i][j][k] = external_max;
}
ReductionMsg *msg = new ReductionMsg;
msg->max = max[i][j][k];
BgSendPacket(i,j-1,k,ANYTHREAD,REDUCE_HANDLER_ID,LARGE_WORK,

sizeof(ReductionMsg), (char *)msg);
}

} else if ((i == 0) && (j == Y_DIM - 1)) {
// for nodes along the last row of j on the j-k plane,
// we expect 2 messages:
// 1 from itself;
// 1 from the i dimension;
if (num_msg[i][j][k] < 2) {

// not ready yet, so just find the max
if (max[i][j][k] < external_max) {

max[i][j][k] = external_max;
}

} else {
// done. Forwards max data to node i,j-1,k after making last comparison
if (max[i][j][k] < external_max) {

max[i][j][k] = external_max;
}
ReductionMsg *msg = new ReductionMsg;
msg->max = max[i][j][k];
BgSendPacket(i,j-1,k,ANYTHREAD,REDUCE_HANDLER_ID,LARGE_WORK,

sizeof(ReductionMsg), (char *)msg);
}

} else if (i != X_DIM - 1) {
// for nodes anywhere the last row of i,
// we expect 2 messages:
// 1 from itself;
// 1 from the i dimension;
if (num_msg[i][j][k] < 2) {

// not ready yet, so just find the max
if (max[i][j][k] < external_max) {

max[i][j][k] = external_max;
}

} else {
// done. Forwards max data to node i-1,j,k after making last comparison
if (max[i][j][k] < external_max) {

max[i][j][k] = external_max;
}
ReductionMsg *msg = new ReductionMsg;
msg->max = max[i][j][k];
BgSendPacket(i-1,j,k,ANYTHREAD,REDUCE_HANDLER_ID,LARGE_WORK,

sizeof(ReductionMsg), (char *)msg);
(continues on next page)
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}
} else if (i == X_DIM - 1) {
// last row of i, we expect 1 message:
// 1 from itself;
if (num_msg[i][j][k] < 1) {

// not ready yet, so just find the max
if (max[i][j][k] < external_max) {

max[i][j][k] = external_max;
}

} else {
// done. Forwards max data to node i-1,j,k after making last comparison
if (max[i][j][k] < external_max) {

max[i][j][k] = external_max;
}
ReductionMsg *msg = new ReductionMsg;
msg->max = max[i][j][k];
BgSendPacket(i-1,j,k,-1,REDUCE_HANDLER_ID,LARGE_WORK,

sizeof(ReductionMsg), (char *)msg);
}

}
}

void computeMax(char *info) {
int A[A_SIZE][A_SIZE];
int i, j;
int max = 0;

int x,y,z; // test variables
BgGetXYZ(&x,&y,&z);

// Initialize
for (i=0;i<A_SIZE;i++) {
for (j=0;j<A_SIZE;j++) {

A[i][j] = i*j;
}

}

// CmiPrintf("Finished Initializing %d %d %d!\n", x , y , z);

// Find Max
for (i=0;i<A_SIZE;i++) {
for (j=0;j<A_SIZE;j++) {

if (max < A[i][j]) {
max = A[i][j];
}

}
}

// prepare to reduce
ReductionMsg *msg = new ReductionMsg;
msg->max = max;
BgSendLocalPacket(ANYTHREAD, REDUCE_HANDLER_ID, LARGE_WORK,

sizeof(ReductionMsg), (char *)msg);

// CmiPrintf("Sent reduce message to myself with max value %d\n", max);
}
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13.4 Interpolation / Extrapolation Tool

It is often desirable to predict performance of non-existent machines, or across architectures. This section describes a
tool that rewrites the log files produced by BigSim (also known as bgTrace trace logs) to provide new durations for
portions of the application consisting of sequential execution blocks. These new durations can be based upon multiple
types of models. The tool can be easily modified to add new types of models if the user requires. The models can be
generated from full or partial executions of an application on an existing processor or on a cycle-accurate simulator.

When predicting the runtime of a parallel application on a not-yet-existent parallel platform, there are two important
concerns. The first is correctly modeling the interconnection network, which is handled by BigSimulator (also called
BigNetSim). The second is determining the durations of the relevant sequential portions of code, which we call
Sequential Execution Blocks (SEB), on a new type of processor. The interpolation tool of this section handles only
the prediction of SEB durations, using currently three types of implemented models:

1. Scaling of SEB durations observed on an available (existing) processor, via multiplication of the original
durations by a constant factor.

2. Parameterizations of SEBs: each SEB is augmented with user-defined parameters that influence the duration of
the SEB. An extrapolation model based on those parameters can predict the durations of SEBs not instrumented
in the initial emulation run.

3. Parameterizations with cycle-accurate simulations for non-existent architectures: processor designers use
cycle-accurate simulators to simulate the performance of a piece of code on a future processor that is currently
unavailable. Timings for each SEB can be estimated in such a cycle-accurate simulator. The cycle-accurate
timings can be extrapolated to predict the durations of SEBs not instrumented in the cycle-accurate simulator.

This tool will soon include a new model with support for performance counters. The currently available tool rewrites
the log files produced by a run in the BigSim Emulator. The rewritten log files can then be consumed by BigSimulator.
This usage flow can be seen in Figure 24, showing that multiple types of models are supported in the tool.

13.4.1 Tool Usage

The interpolation tool is part of the regular Charm++ distribution and can be found under the directory charm/
examples/bigsim/tools/rewritelog with a README file describing its use in more detail than this manual.

Producing the Parameterized Timings Log

The interpolation tool uses as input a log of actual durations of user-bracketed sequential execution blocks. These
timings come from a full or partial execution of the parallel application on a real machine or within a cycle-accurate
simulator.

The user must insert startTraceBigSim() and endTraceBigSim() calls around the main computational
regions in the parallel application. These two calls bracket the region of interest and print out a record for that
computational region. The functions should be called at most once during any SEB. The output produced by
endTraceBigSim() is a line similar to

TRACEBIGSIM: event:{ PairCalculator::bwMultiplyHelper } time:{ 0.002586 }
params:{ 16384.00 1.00 220.00 128.00 128.00 0.00 0.00 0.00 }.

The event name and the values (in double-precision floating-point) for up to 20 parameters are specified in the call to
endTraceBigSim(); the time field records the duration of the bracketed region of sequential code.

To run in a cycle-accurate simulator such as IBM’s MAMBO, the startTraceBigSim() and
endTraceBigSim() functions would be modified to switch between the “fast forward” mode used during
the rest of the program and the cycle-accurate mode during the bracketed region of code. The functions are provided
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24: Flow diagram for use of the interpolation tool
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in C++ source files under the directory charm/examples/bigsim/tools/rewritelog/traceBigSim
and their calls must be added to an application’s source file manually.

The BigSim log file format

To understand how the interpolation tool works, it is instructive to consider the format of logs produced by the BigSim
Emulator. A BigSim log file (i.e. bgTrace log) contains data from emulation of the full parallel application. There is
an entry for each SEB, with the following fields: ID, Name, 𝑇𝑠𝑡𝑎𝑟𝑡, 𝑇𝑒𝑛𝑑, Back, Forward, Message ID, Source Node,
Message ID, Sent Messages. The final field is actually a list of records for each message sent by the execution block;
each record contains the following fields: Message ID, 𝑇𝑠𝑒𝑛𝑡, 𝑇𝑟𝑒𝑐𝑣, Destination PE, Size, Group.

The interpolation tool will rewrite the durations of the SEBs by correcting the 𝑇𝑒𝑛𝑑 field for the SEB and the 𝑇𝑠𝑒𝑛𝑡

fields for each message sent. The new durations of all SEBs will be based upon some model 𝑀 : 𝑆𝐸𝐵 → 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛.

Each SEB can be decomposed into three temporal regions as shown in Figure 25:. The entire SEB is associated with
execution of a Charm++ entry method, while the middle region is the computational kernel of interest, bracketed by
the user’s startTraceBigSim() and endTraceBigSim() calls. The model is used only to approximate the
new duration of the middle temporal region; the durations of the beginning and ending regions are simply scaled by
a constant factor. Internally, the interpolation tool takes the ID for each SEB and looks up its associated parameters.
When those parameters are found, they are used as input for evaluation of the new duration 𝑑𝑛𝑒𝑤 for the SEB. The end
time is then modified to be 𝑇𝑒𝑛𝑑 ← 𝑇𝑠𝑡𝑎𝑟𝑡 + 𝑑𝑛𝑒𝑤.

25: SEBs in the bgTrace file have a start and end time. Only a portion of the SEB, e.g. the important computational
kernel, is timed when performing cycle accurate simulation. The duration of the middle portion of the SEB can be
estimated in a different manner than the rest of the SEB. For example, the begin and end pieces can be scaled by some
constant factor, while the bracketed middle region’s duration can be estimated based on a more sophisticated model.

The messages in the message list for each SEB must also have their 𝑇𝑠𝑒𝑛𝑡 times rewritten. This is accomplished by
linearly mapping the old 𝑇𝑠𝑒𝑛𝑡 value from to the new range for the enclosing SEB region, as shown in Figure 26. Any
message sent during the first portion will be mapped linearly onto the new first portion of the SEB. The new message
𝑇𝑟𝑒𝑐𝑣 times are ignored by BigSimulator, so they do not need to be modified.

Supported performance models

The interpolation tool supports three types of models, as described in this subsection. The more sophisticated models
use the least-square curve fitting technique. The current implementation uses the Gnu Scientific Library(gsl) to perform
the least-square fit to the given data. The library provides both the coefficients and a 𝜒2 measure of the closeness of
the fit to the input data.
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26: Message send times for messages sent from an SEB are remapped linearly onto the new time ranges for the SEB,
region by region.

Model 1: Scaling SEB durations by a constant factor

In simple cases, a sufficient approximation of the performance of a parallel application can be obtained by simply
scaling the SEB durations by a constant factor. As an example, a user may know that a desired target machine has
processors that will execute each SEB twice as fast as on an existing machine. The application is emulated on the
existing machine and the observed SEB durations are scaled by a factor of 2.0. Although simple, this method may be
sufficient in many cases. It becomes unnecessary to use the startTraceBigSim() and endTraceBigSim()
calls. The scaling factor is hard coded in the interpolation tool as time_dilation_factor. It is used to scale
all blocks unless a suitable advanced model has a better method for approximating the block’s duration. It will
always be used to scale any portions of blocks that are not bracketed with the calls startTraceBigSim() and
endTraceBigSim().

Model 2: Extrapolation based on user’s parameterizations

The user can simply insert the bracketing calls startTraceBigSim() and endTraceBigSim() around the
computational kernels to log the times taken for each kernel. In practice, the duration of the SEB will likely depend
upon the data distribution and access patterns for the parallel application. Thus, the user must specify parameters likely
to influence the SEB duration. The parameters can include variables indicating number of loop iterations, number of
calls to computational kernels, or sizes of accessed portions of data arrays. A model is built to approximate the duration
of any SEB based upon its specified parameters.

As an example, NAMD uses a number of different types of objects. The compute objects will spend varying
amounts of time depending upon the lengths of their associated atom lists. If an atom list is large, more interac-
tions are computed and thus more computation is performed. Meanwhile, assume that a Charm++ entry method called
doWork(atomList) is where the majority of the work from an application occurs. The function computes forces
on atoms of various types. Different calls to the function will contain different numbers and types of atoms. The
source code for doWork(atomList) will be modified by the user to contain calls to startTraceBigSim() at
the entry and endTraceBigSim() at the exit of the function. The program will be run, and the resulting timed
samples will be used to build a model. Assume the expected runtime of doWork(atomList) is quadratic in the
atomList length and linear in the number of carbon atoms in the atomList. The endTraceBigSim() call
would be provided with a descriptive name and a set of parameters, such as endTraceBigSim(“doWork()”,
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p_1,p_2), where parameter 𝑝1 is the length of atomList and parameter 𝑝2 is the number of carbon atoms in
atomList.

The goal of using a model is to be able to predict the execution time of any arbitrary call to doWork(), given its
parameters. The application can be run on an existing processor or parallel cluster for only a few timesteps with the
modified doWork() method. This run will produce a list of {(𝑝1, 𝑝2)→ 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛} records. A least squares method
is applied to fit a curve 𝑓(𝑝1, 𝑝2) = 𝑐1 + 𝑐2𝑝1 + 𝑐3𝑝

2
1 + 𝑐4𝑝2 approximating the durations of the records. The least

square method minimizes the sum of the squares of the difference between the function 𝑓 evaluated at each parameter
set and the actual timing observed at those parameters. The least square method is provided

(︀
1.0, 𝑝1, 𝑝

2
1, 𝑝2, 𝑡𝑖𝑚𝑒

)︀
for

each sample point and produces the coefficients 𝑐𝑛 in 𝑓 . An arbitrary set of parameters (in the current implementation,
up to twenty) can be input to 𝑓 to produce an approximation of the runtime of doWork() even though the particular
instance was never timed before.

Model 3: Extrapolation of partial executions with cycle accurate simulations and user’s parameteri-
zations

In this case, a cycle accurate simulator can be used to simulate a small fraction of all SEBs for a run of the application.
The partial execution is used to build a model which applies to the whole execution. Parameterizations can be used as
previously described, so that only some fraction of the SEBs will be run in the expensive cycle-accurate simulator. In
NAMD, for example, a sufficient model can be built from a random sample of 2% of the cycle-accurate SEB durations
from four timeloop iterations.

13.5 BigSim Log Generation API

To be added . . .
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BigSimulator (BigNetSim)

Contents

• BigSimulator (BigNetSim)

– BigSim Network Simulator

* What does this software do?

* Compiling BigSimulator

* Using BigSimulator

* Which Interconnection networks are implemented?

* Build your own Interconnection network

* BigNetSim Design and Internals

* Topology, Routing and Virtual Channel Selection

14.1 BigSim Network Simulator

The BigSim Network Simulator is also known as Bigsimulator and lives in the SVN repository https://charm.cs.uiuc.
edu/svn/repos/BigNetSim. The Network simulator is actually more of an Inter-connection network simulator and
hence more important in the context of large parallel machines with interconnects. The BigSim simulator along with
the network simulator is together also known as BigNetSim.

Both the simulators run on top of the POSE framework, which is a Parallel Discrete Event Simulation framework built
on top of Charm++.
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14.1.1 What does this software do?

BigNetSim is an effort to simulate large current and future computer systems to study the behavior of applications
developed for those systems. BigNetSim could be used to study

• new types of interconnection topologies and routing algorithms along with different types of switching archi-
tecture.

• application performance on different machines. This uses the API provided in Section 13.5 to run the application
on some number of processors on some machine and generate (dump) all events (entry method executions or
message send/recv). BigNetSim is used to model the machine that needs to be studied for this application and
these logs are then fed into this simulation, and it predicts the performance of this application.

So, the two important uses are studying interconnection networks and performance prediction for applications.

14.1.2 Compiling BigSimulator

To compile the simulator which is called BigSimulator (or BigNetSim), we need the regular Charm++ build (netlrts-
linux-x86_64 in our example). It needs to be complemented with a few more libraries from BigSim and with the Pose
discrete-event simulator. These pieces can be built, respectively, with:

$ ./build bgampi netlrts-linux-x86_64 -O2
$ ./build pose netlrts-linux-x86_64 -O2

Access to the discrete-event simulation is realized via a Charm++ package originally named BigNetSim (now called
BigSimulator). Assuming that the ’subversion’ (svn) package is available, this package can be obtained from the Web
with a subversion checkout such as:

$ svn co https://charm.cs.uiuc.edu/svn/repos/BigNetSim/

In the subdir ’trunk/’ created by the checkout, the file Makefile.common must be edited so that ’CHARMBASE’ points
to the regular Charm++ installation. Having that done, one chooses a topology in that subdir (e.g. BlueGene for a torus
topology) by doing a “cd” into the corresponding directory (e.g. ’cd BlueGene’). Inside that directory, one should sim-
ply “make”. This will produce the binary “../tmp/bigsimulator”. That file, together with file “BlueGene/netconfig.vc”,
will be used during a simulation. It may be useful to set the variable SEQUENTIAL to 1 in Makefile.common to build
a sequential (non-parallel) version of bigsimulator.

14.1.3 Using BigSimulator

BigSimulator (BigNetSim) has 2 major modes.

• Trace based traffic simulation

• Artificial traffic generation based simulation. The mode of the simulator is governed by the
𝑈𝑆𝐸_𝑇𝑅𝐴𝑁𝑆𝐶𝐸𝐼𝑉 𝐸𝑅 parameter in the netconfig file. When set to 0, trace based simulation is used, when
set to 1, traffic generation is used.

Trace based simulation. This is used to study target application performance, or detailed network performance when
loaded by a specific application.

There are two command line parameters for traced based simulation.

./charmrun +p2 ./bigsimulator arg1 arg2
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arg1 = 0 => Latency only mode
1 => Detailed contention model

arg2 = N => starts execution at the time marked by skip point N (0 is start)

Simple Latency Model

To use the simple latency model, follow the setup procedure above, noting that the files are located in the
trunk/SimpleLatency directory. This will produce the “bigsimulator” file.

The command line parameters used for this model are different. The format is as follows:

[charmrun +p#] bigsimulator -lat <latency> -bw <bandwidth>
[-cpp <cost per packet> -psize <packet size>]
[-winsize <window size>] [-skip] [-print_params]

Latency (lat) - type double; in microseconds
Bandwidth (bw) - type double; in GB/s
Cost per packet (cpp) - type double; in microseconds
Packet size (psize) - type int; in bytes
Window size (winsize) - type int; in log entries

The implemented equation is: 𝑙𝑎𝑡 + (𝑁/𝑏𝑤) + 𝑐𝑝𝑝× (𝑁/𝑝𝑠𝑖𝑧𝑒)

Latency and bandwidth are required. If cost per packet is given, then packet size must be given, as well. Otherwise,
cost per packet defaults to 0.0. Packet size, if given, must be a positive integer.

The -winsize flag allows the user to specify the size of the window (number of log entries) used when reading in the
bgTrace log files. This is useful if the log files are large. If -winsize is not specified, the value defaults to 0, which
indicates that no windowing will be used (i.e., there will be one window for each time line that is equal to the size of
the time line).

As with the second parameter in the examples of part (a) of this section, the -skip flag indicates that the simulation
should skip forward to the time stamp set during trace creation (see the BigSim tutorial talk from the 2008 Charm++
workshop). If -skip is not included, then no skipping will occur.

The -print_params flag is provided for debugging convenience. When present, the simple latency model parameters
will be displayed during simulation initialization.

Artificial Traffic Models

Artificial traffic generation based simulation is use to study the performance of interconnects under standard network
load schemes.

./bigsimulator arg1 arg2 arg3 arg4 arg5 arg6

example

./bigsimulator 1 2 3 100 2031 0.1

arg1 = 0 => Latency only mode
1 => Detailed contention model

arg2 = 1 => deterministic traffic
2 => poisson traffic

arg3 = 1 => KSHIFT
2 => RING

(continues on next page)
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(continued from previous page)

3 => BITTRANSPOSE
4 => BITREVERSAL
5 => BITCOMPLEMENT
6 => UNIFORM_DISTRIBUTION

arg4 = number of packets
arg5 = message size
arg6 = load factor

14.1.4 Which Interconnection networks are implemented?

A large number of topologies and routing strategies are implemented in the software. Here, we present a list of inter-
connection networks. For a complete list of routing strategies, input/output VC selectors, refer to the corresponding
directories in the software.

• HyperCube

• FatTree

• DenseGraph

• Three dimensional Mesh

• K-ary-N-cube

• K-ary-N-fly

• K-ary-N-mesh

• K-ary-N-tree

• N-mesh

• Hybrid of Fattree and Dense Graph

• Hybrid of Fattree and HyperCube

14.1.5 Build your own Interconnection network

To build a new interconnection network, one has to create a new directory for that interconnection network and then
create the routing strategy, topology, input virtual channel selection and output virtual channel selection strategies for
that network. If existing strategies could be used, then reuse them, but if new ones are required, one has to write these
new strategies in the corresponding directories for routing, topology, etc.

The InitNetwork function must be provided in InitNetwork.C for this new interconnection network. It builds up all
the nodes and switches and NICs and channels that form the network. Look at one of the existing interconnection
topologies for reference.

14.1.6 BigNetSim Design and Internals

This section focuses on the interconnection network simulation. The entities that form an interconnection network are:

• switch: A switch decides the routing on a packet. Switches could be input buffered or output buffered. The
former are implemented as individual posers per port of each switch while the latter are implemented as a poser
per switch. In an Input Buffered (IB) switch, a packet in a switch is stored at the input port until its next route
is decided and leaves the switch if it finds available space on the next switch in the route. While in an Output
Buffered (OB) switch, a packet in a switch decides beforehand on the next route to take and is buffered at the
output port until space is available on the next switch along the route. Switches are modeled in much detail.
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27: BigNetSim conceptual model

Ports, buffers and virtual channels at ports to avoid head-of-the-line blocking are modeled. Hardware collectives
are implemented on the switch to enable broadcasts, multicasts and other collective operations efficiently. These
are configurable and can be used if the system being simulated supports them. We also support configurable
strategies for arbitration, input virtual channel selection and output virtual channel selection. The configurability
of the switch provides a flexible design, satisfying the requirements of a large number of networks.

• network card: Network cards packetize and unpacketize messages. A NIC is implemented as two posers. The
sending and receiving entities in a NIC are implemented as separate posers. A NIC is attached to each node.

• channel: These are modeled as posers and connect a NIC to a switch or a switch to another switch.

• compute node: Each compute node connects to a network interface card. A compute node simulates execution of
entry methods on it. It is also attached to a message traffic generator, which is used when only an interconnection
network is being simulated. This traffic generator can generate any message pattern on each of the compute
nodes. The traffic generator can send point-to-point messages, reductions, multicasts, broadcasts and other
collective traffic. It supports k-shift, ring, bit-transpose, bit-reversal, bit-complement and uniform random traffic.
These are based on common communication patterns found in real applications. The frequency of message
generation is determined by a uniform or Poisson distribution.

14.1.7 Topology, Routing and Virtual Channel Selection

Topology, Routing strategies and input and output virtual channel selection strategies need to be decided for any
inter-connection network. Once we have all of these in place we can simulate an inter-connection network.

Topology

For every architecture one wants to design, a topology file has to written which defines a few basic functions for that
particular topology. These are:

void getNeighbours(int nodeid, int numP)

This is called initially for every switch and this populates the data structure next in a switch which contains the
connectivity of that switch. The switch specified by switch has numP ports.

int getNext(int portid, int nodeid, int numP)
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Returns the index of the switch/node that is connected to the switch nodeid, at portid. The number of ports this node
has is numP.

int getNextChannel(int portid, int nodeid, int numP)

Returns the index of the channel that is connected to the switch nodeid, at portid. The number of ports this node has is
numP.

int getStartPort(int nodeid, int numP, int dest)

Return the index of the port that is connected to this compute node from a switch

int getStartVc()

Returns the index of the first virtual channel (mostly 0).

int getStartSwitch(int nodeid)

Returns the index of the node/switch that is connected to the first port

int getStartNode()

Returns the index of the first node. Each poser has a separate index, irrespective of the type of the poser.

int getEndNode()

Returns the index of the last node.

Routing

Routing strategy needs to be specified for every interconnection network. There is usually at least one routing strategy
that needs to be defined for every topology, Usually we have many more. The following functions need to be defined
for every routing strategy.

int selectRoute(int current, int dest, int numP, Topology* top, Packet *p,
map<int,int> &bufsize, unsigned short *xsubi)

Returns the portid that should be taken on switch current if the destination is dest. The number of ports on a switch is
numP. We also pass the pointer to the topology and to the Packet.

int selectRoute(int current, int dest, int numP, Topology* top, Packet *p,
map<int,int> &bufsize, map<int,int> &portContention, unsigned short *xsubi)

Returns the portid that should be taken on switch current if the destination is dest. The number of ports on a switch is
numP. We also pass the pointer to the topology and to the Packet. Bufsize is the state of the ports in a switch, i.e. how
many buffers on each port are full, while portContention is used to give priority to certain ports, when more options
are available.

int expectedTime(int src, int dest, POSE_TimeType ovt, POSE_TimeType origOvt,
int length, int *numHops)

Returns the expected time for a packet to travel from src to dest, when the number of hops it will need to travel is
numHops.

int convertOutputToInputPort(int id, Packet *p, int numP, int *next)

Translate this output port to input port on the switch this port is connected to.

Input Virtual Channel Selection

For every switch, we need to know the mechanism it uses to choose input virtual channel. There are a few different
input virtual channel selection strategies, and a switch can choose among them. Each should implement the following
function.
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int selectInputVc(map<int,int> &availBuffer, map<int,int> &request, map<int,
vector<Header> > &inBuffer, int globalVc, int curSwitch)

Returns the input virtual channel to be used depending on the strategy and the input parameters.

Output Virtual Channel Selection

For every switch, we need to know the mechanism it uses to choose output virtual channel. There are a few different
output virtual channel selection strategies, and a switch can choose among them. Each should implement the following
function.

int selectOutputVc(map<int,int> &bufsize, Packet *p, int unused)

Returns the output virtual channel to be used depending on the strategy and the input parameters.
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– Threads
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* CCS: Starting a Server
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* CCS: Server-Side
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* Persistent Operation

15.1 Initialization and Completion

The program utilizing Converse begins executing at main, like any other C program. The initialization process is
somewhat complicated by the fact that hardware vendors don’t agree about which processors should execute main.
On some machines, every processor executes main. On others, only one processor executes main. All processors
which don’t execute main are asleep when the program begins. The function ConverseInit is used to start the
Converse system, and to wake up the sleeping processors.

typedef void (*CmiStartFn)(int argc, char **argv);
void ConverseInit(int argc, char *argv[], CmiStartFn fn, int usched, int
initret);

This function starts up the Converse system. It can execute in one of the modes described below.

Normal Mode: schedmode=0, initret=0

When the user runs a program, some of the processors automatically invoke main, while others remain asleep. All
processors which automatically invoked main must call ConverseInit. This initializes the entire Converse sys-
tem. Converse then initiates, on all processors, the execution of the user-supplied start-function fn(argc, argv).
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When this function returns, Converse automatically calls CsdScheduler, a function that polls for messages and ex-
ecutes their handlers (see chapter 2). Once CsdScheduler exits on all processors, the Converse system shuts down,
and the user’s program terminates. Note that in this case, ConverseInit never returns. The user is not allowed to
poll for messages manually.

User-calls-scheduler Mode: schedmode=1, initret=0

If the user wants to poll for messages and other events manually, this mode is used to initialize Converse. In normal
mode, it is assumed that the user-supplied start-function fn(argc, argv) is just for initialization, and that the
remainder of the lifespan of the program is spent in the (automatically-invoked) function CsdScheduler, polling
for messages. In user-calls-scheduler mode, however, it is assumed that the user-supplied start-function will per-
form the entire computation, including polling for messages. Thus, ConverseInit will not automatically call
CsdScheduler for you. When the user-supplied start-function ends, Converse shuts down. This mode is not sup-
ported on the sim version. This mode can be combined with ConverseInit-returns mode below.

ConverseInit-returns Mode: schedmode=1, initret=1

This option is used when you want ConverseInit to return. All processors which automatically invoked main
must call ConverseInit. This initializes the entire Converse System. On all processors which did not automati-
cally invoke main, Converse initiates the user-supplied initialization function fn(argc, argv). Meanwhile, on
those processors which did automatically invoke main, ConverseInit returns. Shutdown is initiated when the
processors that did automatically invoke main call ConverseExit, and when the other processors return from fn. The
optional exit code is returned to the calling shell. If no value is specified, an exit code of zero is returned. In this
mode, all polling for messages must be done manually (probably using CsdScheduler explicitly). This option is not
supported by the sim version.

void ConverseExit(int exitcode /*optional*/)

This function is only used in ConverseInit-returns mode, described above.

void CmiAbort(char *msg, ...)

This function can be used portably to abnormally terminate a Converse program. Before termination, it prints a
message supplied as msg.

void CmiAssert(int expr)

This macro terminates the Converse program after printing an informative message if expr evaluates to 0. It can be
used in place of assert. In order to turn off CmiAssert, one should define 𝐶𝑀𝐾_𝑂𝑃𝑇𝐼𝑀𝐼𝑍𝐸 as 1.

15.2 Machine Interface and Scheduler

This chapter describes two of Converse’s modules: the CMI, and the CSD. Together, they serve to transmit messages
and schedule the delivery of messages. First, we describe the machine model assumed by Converse.

15.2.1 Machine Model

Converse treats the parallel machine as a collection of nodes, where each node is comprised of a number of processors
that share memory In some cases, the number of processors per node may be exactly one (e.g. Distributed memory
multicomputers such as IBM SP.) In addition, each of the processors may have multiple threads running on them
which share code and data but have different stacks. Functions and macros are provided for handling shared memory
across processors and querying node information. These are discussed in Section 15.2.13.
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15.2.2 Defining Handler Numbers

When a message arrives at a processor, it triggers the execution of a handler function, not unlike a UNIX signal
handler. The handler function receives, as an argument, a pointer to the message. The message itself specifies which
handler function is to be called when the message arrives. Messages are contiguous sequences of bytes. The message
has two parts: the header, and the data. The data may contain anything you like. The header contains a handler
number, which specifies which handler function is to be executed when the message arrives. Before you can send a
message, you have to define the handler numbers.

Converse maintains a table mapping handler numbers to function pointers. Each processor has its own copy of the
mapping. There is a caution associated with this approach: it is the user’s responsibility to ensure that all processors
have identical mappings. This is easy to do, nonetheless, and the user must be aware that this is (usually) required.

The following functions are provided to define the handler numbers:

typedef void (*CmiHandler)(void *)

Functions that handle Converse messages must be of this type.

int CmiRegisterHandler(CmiHandler h)

This represents the standard technique for associating numbers with functions. To use this technique, the Converse user
registers each of his functions, one by one, using CmiRegisterHandler. One must register exactly the same functions
in exactly the same order on all processors. The system assigns monotonically increasing numbers to the functions,
the same numbers on all processors. This insures global consistency. CmiRegisterHandler returns the number which
was chosen for the function being registered.

int CmiRegisterHandlerGlobal(CmiHandler h)

This represents a second registration technique. The Converse user registers his functions on processor zero, using
CmiRegisterHandlerGlobal. The Converse user is then responsible for broadcasting those handler numbers to other
processors, and installing them using CmiNumberHandler below. The user should take care not to invoke those
handlers until they are fully installed.

int CmiRegisterHandlerLocal(CmiHandler h)

This function is used when one wishes to register functions in a manner that is not consistent across processors. This
function chooses a locally-meaningful number for the function, and records it locally. No attempt is made to ensure
consistency across processors.

void CmiNumberHandler(int n, CmiHandler h)

Forces the system to associate the specified handler number n with the specified handler function h. If the function
number n was previously mapped to some other function, that old mapping is forgotten. The mapping that this function
creates is local to the current processor. CmiNumberHandler can be useful in combination with CmiRegisterGlobal-
Handler. It can also be used to implement user-defined numbering schemes: such schemes should keep in mind that
the size of the table that holds the mapping is proportional to the largest handler number — do not use big numbers!

(Note: Of the three registration methods, the CmiRegisterHandler method is by far the simplest, and is strongly
encouraged. The others are primarily to ease the porting of systems that already use similar registration techniques.
One may use all three registration methods in a program. The system guarantees that no numbering conflicts will
occur as a result of this combination.)
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15.2.3 Writing Handler Functions

A message handler function is just a C function that accepts a void pointer (to a message buffer) as an argument, and
returns nothing. The handler may use the message buffer for any purpose, but is responsible for eventually deleting
the message using CmiFree.

15.2.4 Building Messages

To send a message, one first creates a buffer to hold the message. The buffer must be large enough to hold the header
and the data. The buffer can be in any kind of memory: it could be a local variable, it could be a global, it could
be allocated with malloc, and finally, it could be allocated with CmiAlloc. The Converse user fills the buffer with
the message data. One puts a handler number in the message, thereby specifying which handler function the message
should trigger when it arrives. Finally, one uses a message-transmission function to send the message.

The following functions are provided to help build message buffers:

void *CmiAlloc(int size)

Allocates memory of size size in heap and returns pointer to the usable space. There are some message-sending func-
tions that accept only message buffers that were allocated with CmiAlloc. Thus, this is the preferred way to allocate
message buffers. The returned pointer point to the message header, the user data will follow it. See CmiMsgHeader-
SizeBytes for this.

void CmiFree(void *ptr)

This function frees the memory pointed to by ptr. ptr should be a pointer that was previously returned by CmiAlloc.

#define CmiMsgHeaderSizeBytes

This constant contains the size of the message header. When one allocates a message buffer, one must set aside enough
space for the header and the data. This macro helps you to do so. For example, if one want to allocate an array of 100
int, he should call the function this way:

void CmiSetHandler(int *MessageBuffer, int HandlerId)

This macro sets the handler number of a message to HandlerId.

int CmiGetHandler(int *MessageBuffer)

This call returns the handler of a message in the form of a handler number.

CmiHandler CmiGetHandlerFunction(int *MessageBuffer)

This call returns the handler of a message in the form of a function pointer.

15.2.5 Sending Messages

The following functions allow you to send messages. Our model is that the data starts out in the message buffer, and
from there gets transferred “into the network”. The data stays “in the network” for a while, and eventually appears on
the target processor. Using that model, each of these send-functions is a device that transfers data into the network.
None of these functions wait for the data to be delivered.

On some machines, the network accepts data rather slowly. We don’t want the process to sit idle, waiting for the
network to accept the data. So, we provide several variations on each send function:
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• sync: a version that is as simple as possible, pushing the data into the network and not returning until the data is
“in the network”. As soon as a sync function returns, you can reuse the message buffer.

• async: a version that returns almost instantaneously, and then continues working in the background. The back-
ground job transfers the data from the message buffer into the network. Since the background job is still using
the message buffer when the function returns, you can’t reuse the message buffer immediately. The background
job sets a flag when it is done and you can then reuse the message buffer.

• send and free: a version that returns almost instantaneously, and then continues working in the background. The
background job transfers the data from the message buffer into the network. When the background job finishes,
it CmiFrees the message buffer. In this situation, you can’t reuse the message buffer at all. To use a function of
this type, you must allocate the message buffer using CmiAlloc.

• node: a version that send a message to a node instead of a specific processor. This means that when the message
is received, any “free” processor within than node can handle it.

void CmiSyncSend(unsigned int destPE, unsigned int size, void *msg)

Sends msg of size size bytes to processor destPE. When it returns, you may reuse the message buffer.

void CmiSyncNodeSend(unsigned int destNode, unsigned int size, void *msg)

Sends msg of size size bytes to node destNode. When it returns, you may reuse the message buffer.

void CmiSyncSendAndFree(unsigned int destPE, unsigned int size, void *msg)

Sends msg of size size bytes to processor destPE. When it returns, the message buffer has been freed using CmiFree.

void CmiSyncNodeSendAndFree(unsigned int destNode, unsigned int size, void *msg)

Sends msg of size size bytes to node destNode. When it returns, the message buffer has been freed using CmiFree.

CmiCommHandle CmiAsyncSend(unsigned int destPE, unsigned int size, void *msg)

Sends msg of size size bytes to processor destPE. It returns a communication handle which can be tested using Cmi-
AsyncMsgSent: when this returns true, you may reuse the message buffer. If the returned communication handle is 0,
message buffer can be reused immediately, thus saving a call to CmiAsyncMsgSent.

CmiCommHandle CmiAsyncNodeSend(unsigned int destNode, unsigned int size, void *msg)

Sends msg of size size bytes to node destNode. It returns a communication handle which can be tested using Cmi-
AsyncMsgSent: when this returns true, you may reuse the message buffer. If the returned communication handle is 0,
message buffer can be reused immediately, thus saving a call to CmiAsyncMsgSent.

void CmiSyncVectorSend(int destPE, int len, int sizes[], char *msgComps[])

Concatenates several pieces of data and sends them to processor destPE. The data consists of len pieces residing in
different areas of memory, which are logically concatenated. The msgComps array contains pointers to the pieces; the
size of msgComps[i] is taken from sizes[i]. When it returns, sizes, msgComps and the message components specified
in msgComps can be immediately reused.

void CmiSyncVectorSendAndFree(int destPE, int len, int sizes[], char *msgComps[])

Concatenates several pieces of data and sends them to processor destPE. The data consists of len pieces residing in
different areas of memory, which are logically concatenated. The msgComps array contains pointers to the pieces; the
size of msgComps[i] is taken from sizes[i]. The message components specified in msgComps are CmiFreed by this
function therefore, they should be dynamically allocated using CmiAlloc. However, the sizes and msgComps array
themselves are not freed.
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CmiCommHandle CmiAsyncVectorSend(int destPE, int len, int sizes[], char *msgComps[])

Concatenates several pieces of data and sends them to processor destPE. The data consists of len pieces residing in
different areas of memory, which are logically concatenated. The msgComps array contains pointers to the pieces; the
size of msgComps[i] is taken from sizes[i]. The individual pieces of data as well as the arrays sizes and msgComps
should not be overwritten or freed before the communication is complete. This function returns a communication han-
dle which can be tested using CmiAsyncMsgSent: when this returns true, the input parameters can be reused. If the
returned communication handle is 0, message buffer can be reused immediately, thus saving a call to CmiAsyncMs-
gSent.

int CmiAsyncMsgSent(CmiCommHandle handle)

Returns true if the communication specified by the given CmiCommHandle has proceeded to the point where the
message buffer can be reused.

void CmiReleaseCommHandle(CmiCommHandle handle)

Releases the communication handle handle and associated resources. It does not free the message buffer.

void CmiMultipleSend(unsigned int destPE, int len, int sizes[], char *msgComps[])

This function allows the user to send multiple messages that may be destined for the SAME PE in one go. This is
more efficient than sending each message to the destination node separately. This function assumes that the handlers
that are to receive this message have already been set. If this is not done, the behavior of the function is undefined.

In the function, The destPE parameter identifies the destination processor. The len argument identifies the number
of messages that are to be sent in one go. The sizes[] array is an array of sizes of each of these messages. The
msgComps[] array is the array of the messages. The indexing in each array is from 0 to len - 1. (Note: Before calling
this function, the program needs to initialize the system to be able to provide this service. This is done by calling the
function CmiInitMultipleSendRoutine. Unless this function is called, the system will not be able to provide the service
to the user.)

15.2.6 Broadcasting Messages

void CmiSyncBroadcast(unsigned int size, void *msg)

Sends msg of length size bytes to all processors excluding the processor on which the caller resides.

void CmiSyncNodeBroadcast(unsigned int size, void *msg)

Sends msg of length size bytes to all nodes excluding the node on which the caller resides.

void CmiSyncBroadcastAndFree(unsigned int size, void *msg)

Sends msg of length size bytes to all processors excluding the processor on which the caller resides. Uses CmiFree to
deallocate the message buffer for msg when the broadcast completes. Therefore msg must point to a buffer allocated
with CmiAlloc.

void CmiSyncNodeBroadcastAndFree(unsigned int size, void *msg)

Sends msg of length size bytes to all nodes excluding the node on which the caller resides. Uses CmiFree to deallocate
the message buffer for msg when the broadcast completes. Therefore msg must point to a buffer allocated with
CmiAlloc.
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void CmiSyncBroadcastAll(unsigned int size, void *msg)

Sends msg of length size bytes to all processors including the processor on which the caller resides. This function
does not free the message buffer for msg.

void CmiSyncNodeBroadcastAll(unsigned int size, void *msg)

Sends msg of length size bytes to all nodes including the node on which the caller resides. This function does not free
the message buffer for msg.

void CmiSyncBroadcastAllAndFree(unsigned int size, void *msg)

Sends msg of length size bytes to all processors including the processor on which the caller resides. This function
frees the message buffer for msg before returning, so msg must point to a dynamically allocated buffer.

void CmiSyncNodeBroadcastAllAndFree(unsigned int size, void *msg)

Sends msg of length size bytes to all nodes including the node on which the caller resides. This function frees the
message buffer for msg before returning, so msg must point to a dynamically allocated buffer.

CmiCommHandle CmiAsyncBroadcast(unsigned int size, void *msg)

Initiates asynchronous broadcast of message msg of length size bytes to all processors excluding the processor on
which the caller resides. It returns a communication handle which could be used to check the status of this send using
CmiAsyncMsgSent. If the returned communication handle is 0, message buffer can be reused immediately, thus saving
a call to CmiAsyncMsgSent. msg should not be overwritten or freed before the communication is complete.

CmiCommHandle CmiAsyncNodeBroadcast(unsigned int size, void *msg)

Initiates asynchronous broadcast of message msg of length size bytes to all nodes excluding the node on which the
caller resides. It returns a communication handle which could be used to check the status of this send using Cmi-
AsyncMsgSent. If the returned communication handle is 0, message buffer can be reused immediately, thus saving a
call to CmiAsyncMsgSent. msg should not be overwritten or freed before the communication is complete.

CmiCommHandle CmiAsyncBroadcastAll(unsigned int size, void *msg)

Initiates asynchronous broadcast of message msg of length size bytes to all processors including the processor on
which the caller resides. It returns a communication handle which could be used to check the status of this send using
CmiAsyncMsgSent. If the returned communication handle is 0, message buffer can be reused immediately, thus saving
a call to CmiAsyncMsgSent. msg should not be overwritten or freed before the communication is complete.

CmiCommHandle CmiAsyncNodeBroadcastAll(unsigned int size, void *msg)

Initiates asynchronous broadcast of message msg of length size bytes to all nodes including the node on which the
caller resides. It returns a communication handle which could be used to check the status of this send using Cmi-
AsyncMsgSent. If the returned communication handle is 0, message buffer can be reused immediately, thus saving a
call to CmiAsyncMsgSent. msg should not be overwritten or freed before the communication is complete.

15.2.7 Multicasting Messages

typedef ... CmiGroup;

A CmiGroup represents a set of processors. It is an opaque type. Group IDs are useful for the multicast functions
below.
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CmiGroup CmiEstablishGroup(int npes, int *pes);

Converts an array of processor numbers into a group ID. Group IDs are useful for the multicast functions below.
Caution: this call uses up some resources. In particular, establishing a group uses some network bandwidth (one
broadcast’s worth) and a small amount of memory on all processors.

void CmiSyncMulticast(CmiGroup grp, unsigned int size, void *msg)

Sends msg of length size bytes to all members of the specified group. Group IDs are created using CmiEstablishGroup.

void CmiSyncMulticastAndFree(CmiGroup grp, unsigned int size, void *msg)

Sends msg of length size bytes to all members of the specified group. Uses CmiFree to deallocate the message buffer
for msg when the broadcast completes. Therefore msg must point to a buffer allocated with CmiAlloc. Group IDs are
created using CmiEstablishGroup.

CmiCommHandle CmiAsyncMulticast(CmiGroup grp, unsigned int size, void *msg)

(Note: Not yet implemented.) Initiates asynchronous broadcast of message msg of length size bytes to all members
of the specified group. It returns a communication handle which could be used to check the status of this send using
CmiAsyncMsgSent. If the returned communication handle is 0, message buffer can be reused immediately, thus saving
a call to CmiAsyncMsgSent. msg should not be overwritten or freed before the communication is complete. Group
IDs are created using CmiEstablishGroup.

void CmiSyncListSend(int npes, int *pes, unsigned int size, void *msg)

Sends msg of length size bytes to npes processors in the array pes.

void CmiSyncListSendAndFree(int npes, int *pes, unsigned int size, void *msg)

Sends msg of length size bytes to npes processors in the array pes. Uses CmiFree to deallocate the message buffer for
msg when the multicast completes. Therefore, msg must point to a buffer allocated with CmiAlloc.

CmiCommHandle CmiAsyncListSend(int npes, int *pes, unsigned int size, void *msg)

Initiates asynchronous multicast of message msg of length size bytes to npes processors in the array pes. It returns a
communication handle which could be used to check the status of this send using CmiAsyncMsgSent. If the returned
communication handle is 0, message buffer can be reused immediately, thus saving a call to CmiAsyncMsgSent. msg
should not be overwritten or freed before the communication is complete.

15.2.8 Reducing Messaging

Reductions are operations for which a message (or user data structure) is contributed by each participant processor.
All these contributions are merged according to a merge-function provided by the user. A Converse handler is then
invoked with the resulting message. Reductions can be on the entire set of processors, or on a subset of the whole.
Currently reductions are only implemented on processors sets. No equivalent exists for SMP nodes.

There are eight functions used to deposit a message into the system, summarized in Table 9. Half of them receive
as contribution a Converse message (with a Converse header at its beginning). This message must have already been
set for delivery to the desired handler. The other half (ending with “Struct”) receives a pointer to a data structure
allocated by the user. This second version may allow the user to write a simpler merging function. For instance, the
data structure could be a tree that can be easily expanded by adding more nodes.
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9: Reductions functions in Converse
global global with ID processor set CmiGroup

message CmiReduce CmiReduceID CmiListReduce CmiGroupReduce
data CmiReduceStruct CmiReduceStructID CmiListReduceStruct CmiGroupReduceStruct

The signatures for the functions in Table 9 are:

void CmiReduce(void *msg, int size, CmiReduceMergeFn mergeFn);

void CmiReduceStruct(void *data, CmiReducePupFn pupFn,
CmiReduceMergeFn mergeFn, CmiHandler dest, CmiReduceDeleteFn deleteFn);

void CmiReduceID(void *msg, int size, CmiReduceMergeFn mergeFn,
CmiReductionID id);

void CmiReduceStructID(void *data, CmiReducePupFn pupFn, CmiReduceMergeFn mergeFn,
CmiHandler dest, CmiReduceDeleteFn deleteFn, CmiReductionID id);

void CmiListReduce(int npes, int *pes, void *msg, int size,
CmiReduceMergeFn mergeFn, CmiReductionID id);

void CmiListReduceStruct(int npes, int *pes, void *data, CmiReducePupFn
pupFn, CmiReduceMergeFn mergeFn, CmiHandler dest, CmiReduceDeleteFn
deleteFn, CmiReductionID id);

void CmiGroupReduce(CmiGroup grp, void *msg, int size,
CmiReduceMergeFn mergeFn, CmiReductionID id);

void CmiGroupReduceStruct(CmiGroup grp, void *data, CmiReducePupFn pupFn,
CmiReduceMergeFn mergeFn, CmiHandler dest, CmiReduceDeleteFn deleteFn,
CmiReductionID id);

In all the above, msg is the Converse message deposited by the local processor, size is the size of the message msg,
and data is a pointer to the user-allocated data structure deposited by the local processor. dest is the CmiHandler where
the final message shall be delivered. It is explicitly passed in “Struct” functions only, since for the message versions it
is taken from the header of msg. Moreover there are several other function pointers passed in by the user:

void * (*mergeFn)(int *size, void *local, void **remote, int count)

Prototype for a CmiReduceMergeFn function pointer argument. This function is used in all the CmiReduce forms
to merge the local message/data structure deposited on a processor with all the messages incoming from the children
processors of the reduction spanning tree. The input parameters are in the order: the size of the local data for message
reductions (always zero for struct reductions); the local data itself (the exact same pointer passed in as first parameter of
CmiReduce and similar); a pointer to an array of incoming messages; the number of elements in the second parameter.
The function returns a pointer to a freshly allocated message (or data structure for the Struct forms) corresponding to
the merge of all the messages. When performing message reductions, this function is also responsible to updating the
integer pointed by size to the new size of the returned message. All the messages in the remote array are deleted by
the system; the data pointed by the first parameter should be deleted by this function. If the data can be merged “in-
place” by modifying or augmenting local, the function can return the same pointer to local which can be considered
freshly allocated. Each element in remote is the complete incoming message (including the converse header) for
message reductions, and the data as it has been packed by the pup function (without any additional header) for struct
reductions.

void (*pupFn)(pup_er p, void *data)

Prototype for a CmiReducePupFn function pointer argument. This function will use the PUP framework to pup the
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data passed in into a message for sending across the network. The data can be either the same data passed in as first
parameter of any “Struct” function, or the return of the merge function. It will be called for sizing and packing. (Note:
It will not be called for unpacking.)

void (*deleteFn)(void *ptr)

Prototype for a CmiReduceDeleteFn function pointer argument. This function is used to delete either the data structure
passed in as first parameter of any “Struct” function, or the return of the merge function. It can be as simple as “free”
or as complicated as needed to delete complex structures. If this function is NULL, the data structure will not be
deleted, and the program can continue to use it. Note: even if this function is NULL, the input data structure may still
be modified by the merge function.

CmiReduce and CmiReduceStruct are the simplest reduction function, and they reduce the deposited message/data
across all the processors in the system. Each processor must to call this function exactly once. Multiple reductions can
be invoked without waiting for previous ones to finish, but the user is responsible to call CmiReduce/CmiReduceStruct
in the same order on every processor. (Note: CmiReduce and CmiReduceStruct are not interchangeable. Either every
processor calls CmiReduce or every processor calls CmiReduceStruct).

In situations where it is not possible to guarantee the order of reductions, the user may use CmiReduceID or CmiRe-
duceStructID. These functions have an additional parameter of type CmiReductionID which will uniquely identify
the reduction, and match them correctly. (Note: No two reductions can be active at the same time with the same
CmiReductionID. It is up to the user to guarantee this.)

A CmiReductionID can be obtained by the user in three ways, using one of the following functions:

CmiReductionID CmiGetGlobalReduction()

This function must be called on every processor, and in the same order if called multiple times. This would generally
be inside initialization code, that can set aside some CmiReductionIDs for later use.

CmiReductionID CmiGetDynamicReduction()

This function may be called only on processor zero. It returns a unique ID, and it is up to the user to distribute this ID
to any processor that needs it.

void CmiGetDynamicReductionRemote(int handlerIdx, int pe, int dataSize, void *data)

This function may be called on any processor. The produced CmiReductionID is returned on the specified pe by
sending a message to the specified handlerIdx. If pe is -1, then all processors will receive the notification message.
data can be any data structure that the user wants to receive on the specified handler (for example to differentiate
between requests). dataSize is the size in bytes of data. If dataSize is zero, data is ignored. The message received by
handlerIdx consists of the standard Converse header, followed by the requested CmiReductionID (represented as a 4
bytes integer the user can cast to a CmiReductionID, a 4 byte integer containing dataSize, and the data itself.

The other four functions (CmiListReduce, CmiListReduceStruct, CmiGroupReduce, CmiGroupReduceStruct) are
used for reductions over subsets of processors. They all require a CmiReductionID that the user must obtain in
one of the ways described above. The user is also responsible that no two reductions use the same CmiReductionID
simultaneously. The first two functions receive the subset description as processor list (pes) of size npes. The last two
receive the subset description as a previously established CmiGroup (see 15.2.7).

15.2.9 Scheduling Messages

The scheduler queue is a powerful priority queue. The following functions can be used to place messages into the
scheduler queue. These messages are treated very much like newly-arrived messages: when they reach the front of the
queue, they trigger handler functions, just like messages transmitted with CMI functions. Note that unlike the CMI
send functions, these cannot move messages across processors.
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Every message inserted into the queue has a priority associated with it. Converse priorities are arbitrary-precision
numbers between 0 and 1. Priorities closer to 0 get processed first, priorities closer to 1 get processed last. Arbitrary-
precision priorities are very useful in AI search-tree applications. Suppose we have a heuristic suggesting that tree
node N1 should be searched before tree node N2. We therefore designate that node N1 and its descendants will use
high priorities, and that node N2 and its descendants will use lower priorities. We have effectively split the range
of possible priorities in two. If several such heuristics fire in sequence, we can easily split the priority range in two
enough times that no significant bits remain, and the search begins to fail for lack of meaningful priorities to assign.
The solution is to use arbitrary-precision priorities, aka bitvector priorities.

These arbitrary-precision numbers are represented as bit-strings: for example, the bit-string “0011000101” represents
the binary number (.0011000101). The format of the bit-string is as follows: the bit-string is represented as an array
of unsigned integers. The most significant bit of the first integer contains the first bit of the bitvector. The remaining
bits of the first integer contain the next 31 bits of the bitvector. Subsequent integers contain 32 bits each. If the size of
the bitvector is not a multiple of 32, then the last integer contains 0 bits for padding in the least-significant bits of the
integer.

Some people only want regular integers as priorities. For simplicity’s sake, we provide an easy way to convert integer
priorities to Converse’s built-in representation.

In addition to priorities, you may choose to enqueue a message “LIFO” or “FIFO”. Enqueueing a message “FIFO”
simply pushes it behind all the other messages of the same priority. Enqueueing a message “LIFO” pushes it in front
of other messages of the same priority.

Messages sent using the CMI functions take precedence over everything in the scheduler queue, regardless of priority.

A recent addition to Converse scheduling mechanisms is the introduction of node-level scheduling designed to sup-
port low-overhead programming for the SMP clusters. These functions have “Node” in their names. All processors
within the node has access to the node-level scheduler’s queue, and thus a message enqueued in a node-level queue
may be handled by any processor within that node. When deciding about which message to process next, i.e. from
processor’s own queue or from the node-level queue, a quick priority check is performed internally, thus a processor
views scheduler’s queue as a single prioritized queue that includes messages directed at that processor and messages
from the node-level queue sorted according to priorities.

void CsdEnqueueGeneral(void *Message, int strategy, int priobits, int *prioptr)

This call enqueues a message to the processor’s scheduler’s queue, to be sorted according to its priority and the
queueing strategy. The meaning of the priobits and prioptr fields depend on the value of strategy, which are
explained below.

void CsdNodeEnqueueGeneral(void *Message, int strategy, int priobits, int *prioptr)

This call enqueues a message to the node-level scheduler’s queue, to be sorted according to its priority and the queueing
strategy. The meaning of the priobits and prioptr fields depend on the value of strategy, which can be any of the
following:

• CQS_QUEUEING_BFIFO: the priobits and prioptr point to a bit-string representing an arbitrary-precision pri-
ority. The message is pushed behind all other message of this priority.

• CQS_QUEUEING_BLIFO: the priobits and prioptr point to a bit-string representing an arbitrary-precision pri-
ority. The message is pushed in front all other message of this priority.

• CQS_QUEUEING_IFIFO: the prioptr is a pointer to a signed integer. The integer is converted to a bit-string
priority, normalizing so that the integer zero is converted to the bit-string “1000. . . ” (the “middle” priority).
To be more specific, the conversion is performed by adding 0x80000000 to the integer, and then treating the
resulting 32-bit quantity as a 32-bit bitvector priority. The message is pushed behind all other messages of this
priority.

• CQS_QUEUEING_ILIFO: the prioptr is a pointer to a signed integer. The integer is converted to a bit-string
priority, normalizing so that the integer zero is converted to the bit-string “1000. . . ” (the “middle” priority).
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To be more specific, the conversion is performed by adding 0x80000000 to the integer, and then treating the
resulting 32-bit quantity as a 32-bit bitvector priority. The message is pushed in front of all other messages of
this priority.

• CQS_QUEUEING_FIFO: the prioptr and priobits are ignored. The message is enqueued with the middle prior-
ity “1000. . . ”, and is pushed behind all other messages with this priority.

• CQS_QUEUEING_LIFO: the prioptr and priobits are ignored. The message is enqueued with the middle prior-
ity “1000. . . ”, and is pushed in front of all other messages with this priority.

Caution: the priority itself is not copied by the scheduler. Therefore, if you pass a pointer to a priority into the
scheduler, you must not overwrite or free that priority until after the message has emerged from the scheduler’s queue.
It is normal to actually store the priority in the message itself, though it is up to the user to actually arrange storage for
the priority.

void CsdEnqueue(void *Message)

This macro is a shorthand for

CsdEnqueueGeneral(Message, CQS_QUEUEING_FIFO,0, NULL)

provided here for backward compatibility.

void CsdNodeEnqueue(void *Message)

This macro is a shorthand for

CsdNodeEnqueueGeneral(Message, CQS_QUEUEING_FIFO,0, NULL)

provided here for backward compatibility.

void CsdEnqueueFifo(void *Message)

This macro is a shorthand for

CsdEnqueueGeneral(Message, CQS_QUEUEING_FIFO,0, NULL)

provided here for backward compatibility.

void CsdNodeEnqueueFifo(void *Message)

This macro is a shorthand for

CsdNodeEnqueueGeneral(Message, CQS_QUEUEING_FIFO,0, NULL)

provided here for backward compatibility.

void CsdEnqueueLifo(void *Message)

This macro is a shorthand for

CsdEnqueueGeneral(Message, CQS_QUEUEING_LIFO,0, NULL)

provided here for backward compatibility.

void CsdNodeEnqueueLifo(void *Message)

This macro is a shorthand for
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CsdNodeEnqueueGeneral(Message, CQS_QUEUEING_LIFO,0, NULL)

provided here for backward compatibility.

int CsdEmpty()

This function returns non-zero integer when the scheduler’s processor-level queue is empty, zero otherwise.

int CsdNodeEmpty()

This function returns non-zero integer when the scheduler’s node-level queue is empty, zero otherwise.

15.2.10 Polling for Messages

As we stated earlier, Converse messages trigger handler functions when they arrive. In fact, for this to work, the
processor must occasionally poll for messages. When the user starts Converse, he can put it into one of several modes.
In the normal mode, the message polling happens automatically. However user-calls-scheduler mode is designed to let
the user poll manually. To do this, the user must use one of two polling functions: CmiDeliverMsgs, or CsdScheduler.
CsdScheduler is more general, it will notice any Converse event. CmiDeliverMsgs is a lower-level function that
ignores all events except for recently-arrived messages. (In particular, it ignores messages in the scheduler queue).
You can save a tiny amount of overhead by using the lower-level function. We recommend the use of CsdScheduler
for all applications except those that are using only the lowest level of Converse, the CMI. A third polling function,
CmiDeliverSpecificMsg, is used when you know the exact event you want to wait for: it does not allow any other
event to occur.

In each iteration, a scheduler first looks for any message that has arrived from another processor, and delivers it. If
there isn’t any, it selects a message from the locally enqueued messages, and delivers it.

void CsdScheduleForever(void)

Extract and deliver messages until the scheduler is stopped. Raises the idle handling converse signals. This is the
scheduler to use in most Converse programs.

int CsdScheduleCount(int n)

Extract and deliver messages until 𝑛 messages have been delivered, then return 0. If the scheduler is stopped early,
return 𝑛 minus the number of messages delivered so far. Raises the idle handling converse signals.

void CsdSchedulePoll(void)

Extract and deliver messages until no more messages are available, then return. This is useful for running non-
networking code when the networking code has nothing to do.

void CsdScheduler(int n)

If 𝑛 is zero, call CsdSchedulePoll. If 𝑛 is negative, call CsdScheduleForever. If 𝑛 is positive, call
CsdScheduleCount(𝑛).

int CmiDeliverMsgs(int MaxMsgs)

Retrieves messages from the network message queue and invokes corresponding handler functions for arrived mes-
sages. This function returns after either the network message queue becomes empty or after MaxMsgs messages have
been retrieved and their handlers called. It returns the difference between total messages delivered and MaxMsgs. The
handler is given a pointer to the message as its parameter.
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void CmiDeliverSpecificMsg(int HandlerId)

Retrieves messages from the network queue and delivers the first message with its handler field equal to HandlerId.
This functions leaves alone all other messages. It returns after the invoked handler function returns.

void CsdExitScheduler(void)

This call causes CsdScheduler to stop processing messages when control has returned back to it. The scheduler then
returns to its calling routine.

15.2.11 The Timer

double CmiTimer(void)

Returns current value of the timer in seconds. This is typically the time spent since the ConverseInit call. The
precision of this timer is the best available on the particular machine, and usually has at least microsecond accuracy.

15.2.12 Processor Ids

int CmiNumPe(void)

Returns the total number of processors on which the parallel program is being run.

int CmiMyPe(void)

Returns the logical processor identifier of processor on which the caller resides. A processor Id is between 0 and
CmiNumPe()-1.

Also see the calls in Section 15.2.13.

15.2.13 Global Variables and Utility functions

Different vendors are not consistent about how they treat global and static variables. Most vendors write C compilers
in which global variables are shared among all the processors in the node. A few vendors write C compilers where
each processor has its own copy of the global variables. In theory, it would also be possible to design the compiler so
that each thread has its own copy of the global variables.

The lack of consistency across vendors, makes it very hard to write a portable program. The fact that most vendors
make the globals shared is inconvenient as well, usually, you don’t want your globals to be shared. For these reasons,
we added “pseudoglobals” to Converse. These act much like C global and static variables, except that you have explicit
control over the degree of sharing.

In this section we use the terms Node, PE, and User-level thread as they are used in Charm++, to refer to an OS
process, a worker/communication thread, and a user-level thread, respectively. In the SMP mode of Charm++ all three
of these are separate entities, whereas in non-SMP mode Node and PE have the same scope.

Converse PseudoGlobals

Three classes of pseudoglobal variables are supported: node-shared, processor-private, and thread-private variables.

Node-shared variables (Csv) are specific to a node. They are shared among all the PEs within the node.
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PE-private variables (Cpv) are specific to a PE. They are shared by all the objects and Converse user-level threads
on a PE.

Thread-private variables (Ctv) are specific to a Converse user-level thread. They are truly private.

There are five macros for each class. These macros are for declaration, static declaration, extern declaration, initializa-
tion, and access. The declaration, static and extern specifications have the same meaning as in C. In order to support
portability, however, the global variables must be installed properly, by using the initialization macros. For example, if
the underlying machine is a simulator for the machine model supported by Converse, then the thread-private variables
must be turned into arrays of variables. Initialize and Access macros hide these details from the user. It is possible to
use global variables without these macros, as supported by the underlying machine, but at the expense of portability.

Macros for node-shared variables:

CsvDeclare(type,variable)

CsvStaticDeclare(type,variable)

CsvExtern(type,variable)

CsvInitialize(type,variable)

CsvAccess(variable)

Macros for PE-private variables:

CpvDeclare(type,variable)

CpvStaticDeclare(type,variable)

CpvExtern(type,variable)

CpvInitialize(type,variable)

CpvAccess(variable)

Macros for thread-private variables:

CtvDeclare(type,variable)

CtvStaticDeclare(type,variable)

CtvExtern(type,variable)

CtvInitialize(type,variable)

CtvAccess(variable)

A sample code to illustrate the usage of the macros is provided in the example below. There are a few rules that the user
must pay attention to: The type and variable fields of the macros must be a single word. Therefore, structures
or pointer types can be used by defining new types with the typedef. In the sample code, for example, a struct
point type is redefined with a typedef as Point in order to use it in the macros. Similarly, the access macros
contain only the name of the global variable. Any indexing or member access must be outside of the macro as shown
in the sample code (function func1). Finally, all the global variables must be installed before they are used. One way
to do this systematically is to provide a module-init function for each file (in the sample code - ModuleInit(). The
module-init functions of each file, then, can be called at the beginning of execution to complete the installations of all
global variables.
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File: Module1.c

typedef struct point
{

float x,y;
} Point;

CpvDeclare(int, a);
CpvDeclare(Point, p);

void ModuleInit()
{

CpvInitialize(int, a)
CpvInitialize(Point, p);

CpvAccess(a) = 0;
}

int func1()
{

CpvAccess(p).x = 0;
CpvAccess(p).y = CpvAccess(p).x + 1;

}

Utility Functions

To further simplify programming with global variables on shared memory machines, Converse provides the following
functions and/or macros. (Note: These functions are defined on machines other than shared-memory machines also,
and have the effect of only one processor per node and only one thread per processor.)

int CmiMyNode()

Returns the node number to which the calling processor belongs.

int CmiNumNodes()

Returns number of nodes in the system. Note that this is not the same as CmiNumPes().

int CmiMyRank()

Returns the rank of the calling processor within a shared memory node.

int CmiNodeFirst(int node)

Returns the processor number of the lowest ranked processor on node node

int CmiNodeSize(int node)

Returns the number of processors that belong to the node node.

int CmiNodeOf(int pe)

Returns the node number to which processor pe belongs. Indeed, CmiMyNode() is a utility macro that is aliased to
CmiNodeOf(CmiMyPe()).
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int CmiRankOf(int pe)

Returns the rank of processor pe in the node to which it belongs.

Node-level Locks and other Synchronization Mechanisms

void CmiNodeBarrier()

Provide barrier synchronization at the node level, i.e. all the processors belonging to the node participate in this barrier.

typedef McDependentType CmiNodeLock

This is the type for all the node-level locks in Converse.

CmiNodeLock CmiCreateLock(void)

Creates, initializes and returns a new lock. Initially the lock is unlocked.

void CmiLock(CmiNodeLock lock)

Locks lock. If the lock has been locked by other processor, waits for lock to be unlocked.

void CmiUnlock(CmiNodeLock lock)

Unlocks lock. Processors waiting for the lock can then compete for acquiring lock.

int CmiTryLock(CmiNodeLock lock)

Tries to lock lock. If it succeeds in locking, it returns 0. If any other processor has already acquired the lock, it
returns 1.

voi CmiDestroyLock(CmiNodeLock lock)

Frees any memory associated with lock. It is an error to perform any operations with lock after a call to this
function.

15.2.14 Input/Output

void CmiPrintf(char *format, arg1, arg2, ...)

This function does an atomic printf() on stdout. On machine with host, this is implemented on top of the
messaging layer using asynchronous sends.

int CmiScanf(char *format, void *arg1, void *arg2, ...)

This function performs an atomic scanf from stdin. The processor, on which the caller resides, blocks for input.
On machines with host, this is implemented on top of the messaging layer using asynchronous send and blocking
receive.

void CmiError(char *format, arg1, arg2, ...)

This function does an atomic printf() on stderr. On machines with host, this is implemented on top of the
messaging layer using asynchronous sends.
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15.2.15 Spanning Tree Calls

Sometimes, it is convenient to view the processors/nodes of the machine as a tree. For this purpose, Converse defines
a tree over processors/nodes. We provide functions to obtain the parent and children of each processor/node. On those
machines where the communication topology is relevant, we arrange the tree to optimize communication performance.
The root of the spanning tree (processor based or node-based) is always 0, thus the CmiSpanTreeRoot call has been
eliminated.

int CmiSpanTreeParent(int procNum)

This function returns the processor number of the parent of procNum in the spanning tree.

int CmiNumSpanTreeChildren(int procNum)

Returns the number of children of procNum in the spanning tree.

void CmiSpanTreeChildren(int procNum, int *children)

This function fills the array children with processor numbers of children of procNum in the spanning tree.

int CmiNodeSpanTreeParent(int nodeNum)

This function returns the node number of the parent of nodeNum in the spanning tree.

int CmiNumNodeSpanTreeChildren(int nodeNum)

Returns the number of children of nodeNum in the spanning tree.

void CmiNodeSpanTreeChildren(int nodeNum, int *children)

This function fills the array children with node numbers of children of nodeNum in the spanning tree.

15.2.16 Isomalloc

It is occasionally useful to allocate memory at a globally unique virtual address. This is trivial on a shared memory
machine (where every address is globally unique); but more difficult on a distributed memory machine (where each
node has its own separate data at address 0x80000000). Isomalloc provides a uniform interface for allocating globally
unique virtual addresses.

Isomalloc can thus be thought of as a software distributed shared memory implementation; except data movement
between processors is explicit (by making a subroutine call), not on demand (by taking a page fault).

Isomalloc is useful when moving highly interlinked data structures from one processor to another, because internal
pointers will still point to the correct locations, even on a new processor. This is especially useful when the format of
the data structure is complex or unknown, as with thread stacks.

void *CmiIsomalloc(int size)

Allocate size bytes at a unique virtual address. Returns a pointer to the allocated region.

CmiIsomalloc makes allocations with page granularity (typically several kilobytes); so it is not recommended for small
allocations.

void CmiIsomallocFree(void *doomedBlock)
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Release the given block, which must have been previously returned by CmiIsomalloc. Also releases the used virtual
address range, which the system may subsequently reuse.

After a CmiIsomallocFree, references to that block will likely result in a segmentation violation. It is illegal to call
CmiIsomallocFree more than once on the same block.

void CmiIsomallocPup(pup_er p,void **block)

Pack/Unpack the given block. This routine can be used to move blocks across processors, save blocks to disk, or
checkpoint blocks.

After unpacking, the pointer is guaranteed to have the same value that it did before packing.

Note- Use of this function to pup individual blocks is not supported any longer. All the blocks allocated via CmiIso-
malloc are pupped by the RTS as one single unit.

int CmiIsomallocLength(void *block);

Return the length, in bytes, of this isomalloc’d block.

int CmiIsomallocInRange(void *address)

Return 1 if the given address may have been previously allocated to this processor using Iso-
malloc; 0 otherwise. CmiIsomallocInRange(malloc(size)) is guaranteed to be zero;
CmiIsomallocInRange(CmiIsomalloc(size)) is guaranteed to be one.

15.3 Threads

The calls in this chapter can be used to put together runtime systems for languages that support threads. This threads
package, like most thread packages, provides basic functionality for creating threads, destroying threads, yielding,
suspending, and awakening a suspended thread. In addition, it provides facilities whereby you can write your own
thread schedulers.

15.3.1 Basic Thread Calls

typedef struct CthThreadStruct *CthThread;

This is an opaque type defined in converse.h. It represents a first-class thread object. No information is publicized
about the contents of a CthThreadStruct.

typedef void (CthVoidFn)(void *);

This is a type defined in converse.h. It represents a function that returns nothing.

typedef CthThread (CthThFn)(void);

This is a type defined in converse.h. It represents a function that returns a CthThread.

CthThread CthSelf()

Returns the currently-executing thread. Note: even the initial flow of control that inherently existed when the program
began executing main counts as a thread. You may retrieve that thread object using CthSelf and use it like any
other.
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CthThread CthCreate(CthVoidFn fn, void *arg, int size)

Creates a new thread object. The thread is not given control yet. To make the thread execute, you must push it into the
scheduler queue, using CthAwaken below. When (and if) the thread eventually receives control, it will begin executing
the specified function fn with the specified argument. The size parameter specifies the stack size in bytes, 0 means
use the default size. Caution: almost all threads are created with CthCreate, but not all. In particular, the one initial
thread of control that came into existence when your program was first exec’d was not created with CthCreate,
but it can be retrieved (say, by calling CthSelf in main), and it can be used like any other CthThread.

CthThread CthCreateMigratable(CthVoidFn fn, void *arg, int size)

Create a thread that can later be moved to other processors. Otherwise identical to CthCreate.

This is only a hint to the runtime system; some threads implementations cannot migrate threads, others always create
migratable threads. In these cases, CthCreateMigratable is equivalent to CthCreate.

CthThread CthPup(pup_er p,CthThread t)

Pack/Unpack a thread. This can be used to save a thread to disk, migrate a thread between processors, or checkpoint
the state of a thread.

Only a suspended thread can be Pup’d. Only a thread created with CthCreateMigratable can be Pup’d.

void CthFree(CthThread t)

Frees thread t. You may ONLY free the currently-executing thread (yes, this sounds strange, it’s historical).
Naturally, the free will actually be postponed until the thread suspends. To terminate itself, a thread calls
CthFree(CthSelf()), then gives up control to another thread.

void CthSuspend()

Causes the current thread to stop executing. The suspended thread will not start executing again until somebody pushes
it into the scheduler queue again, using CthAwaken below. Control transfers to the next task in the scheduler queue.

void CthAwaken(CthThread t)

Pushes a thread into the scheduler queue. Caution: a thread must only be in the queue once. Pushing it in twice is a
crashable error.

void CthAwakenPrio(CthThread t, int strategy, int priobits, int *prio)

Pushes a thread into the scheduler queue with priority specified by priobits and prio and queueing strategy
strategy. Caution: a thread must only be in the queue once. Pushing it in twice is a crashable error. prio is not
copied internally, and is used when the scheduler dequeues the message, so it should not be reused until then.

void CthYield()

This function is part of the scheduler-interface. It simply executes { CthAwaken(CthSelf());
CthSuspend(); }. This combination gives up control temporarily, but ensures that control will eventually re-
turn.

void CthYieldPrio(int strategy, int priobits, int *prio)

This function is part of the scheduler-interface. It simply executes {CthAwakenPrio(CthSelf(),strategy,
priobits,prio);CthSuspend();} This combination gives up control temporarily, but ensures that control
will eventually return.
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CthThread CthGetNext(CthThread t)

Each thread contains space for the user to store a “next” field (the functions listed here pay no attention to the contents
of this field). This field is typically used by the implementors of mutexes, condition variables, and other synchroniza-
tion abstractions to link threads together into queues. This function returns the contents of the next field.

void CthSetNext(CthThread t, CthThread next)

Each thread contains space for the user to store a “next” field (the functions listed here pay no attention to the contents
of this field). This field is typically used by the implementors of mutexes, condition variables, and other synchroniza-
tion abstractions to link threads together into queues. This function sets the contents of the next field.

15.3.2 Thread Scheduling and Blocking Restrictions

Converse threads use a scheduler queue, like any other threads package. We chose to use the same queue as the one
used for Converse messages (see Section 15.2.9). Because of this, thread context-switching will not work unless there
is a thread polling for messages. A rule of thumb, with Converse, it is best to have a thread polling for messages at
all times. In Converse’s normal mode (see Section 15.1), this happens automatically. However, in user-calls-scheduler
mode, you must be aware of it.

There is a second caution associated with this design. There is a thread polling for messages (even in normal mode,
it’s just hidden in normal mode). The continuation of your computation depends on that thread — you must not block
it. In particular, you must not call blocking operations in these places:

• In the code of a Converse handler (see Sections 15.2.2 and 15.2.3).

• In the code of the Converse start-function (see section 15.1).

These restrictions are usually easy to avoid. For example, if you wanted to use a blocking operation inside a Converse
handler, you would restructure the code so that the handler just creates a new thread and returns. The newly-created
thread would then do the work that the handler originally did.

15.3.3 Thread Scheduling Hooks

Normally, when you CthAwaken a thread, it goes into the primary ready-queue: namely, the main Converse queue
described in Section 15.2.9. However, it is possible to hook a thread to make it go into a different ready-queue. That
queue doesn’t have to be priority-queue: it could be FIFO, or LIFO, or in fact it could handle its threads in any
complicated order you desire. This is a powerful way to implement your own scheduling policies for threads.

To achieve this, you must first implement a new kind of ready-queue. You must implement a function that inserts
threads into this queue. The function must have this prototype:

void awakenfn(CthThread t, int strategy, int priobits, int *prio);

When a thread suspends, it must choose a new thread to transfer control to. You must implement a function that makes
the decision: which thread should the current thread transfer to. This function must have this prototype:

CthThread choosefn();

Typically, the choosefn would choose a thread from your ready-queue. Alternately, it might choose to always transfer
control to a central scheduling thread.

You then configure individual threads to actually use this new ready-queue. This is done using CthSetStrategy:

void CthSetStrategy(CthThread t, CthAwkFn awakenfn, CthThFn choosefn)

398 Chapter 15. Converse Programming



Charm++ Documentation

Causes the thread to use the specified awakefn whenever you CthAwaken it, and the specified choosefn whenever
you CthSuspend it.

CthSetStrategy alters the behavior of CthSuspend and CthAwaken. Normally, when a thread is awakened with
CthAwaken, it gets inserted into the main ready-queue. Setting the thread’s awakenfn will cause the thread to
be inserted into your ready-queue instead. Similarly, when a thread suspends using CthSuspend, it normally transfers
control to some thread in the main ready-queue. Setting the thread’s choosefn will cause it to transfer control to a
thread chosen by your choosefn instead.

You may reset a thread to its normal behavior using CthSetStrategyDefault:

void CthSetStrategyDefault(CthThread t)

Restores the value of awakefn and choosefn to their default values. This implies that the next time you CthAwaken
the specified thread, it will be inserted into the normal ready-queue.

Keep in mind that this only resolves the issue of how threads get into your ready-queue, and how those threads
suspend. To actually make everything “work out” requires additional planning: you have to make sure that control
gets transferred to everywhere it needs to go.

Scheduling threads may need to use this function as well:

void CthResume(CthThread t)

Immediately transfers control to thread t. This routine is primarily intended for people who are implementing sched-
ulers, not for end-users. End-users should probably call CthSuspend or CthAwaken (see below). Likewise, pro-
grammers implementing locks, barriers, and other synchronization devices should also probably rely on CthSuspend
and CthAwaken.

A final caution about the choosefn: it may only return a thread that wants the CPU, eg, a thread that has been
awakened using the awakefn. If no such thread exists, if the choosefn cannot return an awakened thread, then it
must not return at all: instead, it must wait until, by means of some pending IO event, a thread becomes awakened
(pending events could be asynchronous disk reads, networked message receptions, signal handlers, etc). For this
reason, many schedulers perform the task of polling the IO devices as a side effect. If handling the IO event causes
a thread to be awakened, then the choosefn may return that thread. If no pending events exist, then all threads will
remain permanently blocked, the program is therefore done, and the choosefn should call exit.

There is one minor exception to the rule stated above (“the scheduler may not resume a thread unless it has been
declared that the thread wants the CPU using the awakefn”). If a thread t is part of the scheduling module, it is
permitted for the scheduling module to resume t whenever it so desires: presumably, the scheduling module knows
when its threads want the CPU.

15.4 Timers, Periodic Checks, and Conditions

This module provides functions that allow users to insert hooks, i.e. user-supplied functions, that are called by the
system at as specific conditions arise. These conditions differ from UNIX signals in that they are raised synchronously,
via a regular function call; and that a single condition can call several different functions.

The system-defined conditions are:

CcdPROCESSOR_BEGIN_IDLE Raised when the scheduler first finds it has no messages to execute. That is, this
condition is raised at the trailing edge of the processor utilization graph.

CcdPROCESSOR_STILL_IDLE Raised when the scheduler subsequently finds it still has no messages to execute.
That is, this condition is raised while the processor utilization graph is flat.

CcdPROCESSOR_BEGIN_BUSY Raised when a message first arrives on an idle processor. That is, raised on the
rising edge of the processor utilization graph.
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CcdPERIODIC The scheduler attempts to raise this condition every few milliseconds. The scheduling for this and the
other periodic conditions is nonpreemptive, and hence may be delayed until the current entry point is finished.

CcdPERIODIC_10ms Raised every 10ms (at 100Hz).

CcdPERIODIC_100ms Raised every 100ms (at 10Hz).

CcdPERIODIC_1second Raised once per second.

CcdPERIODIC_10second Raised once every 10 seconds.

CcdPERIODIC_1minute Raised once per minute.

CcdPERIODIC_10minute Raised once every 10 minutes.

CcdPERIODIC_1hour Raised once every hour.

CcdPERIODIC_12hour Raised once every twelve hours.

CcdPERIODIC_1day Raised once every day.

CcdQUIESCENCE Raised when the quiescence detection system has determined that the system is quiescent.

CcdSIGUSR1 Raised when the system receives the UNIX signal SIGUSR1. Be aware that this condition is thus
raised asynchronously, from within a signal handler, and all the usual signal handler restrictions apply.

CcdSIGUSR2 Raised when the system receives the UNIX signal SIGUSR2.

CcdUSER The system never raises this or any larger conditions. They can be used by the user for application-specific
use.

CcdUSERMAX All conditions from CcdUSER to CcdUSERMAX (inclusive) are available.

int CcdCallOnCondition(int condnum, CcdVoidFn fnp, void* arg)

This call instructs the system to call the function indicated by the function pointer fnp, with the specified argument
arg, when the condition indicated by condnum is raised next. Multiple functions may be registered for the same con-
dition number. CcdVoidFn is a function pointer with the signature void fnp(void *userParam, double
curWallTime)

int CcdCallOnConditionKeep(int condnum, CcdVoidFn fnp, void* arg)

As above, but the association is permanent- the given function will be called again whenever this condition is raised.
Returns an index that may be used to cancel the association later.

void CcdCancelCallOnCondition(int condnum, int idx)

void CcdCancelCallOnConditionKeep(int condnum, int idx)

Delete the given index from the list of callbacks for the given condition. The corresponding function will no longer be
called when the condition is raised. Note that it is illegal to call these two functions to cancel callbacks from within
ccd callbacks.

void CcdRaiseCondition(int condNum)

When this function is called, it invokes all the functions whose pointers were registered for the condNum via a prior
call to CcdCallOnCondition or CcdCallOnConditionKeep.

void CcdCallFnAfter(CcdVoidFn fnp, void* arg, double msLater)

This call registers a function via a pointer to it, fnp, that will be called at least msLater milliseconds later. The
registered function fnp is actually called the first time the scheduler gets control after deltaT milliseconds have
elapsed. The default polling resolution for timed callbacks is 5 ms.
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double CcdSetResolution(double newResolution)

This call sets the polling resolution for completion of timed callbacks. newResolution is the updated time in
seconds. The default polling resolution for timed callbacks is 5 ms. The resolution cannot be any longer than this but
it can be set arbitrarily short. Shorter resolution times can result in a performance decrease due to more time being
spent polling for callbacks but may be preferred in cases where these need to be triggered quickly and/or are on the
critical path of an application. This function also returns the old resolution in seconds in case it needs to be reset to a
non-default value.

double CcdResetResolution()

This call returns the time based callback polling resolution to its default, 5 milliseconds. It returns the previously set
resolution in seconds.

double CcdIncreaseResolution(double newResolution)

This is a “safe” version of CcdSetResolution that only ever sets the resolution to a shorter time. The same caveats
about short polling times affecting performance still apply, This function returns the previous (and potentially current,
if it was shorter than newResolution,) resolution in seconds.

15.5 Converse Client-Server Interface

This note describes the Converse client-server (CCS) module. This module enables Converse programs to act as
parallel servers, responding to requests from (non-Converse) programs across the internet.

The CCS module is split into two parts- client and server. The server side is the interface used by a Converse program;
the client side is used by arbitrary (non-Converse) programs. The following sections describe both these parts.

A CCS client accesses a running Converse program by talking to a server-host, which receives the CCS requests
and relays them to the appropriate processor. The server-host is charmrun for netlrts- versions, and is the first
processor for all other versions.

15.5.1 CCS: Starting a Server

A Converse program is started using

$ charmrun pgmname +pN charmrun-opts pgm-opts

charmrun also accepts the CCS options:

++server: open a CCS server on any TCP port number

++server-port=𝑝𝑜𝑟𝑡: open the given TCP port as a CCS server

++server-auth=𝑎𝑢𝑡ℎ𝑓𝑖𝑙𝑒: accept authenticated queries

As the parallel job starts, it will print a line giving the IP address and TCP port number of the new CCS server. The
format is: “ccs: Server IP = 𝑖𝑝, Server port = 𝑝𝑜𝑟𝑡 $”, where 𝑖𝑝 is a dotted decimal version of the server IP address,
and 𝑝𝑜𝑟𝑡 is the decimal port number.

15.5.2 CCS: Client-Side

A CCS client connects to a CCS server, asks a server PE to execute a pre-registered handler, and receives the response
data. The CCS client may be written in any language (see CCS network protocol, below), but a C interface (files “ccs-
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client.c” and “ccs-client.h”) and Java interface (file “CcsServer.java”) are available in the charm include directory.

The C routines use the skt_abort error-reporting strategy; see “sockRoutines.h” for details. The C client API is:

void CcsConnect(CcsServer *svr, char *host, int port); Connect to the

given CCS server. svr points to a pre-allocated CcsServer structure.

void CcsConnectIp(CcsServer *svr, int ip, int port);

As above, but a numeric IP is specified.

int CcsNumNodes(CcsServer *svr);

int CcsNumPes(CcsServer *svr);

int CcsNodeFirst(CcsServer *svr, int node);

int CcsNodeSize(CcsServer *svr,int node);

These functions return information about the parallel machine; they are equivalent to the Converse calls
CmiNumNodes, CmiNumPes, CmiNodeFirst, and CmiNodeSize.

void CcsSendRequest(CcsServer *svr, char *hdlrID, int pe, unsigned int
size, const char *msg);

Ask the server to execute the handler hdlrID on the given processor. The handler is passed the given data as a message.
The data may be in any desired format (including binary).

int CcsSendBroadcastRequest(CcsServer *svr, const char *hdlrID, int
size, const void *msg);

As CcsSendRequest, only that the handler hdlrID is invoked on all processors.

int CcsSendMulticastRequest(CcsServer *svr, const char *hdlrID,
int npes, int *pes, int size, const void *msg);

As CcsSendRequest, only that the handler hdlrID is invoked on the processors specified in the array pes (of size npes).

int CcsRecvResponse(CcsServer *svr, unsigned int maxsize,
char *recvBuffer, int timeout);

Receive a response to the previous request in-place. Timeout gives the number of seconds to wait before returning 0;
otherwise the number of bytes received is returned.

int CcsRecvResponseMsg(CcsServer *svr, unsigned int *retSize,
char **newBuf, int timeout);

As above, but receive a variable-length response. The returned buffer must be free()’d after use.

int CcsProbe(CcsServer *svr);

Return 1 if a response is available; otherwise 0.

void CcsFinalize(CcsServer *svr);

Closes connection and releases server.
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The Java routines throw an IOException on network errors. Use javadoc on CcsServer.java for the interface, which
mirrors the C version above.

15.5.3 CCS: Server-Side

Once a request arrives on a CCS server socket, the CCS server runtime looks up the appropriate handler and calls it.
If no handler is found, the runtime prints a diagnostic and ignores the message.

CCS calls its handlers in the usual Converse fashion- the request data is passed as a newly-allocated message, and the
actual user data begins CmiMsgHeaderSizeBytes into the message. The handler is responsible for CmiFree’ing the
passed-in message.

The interface for the server side of CCS is included in “converse.h”; if CCS is disabled (in conv-mach.h), all CCS
routines become macros returning 0.

The handler registration interface is:

void CcsUseHandler(char *id, int hdlr);

int CcsRegisterHandler(char *id, CmiHandler fn);

Associate this handler ID string with this function. hdlr is a Converse handler index; fn is a function pointer. The ID
string cannot be more than 32 characters, including the terminating NULL.

After a handler has been registered to CCS, the user can also setup a merging function. This function will be passed
in to CmiReduce to combine replies to multicast and broadcast requests.

void CcsSetMergeFn(const char *name, CmiReduceMergeFn newMerge);

Associate the given merge function to the CCS identified by id. This will be used for CCS request received as broadcast
or multicast.

These calls can be used from within a CCS handler:

int CcsEnabled(void);

Return 1 if CCS routines are available (from conv-mach.h). This routine does not determine if a CCS server port is
actually open.

int CcsIsRemoteRequest(void);

Return 1 if this handler was called via CCS; 0 if it was called as the result of a normal Converse message.

void CcsCallerId(skt_ip_t *pip, unsigned int *pport);

Return the IP address and TCP port number of the CCS client that invoked this method. Can only be called from a
CCS handler invoked remotely.

void CcsSendReply(int size, const void *reply);

Send the given data back to the client as a reply. Can only be called from a CCS handler invoked remotely. In case of
broadcast or multicast CCS requests, the handlers in all processors involved must call this function.

CcsDelayedReply CcsDelayReply(void);

Allows a CCS reply to be delayed until after the handler has completed. Returns a token used below.
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void CcsSendDelayedReply(CcsDelayedReply d,int size, const void *reply);

Send a CCS reply for the given request. Unlike CcsSendReply, can be invoked from any handler on any processor.

15.5.4 CCS: system handlers

The CCS runtime system provides several built-in CCS handlers, which are available in any Converse job:

ccs_getinfo Takes an empty message, responds with information about the parallel job. The response is in the form
of network byte order (big-endian) 4-byte integers: first the number of parallel nodes, then the number of processors
on each node. This handler is invoked by the client routine CcsConnect.

ccs_killport Allows a client to be notified when a parallel run exits (for any reason). Takes one network byte
order (big-endian) 4-byte integer: a TCP port number. The runtime writes “die n” to this port before exiting. There is
no response data.

perf_monitor Takes an empty message, responds (after a delay) with performance data. When
CMK_WEB_MODE is enabled in conv-mach.h, the runtime system collects performance data. Every 2 seconds,
this data is collected on processor 0 and sent to any clients that have invoked perf_monitor on processor 0. The data
is returned in ASCII format with the leading string “perf”, and for each processor the current load (in percent) and
scheduler message queue length (in messages). Thus a heavily loaded, two-processor system might reply with the
string “perf 98 148230 100 385401”.

15.5.5 CCS: network protocol

This information is provided for completeness and clients written in non-C, non-Java languages. The client and server
APIs above are the preferred way to use CCS.

A CCS request arrives as a new TCP connection to the CCS server port. The client speaks first, sending a request header
and then the request data. The server then sends the response header and response data, and closes the connection.
Numbers are sent as network byte order (big-endian) 4-byte integers- network binary integers.

The request header has three fields: the number of bytes of request data, the (0-based) destination processor number,
and the CCS handler identifier string. The byte count and processor are network binary integers (4 bytes each), the
CCS handler ID is zero-terminated ASCII text (32 bytes); for a total request header length of 40 bytes. The remaining
request data is passed directly to the CCS handler.

The response header consists of a single network binary integer- the length in bytes of the response data to follow. The
header is thus 4 bytes long. If there is no response data, this field has value 0.

15.5.6 CCS: Authentication

By default, CCS provides no authentication- this means any client anywhere on the internet can interact with the server.
𝑎𝑢𝑡ℎ𝑓𝑖𝑙𝑒, passed to ’++server-auth’, is a configuration file that enables authentication and describes the authentication
to perform.

The configuration file is line-oriented ASCII text, consisting of security level / key pairs. The security level is an
integer from 0 (the default) to 255. Any security levels not listed in the file are disallowed.

The key is the 128-bit secret key used to authenticate CCS clients for that security level. It is either up to 32 hex-
adecimal digits of key data or the string “OTP”. “OTP” stands for One Time Pad, which will generate a random key
when the server is started. This key is printed out at job startup with the format “CCS_OTP_KEY:math:> Level 𝑖 key:
ℎ𝑒𝑥𝑑𝑖𝑔𝑖𝑡𝑠” where 𝑖 is the security level in decimal and ℎ𝑒𝑥𝑑𝑖𝑔𝑖𝑡𝑠 is 32 hexadecimal digits of key data.
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For example, a valid CCS authentication file might consist of the single line “0 OTP”, indicating that the default
security level 0 requires a randomly generated key. All other security levels are disallowed.

15.6 Converse One Sided Communication Interface

This chapter deals with one sided communication support in converse. It is imperative to provide a one-sided commu-
nication interface to take advantage of the hardware RDMA facilities provided by a lot of NIC cards. Drivers for these
hardware provide or promise to soon provide capabilities to use this feature.

Converse provides an implementation which wraps the functionality provided by different hardware and presents them
as a uniform interface to the programmer. For machines which do not have a one-sided hardware at their disposal,
these operations are emulated through converse messages.

Converse provides the following types of operations to support one-sided communication.

15.6.1 Registering / Unregistering Memory for RDMA

The interface provides functions to register(pin) and unregister(unpin) memory on the NIC hardware. The emulated
version of these operations do not do anything.

int CmiRegisterMemory(void *addr, unsigned int size);

This function takes an allocated memory at starting address addr of length size and registers it with the hardware NIC,
thus making this memory DMAable. This is also called pinning memory on the NIC hardware, making remote DMA
operations on this memory possible. This directly calls the hardware driver function for registering the memory region
and is usually an expensive operation, so should be used sparingly.

int CmiUnRegisterMemory(void *addr, unsigned int size);

This function unregisters the memory at starting address addr of length size, making it no longer DMAable. This
operation corresponds to unpinning memory from the NIC hardware. This is also an expensive operation and should
be sparingly used.

For certain machine layers which support a DMA, we support the function void *CmiDMAAlloc(int size);

This operation allocates a memory region of length size from the DMAable region on the NIC hardware. The memory
region returned is pinned to the NIC hardware. This is an alternative to CmiRegisterMemory and is implemented only
for hardwares that support this.

15.6.2 RDMA operations (Get / Put)

This section presents functions that provide the actual RDMA operations. For hardware architectures that support
these operations these functions provide a standard interface to the operations, while for NIC architectures that do not
support RDMA operations, we provide an emulated implementation. There are three types of NIC architectures based
on how much support they provide for RDMA operations:

• Hardware support for both Get and Put operations.

• Hardware support for one of the two operations, mostly for Put. For these the other RDMA operation is emulated
by using the operation that is implemented in hardware and extra messages.

• No hardware support for any RDMA operation. For these, both the RDMA operations are emulated through
messages.

There are two different sets of RDMA operations
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• The first set of RDMA operations return an opaque handle to the programmer, which can only be used to verify
if the operation is complete. This suits AMPI better and closely follows the idea of separating communication
from synchronization. So, the user program needs to keep track of synchronization.

• The second set of RDMA operations do not return anything, instead they provide a callback when the operation
completes. This suits nicely the charm++ framework of sending asynchronous messages. The handler(callback)
will be automatically invoked when the operation completes.

For machine layer developer: Internally, every machine layer is free to create a suitable data structure for this
purpose. This is the reason this has been kept opaque from the programmer.

void *CmiPut(unsigned int sourceId, unsigned int targetId, void

*Saddr, void *Taadr, unsigned int size);

This function is pretty self explanatory. It puts the memory location at Saddr on the machine specified by sourceId to
Taddr on the machine specified by targetId. The memory region being RDMA’ed is of length size bytes.

void *CmiGet(unsigned int sourceId, unsigned int targetId, void

*Saddr, void *Taadr, unsigned int size);

Similar to CmiPut except the direction of the data transfer is opposite; from target to source.

void CmiPutCb(unsigned int sourceId, unsigned int targetId, void

*Saddr, void *Taddr, unsigned int size, CmiRdmaCallbackFn fn, void

*param);

Similar to CmiPut except a callback is called when the operation completes.

void CmiGetCb(unsigned int sourceId, unsigned int targetId, void

*Saddr, void *Taddr, unsigned int size, CmiRdmaCallbackFn fn, void

*param);

Similar to CmiGet except a callback is called when the operation completes.

15.6.3 Completion of RDMA operation

This section presents functions that are used to check for completion of an RDMA operation. The one sided commu-
nication operations are asynchronous, thus there needs to be a mechanism to verify for completion. One mechanism
is for the programmer to check for completion. The other mechanism is through callback functions registered during
the RDMA operations.

int CmiWaitTest(void *obj);

This function takes this RDMA handle and verifies if the operation corresponding to this handle has completed.

A typical usage of this function would be in AMPI when there is a call to AMPIWait. The implementation should call
the CmiWaitTest for all pending RDMA operations in that window.

15.7 Random Number Generation

Converse includes support for random number generation using a 64-bit Linear Congruential Generator (LCG). The
user can choose between using a supplied default stream shared amongst all chares on the processor, or creating a
private stream. Note that there is a limit on the number of private streams, which at the time of writing was 15,613.
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struct CrnStream;

This structure contains the current state of a random number stream. The user is responsible for allocating the memory
for this structure.

15.7.1 Default Stream Calls

void CrnSrand(int seed);

Seeds the default random number generator with seed.

int CrnRand(void);

Returns the next random number in the default stream as an integer.

int CrnDrand(void);

Returns the next random number in the default stream as a double.

15.7.2 Private Stream Calls

void CrnInitStream(CrnStream *dest, int seed, int type);

Initializes a new stream with its initial state stored in dest. The user must supply a seed in seed, as well as the
type of the stream, where the type can be 0, 1, or 2.

double CrnDouble(CrnStream *genptr);

Returns the next random number in the stream whose state is given by genptr; the number is returned as a double.

double CrnInt(CrnStream *genptr);

Returns the next random number in the stream whose state is given by genptr; the number is returned as an integer.

double CrnFloat(CrnStream *genptr);

Returns the next random number in the stream whose state is given by genptr; the number is returned as a float.
(Note: This function is exactly equivalent to (float) CrnDouble(genptr);.)

15.8 Converse Persistent Communication Interface

This chapter deals with persistent communication support in converse. It is used when point-to-point message commu-
nication is called repeatedly to avoid redundancy in setting up the message each time it is sent. In the message-driven
model like charm, the sender will first notify the receiver that it will send message to it, the receiver will create handler
to record the message size and malloc the address for the upcoming message and send that information back to the
sender, then if the machine have one-sided hardware, it can directly put the message into the address on the receiver.

Converse provides an implementation which wraps the functionality provided by different hardware and presents them
as a uniform interface to the programmer. For machines which do not have a one-sided hardware at their disposal,
these operations are emulated through converse messages.

Converse provides the following types of operations to support persistent communication.
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15.8.1 Create / Destroy Persistent Handler

The interface provides functions to crate and destroy handler on the processor for use of persistent communication.

Persistenthandle CmiCreatePersistent(int destPE, int maxBytes);

This function creates a persistent communication handler with dest PE and maximum bytes for this persistent commu-
nication. Machine layer will send message to destPE and setup a persistent communication. A buffer of size maxBytes
is allocated in the destination PE.

PersistentReq CmiCreateReceiverPersistent(int maxBytes);
PersistentHandle CmiRegisterReceivePersistent(PersistentReq req);

Alternatively, a receiver can initiate the setting up of persistent communication. At receiver side, user calls CmiCre-
ateReceiverPersistent() which returns a temporary handle type - PersistentRecvHandle. Send this handle to the sender
side and the sender should call CmiRegisterReceivePersistent() to setup the persistent communication. The function
returns a PersistentHandle which can then be used for the persistent communication.

void CmiDestroyPersistent(PersistentHandle h);

This function destroys a persistent communication specified by PersistentHandle h.

void CmiDestroyAllPersistent();

This function will destroy all persistent communication on the local processor.

15.8.2 Persistent Operation

This section presents functions that uses persistent handler for communications.

void CmiUsePersistentHandle(PersistentHandle *p, int n)

This function will ask Charm machine layer to use an array of PersistentHandle “p”(array size of n) for all the following
communication. Calling with p=NULL will cancel the persistent communication. n=1 is for sending message to each
Chare, n>1 is for message in multicast-one PersistentHandle for each PE.
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* Pthreads and Converse

* Suppressing Name Conflicts

* Interoperating with Other Thread Packages

* Preemptive Context Switching

* Limits on Blocking Operations in main

* CpthreadModuleInit

– Parallel Arrays of Threads

* Creating Arrays of Threads

* Mapping Functions for Arrays of Threads

* Thread Functions for Arrays of Threads

* Sending Messages to Threads

* Performing Reductions over Array Elements

16.1 Introduction

The Converse Extensions Library is a collection of modules that have been implemented on top of the Converse API.
Each of these modules was deemed potentially useful to other Converse users, thus, we distribute these modules along
with Converse as a convenience. You don’t need to read any part of this manual to use Converse.

16.2 Tag Matching

The message manager is a data structure that can be used to put together runtime systems for languages that support
tag-based message retrieval.

The purpose of the message manager is to store, index, and retrieve messages according to a set of integer tags. It
provides functions to create tables, functions to insert messages into tables (specifying their tags), and functions to
selectively retrieve messages from tables according to their tags. Wildcard tags can be specified in both storage and
retrieval.

To use the message manager, you must include converse.h and link with the Converse library.

In actuality, the term “message manager” is unnecessarily specific. The message manager can store and retrieve
arbitrary pointers according to a set of tags. The pointers do not necessarily need to be pointers to Converse messages.
They can be pointers to anything.

typedef struct CmmTableStruct *CmmTable

This opaque type is defined in converse.h. It represents a table which can be used to store messages. No informa-
tion is publicized about the format of a CmmTableStruct.

#define CmmWildCard (-1)

This #define is in converse.h. The tag -1 is the “wild card” for the tag-based lookup functions in the message
manager.

CmmTable CmmNew();
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This function creates a new message-table and returns it.

void CmmPut(CmmTable t, int ntags, int *tags, void *msg)

This function inserts a message into a message table, along with an array of tags. ntags specifies the length of the
tags array. The tags array contains the tags themselves. msg and t specify the message and table, respectively.

void *CmmGet(CmmTable t, int ntags, int *tags, int *ret_tags)

This function looks up a message from a message table. A message will be retrieved that “matches” the specified
tags array. If a message is found that “matches”, the tags with which it was stored are copied into the ret_tags
array, a pointer to the message will be returned, and the message will be deleted from the table. If no match is found,
0 will be returned.

To “match”, the array tags must be of the same length as the stored array. Similarly, all the individual tags in the
stored array must “match” the tags in the tags array. Two tags match if they are equal to each other, or if either tag
is equal to CmmWildCard (this means one can store messages with wildcard tags, making it easier to find those
messages on retrieval).

void *CmmProbe(CmmTable t, int ntags, int *tags, int *ret_tags)

This function is identical to CmmGet above, except that the message is not deleted from the table.

void CmmFree(CmmTable t);

This function frees a message-table t. WARNING: It also frees all the messages that have been inserted into the
message table. It assumes that the correct way to do this is to call CmiFree on the message. If this assumption is
incorrect, a crash will occur. The way to avoid this problem is to remove and properly dispose all the messages in a
table before disposing the table itself.

16.3 Converse Master-Slave Library

16.3.1 Introduction

CMS is the implementation of the master-slave (or manager-worker or agenda) parallel programming paradigm on top
of Converse.

16.3.2 Available Functions

Following functions are available in this library:

typedef int (*CmsWorkerFn) (void *, void *);

Prototype for the worker function. See below.

typedef int (*CmsConsumerFn) (void *, int);

Prototype for the consumer function. See below.

void CmsInit(CmsWorkerFn worker, int max);

This function must be called before firing any tasks for the workers. max is the largest possible number of tasks you
will fire before calling either CmsAwaitResponses or CmsProcessResponses next. (So the system know how
many it may have to buffer).

int worker(void *t, void **r)

The user writes this function. Its name does not have to be worker; It can be anything. worker can be any function that
the use writes to perform the task on the slave processors. It must allocate and compute the response data structure,
and return a pointer to it, by assigning to r; It must also return the size of the response data structure as its return value.
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void CmsFireTask(int ref, void * t, int size)

Creates task to be worked on by a worker. The task description is pointed to by t, and goes on for size bytes. ref must
be a unique serial number between 0 and max (see CmsInit).

void CmsAwaitResponses(void);

This call allows the system to use processor 0 as a worker. It returns after all the tasks have sent back their responses.
The responses themselves can be extracted using CmsGetResponse.

void *CmsGetResponse(int ref);

Extracts the response associated with the reference number ref from the system’s buffers.

void CmsProcessResponses(CmsConsumerFn consumer);

Instead of using CmsAwaitResponses/CmsGetResponse pair, you can use this call alone. It turns the control
over to the CMS system on processor 0, so it can be used as a worker. As soon as a response is available on processor
0, cms calls the user specified consumer function with two parameters: the response (a void *) and an integer refnum.
(Question: should the size of the response be passed as a parameter to the consumer? User can do that as an explicit
field of the response themselves, if necessary.)

void CmsExit(void);

Must be called on all processors to terminate execution.

Once either CmsProcessResponses or CmsAwaitResponses returns, you may fire the next batch of tasks via
CmsFireTask again.

16.3.3 Example Program

#include "cms.h"

#define MAX 10

typedef struct {
float a;

} Task;

typedef struct {
float result;

} Response;

Task t;

int worker(Task *t, Response **r)
{

/* do work and generate a single response */
int i;
Task *t1;
int k;

CmiPrintf("%d: in worker %f \n", CmiMyPe(), t->a);

*r = (Response *) malloc(sizeof(Response));
(*r)->result = t->a * t->a;
return sizeof(Response);

}

int consumer(Response * r, int refnum)

(continues on next page)
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(continued from previous page)

{
CmiPrintf("consumer: response with refnum = %d is %f\n", refnum,

r->result);
}

main(int argc, char *argv[])
{

int i, j, k, ref;
/* 2nd parameter is the max number of tasks

* fired before "awaitResponses"

*/
CmsInit((CmsWorkerFn)worker, 20);
if (CmiMyPe() == 0) { /* I am the manager */

CmiPrintf("manager inited\n");
for (i = 0; i < 3; i++) { /* number of iterations or phases */
/* prepare the next generation of problems to solve */
/* then, fire the next batch of tasks for the worker */

for (j = 0; j < 5; j++) {
t.a = 10 * i + j;
ref = j; /* a ref number to associate with the task, */
/* so that the reponse for this task can be identified. */
CmsFireTask(ref, &t, sizeof(t));

}
/* Now wait for the responses */

CmsAwaitResponses(); /* allows proc 0 to be used as a worker. */
/* Now extract the resoneses from the system */
for (j = 0; j < 5; j++) {

Response *r = (Response *) CmsGetResponse(j);
CmiPrintf("Response %d is: %f \n", j, r->result);

}
/* End of one mast-slave phase */

CmiPrintf("End of phase %d\n", i);
}

}

CmiPrintf("Now the consumerFunction mode\n");

if (CmiMyPe() == 0) { /* I am the manager */
for (i = 0; i < 3; i++) {

t.a = 5 + i;
CmsFireTask(i, &t, sizeof(t));

}
CmsProcessResponses((CmsConsumerFn)consumer);
/* Also allows proc. 0 to be used as a worker.

* In addition, responses will be processed on processor 0

* via the "consumer" function as soon as they are available

*/
}
CmsExit();

}

16.4 Data Structures

In the course of developing Converse and Charm++ we had to implement a number of data structures efficiently. If the
ANSI standard C library were available to us on all platforms, we could have used it, but that was not the case. Also,
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we needed both the C and C++ bindings of most data structures. In most cases, the functionality we needed was also
a subset of the C standard library functionality, and by avoiding virtual methods etc, we have tried to code the most
efficient implementations of those data structures.

Since these data structures are already part of Converse and Charm++, they are available to the users of these system
free of cost :-<). In this chapter we document the available functions.

16.4.1 Queues, Lists, FIFOs etc.

This data structure is based on circular buffer, and can be used both like a FIFO and a Stack.

The following functions are available for use in C:

typedef ... CdsFifo;

An opaque data type representing a queue of void* pointers.

CdsFifo CdsFifo_Create(void);

Creates a queue in memory and returns its pointer.

CdsFifo CdsFifo_Create_len(int len);

Creates a queue in memory with the initial buffer size of len entries and returns its pointer.

void CdsFifo_Enqueue(CdsFifo q, void *elt);

Appends elt at the end of q.

void *CdsFifo_Dequeue(CdsFifo q);

Removes an element from the front of the q, and returns it. Returns 0 if the queue is empty.

void *CdsFifo_Pop(CdsFifo q);

Removes an element from the front of the q, and returns it. Returns 0 if the queue is empty. An alias for the dequeue
function.

void CdsFifo_Push(CdsFifo q, void *elt);

Inserts elt in the beginning of q.

int CdsFifo_Empty(CdsFifo q);

Returns 1 if the q is empty, 0 otherwise.

int CdsFifo_Length(CdsFifo q);

Returns the length of the q.

int CdsFifo_Peek(CdsFifo q);

Returns the element from the front of the q without removing it.

void CdsFifo_Destroy(CdsFifo q);

Releases memory used by q.

The following Templates are available for use in C++:

template<class T>
class CkQ {

CkQ(); // default constructor
CkQ(int initial_size); // constructor with initial buffer size
~CkQ(); // destructor

(continues on next page)
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int length(void); // returns length of the q
bool isEmpty(void); // returns true if q is empty, false otherwise
T deq(void); // removes and returns the front element
void enq(const T&); // appends at the end of the list
void push(const T&); // inserts in the beginning of the list
T& operator[](size_t n); // returns the n'th element

};

16.5 Converse Pseudorandom Number Generator

Converse provides three different Linear Congruential Random Number Generators. Each random number stream
has a cycle length of 264 as opposed to ANSI C standard’s 248. Also, each of the three random number streams can
be split into a number of per processor streams, so that the random number sequences can be computed in parallel,
and are reproducible. Furthermore, there is no implicit critical section in the random number generator,and yet, this
functionality is thread-safe, because all the state information is stored in the structure allocated by the programmer.
Further, this state information is stored in a first class object, and can be passed to other processors through messages.
This module of Converse is based on the public-domain SPRNG1 package developed by Ashok Srinivasan2 at NCSA.

For minimal change to programs already using C functions rand(), srand(), and drand48(), Converse also
maintains a “default” random number stream.

Interface to the Converse Pseudorandom Number Generator module is as follows:

typedef ... CrnStream;

State information for generating the next random number in the sequence.

void CrnInitStream(CrnStream *stream, int seed, int type)

Initializes the new random number stream stream of type using seed. type can have values 0, 1, or 2 to represent
three types of linear congruential random number generators.

int CrnInt(CrnStream *stream)

Returns an integer between 0 and 231 − 1 corresponding to the next random number in the sequence associated with
stream. Advances stream by one in the sequence.

double CrnDouble(CrnStream *stream)

Returns an double precision floating point number between 0 and 1 corresponding to the next random number in the
sequence associated with stream. Advances stream by one in the sequence.

float CrnFloat(CrnStream *stream)

Returns a single precision floating point number between 0 and 1 corresponding to the next random number in the
sequence associated with stream. Advances stream by one in the sequence.

void CrnSrand(int seed)

Specifies a different seed for the default random number stream. Replaces srand().

int CrnRand(void)

Generate the next integer random number from the default random number stream. Replaces rand().

double CrnDrand(void)

Generate the next double precision random number from the default random number stream. Replaces drand48().

1 URL:http://www.ncsa.uiuc.edu/Apps/SPRNG/www/
2 Email:ashoks@ncsa.uiuc.edu
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16.6 Automatic Parameter Marshalling

Automatic Parameter Marshalling is a concise means of invoking functions on remote processors. The CPM module
handles all the details of packing, transmitting, translating, and unpacking the arguments. It also takes care of con-
verting function pointers into handler numbers. With all these details out of the way, it is possible to perform remote
function invocation in a single line of code.

16.6.1 CPM Basics

The heart of the CPM module is the CPM scanner. The scanner reads a C source file. When it sees the keyword
CpmInvokable in front of one of the user’s function declarations, it generates a launcher for that particular function.
The launcher is a function whose name is Cpm_ concatenated to the name of the user’s function. The launcher accepts
the same arguments as the user’s function, plus a destination argument. Calling the launcher transmits a message
to another processor determined by the destination argument. When the message arrives and is handled, the user’s
function is called.

For example, if the CPM scanner sees the following function declaration

CpmInvokable myfunc(int x, int y) { ... }

The scanner will generate a launcher named Cpm_myfunc. The launcher has this prototype:

void Cpm_myfunc(CpmDestination destination, int x, int y);

If one were to call Cpm_myfunc as follows:

Cpm_myfunc(CpmSend(3), 8, 9);

a message would be sent to processor 3 ordering it to call myfunc(8,9). Notice that the destination argument isn’t
just an integer processor number. The possible destinations for a message are described later.

When the CPM scanner is applied to a C source file with a particular name, it generates a certain amount of parameter
packing and unpacking code, and this code is placed in an include file named similarly to the original C file: the .c
is replaced with .cpm.h. The include file must be included in the original .c file, after the declarations of the types
which are being packed and unpacked, but before all uses of the CPM invocation mechanisms.

Note that the .cpm.h include file is not for prototyping. It contains the C code for the packing and unpacking
mechanisms. Therefore, it should only be included in the one source file from which it was generated. If the user
wishes to prototype his code, he must do so normally, by writing a header file of his own.

Each .cpm.h file contains a function CpmInitializeThisModule, which initializes the code in that .cpm.h
file. The function is declared static, so it is possible to have one in each .cpm.h file without conflicts. It is the
responsibility of the CPM user to call each of these CpmInitializeThisModule functions before using any of
the CPM mechanisms.

We demonstrate the use of the CPM mechanisms using the following short program myprog.c:

1 #include "myprog.cpm.h"
2

3 CpmInvokable print_integer(int n)
4 {
5 CmiPrintf("%d\n", n);
6 }
7

8 user_main(int argc, char **argv)
9 {

(continues on next page)
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10 int i;
11 CpmModuleInit();
12 CpmInitializeThisModule();
13 if (CmiMyPe()==0)
14 for (i=1; i<CmiNumPes(); i++)
15 Cpm_print_integer(CpmSend(i), rand());
16 }
17

18 main(int argc, char **argv)
19 {
20 ConverseInit(argc, argv, user_main, 0, 0);
21 }

Lines 3-6 of this program contain a simple C function that prints an integer. The function is marked with the word
CpmInvokable. When the CPM scanner sees this word, it adds the function Cpm_print_integer to the file
myprog.cpm.h. The program includes myprog.cpm.h on line 1, and initializes the code in there on line 12.
Each call to Cpm_print_integer on line 15 builds a message that invokes print_integer. The destination-
argument CpmSend(i) causes the message to be sent to the i’th processor.

The effect of this program is that the first processor orders each of the other processors to print a random number.
Note that the example is somewhat minimalist since it doesn’t contain any code for terminating itself. Also note that
it would have been more efficient to use an explicit broadcast. Broadcasts are described later.

All launchers accept a CpmDestination as their first argument. A CpmDestination is actually a pointer to a small
C structure containing routing and handling information. The CPM module has many built-in functions that return
CpmDestinations. Therefore, any of these can be used as the first argument to a launcher:

• CpmSend(pe) - the message is transmitted to processor pe with maximum priority.

• CpmEnqueue(pe, queueing, priobits, prioptr) - The message is transmitted to processor pe, where it is en-
queued with the specified queueing strategy and priority. The queueing, priobits, and prioptr arguments are the
same as for CqsEnqueueGeneral.

• CpmEnqueueFIFO(pe) - the message is transmitted to processor pe and enqueued with the middle priority
(zero), and FIFO relative to messages with the same priority.

• CpmEnqueueLIFO(pe) - the message is transmitted to processor pe and enqueued with the middle priority
(zero), and LIFO relative to messages with the same priority.

• CpmEnqueueIFIFO(pe, prio) - the message is transmitted to processor pe and enqueued with the specified
integer-priority prio, and FIFO relative to messages with the same priority.

• CpmEnqueueILIFO(pe, prio) - the message is transmitted to processor pe and enqueued with the specified
integer-priority prio, and LIFO relative to messages with the same priority.

• CpmEnqueueBFIFO(pe, priobits, prioptr) - the message is transmitted to processor pe and enqueued with
the specified bitvector-priority, and FIFO relative to messages with the same priority.

• CpmEnqueueBLIFO(pe, priobits, prioptr) - the message is transmitted to processor pe and enqueued with
the specified bitvector-priority, and LIFO relative to messages with the same priority.

• CpmMakeThread(pe) - The message is transmitted to processor pe where a CthThread is created, and the
thread invokes the specified function.

All the functions shown above accept processor numbers as arguments. Instead of supplying a processor number, one
can also supply the special symbols CPM_ALL or CPM_OTHERS, causing a broadcast. For example,

Cpm_print_integer(CpmMakeThread(CPM_ALL), 5);
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would broadcast a message to all the processors causing each processor to create a thread, which would in turn invoke
print_integer with the argument 5.

16.6.2 CPM Packing and Unpacking

Functions preceded by the word CpmInvokable must have simple argument lists. In particular, the argument list
of a CpmInvokable function can only contain cpm-single-arguments and cpm-array-arguments, as defined by this
grammar:

cpm-single-argument :== typeword varname
cpm-array-argument :== typeword '*' varname

When CPM sees the cpm-array-argument notation, CPM interprets it as being a pointer to an array. In this case, CPM
attempts to pack an entire array into the message, whereas it only attempts to pack a single element in the case of the
cpm-single-argument notation.

Each cpm-array-argument must be preceded by a cpm-single-argument of type CpmDim. CpmDim is simply an alias
for int, but when CPM sees an argument declared CpmDim, it knows that the next argument will be a cpm-array-
argument, and it interprets the CpmDim argument to be the size of the array. Given a pointer to the array, its size, and
its element-type, CPM handles the packing of array values as automatically as it handles single values.

A second program, example2.c, uses array arguments:

1 #include "example2.cpm.h"
2

3 CpmInvokable print_program_arguments(CpmDim argc, CpmStr *argv)
4 {
5 int i;
6 CmiPrintf("The program's arguments are: ");
7 for (i=0; i<argc; i++) CmiPrintf("%s ", argv[i]);
8 CmiPrintf("\n");
9 }

10

11 user_main(int argc, char **argv)
12 {
13 CpmModuleInit();
14 CpmInitializeThisModule();
15 if (CmiMyPe()==0)
16 Cpm_print_program_arguments(CpmSend(1), argc, argv);
17 }
18

19 main(int argc, char **argv)
20 {
21 ConverseInit(argc, argv, user_main, 0, 0);
22 }

The word CpmStr is a CPM built-in type, it represents a null-terminated string:

typedef char *CpmStr;

Therefore, the function print_program_arguments takes exactly the same arguments as user_main. In this
example, the main program running on processor 0 transmits the arguments to processor 1, which prints them out.

Thus far, we have only shown functions whose prototypes contain builtin CPM types. CPM has built-in knowledge of
the following types: char, short, int, long, float, double, CpmDim, and CpmStr (pointer to a null-terminated string).
However, you may also transmit user-defined types in a CPM message.
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For each (non-builtin) type the user wishes to pack, the user must supply some pack and unpack routines. The
subroutines needed depend upon whether the type is a pointer or a simple type. Simple types are defined to be those
that contain no pointers at all. Note that some types are neither pointers, nor simple types. CPM cannot currently
handle such types.

CPM knows which type is which only through the following declarations:

CpmDeclareSimple(typeword);
CpmDeclarePointer(typeword);

The user must supply such declarations for each type that must be sent via CPM.

When packing a value v which is a simple type, CPM uses the following strategy. The generated code first converts v
to network interchange format by calling CpmPack_typename(&v), which must perform the conversion in-place.
It then copies v byte-for-byte into the message and sends it. When the data arrives, it is extracted from the message
and converted back using CpmUnpack_typename(&v), again in-place. The user must supply the pack and unpack
routines.

When packing a value v which is a pointer, the generated code determines how much space is needed in the
message buffer by calling CpmPtrSize_typename(v). It then transfers the data pointed to by v into the
message using CpmPtrPack_typename(p, v), where p is a pointer to the allocated space in the message
buffer. When the message arrives, the generated code extracts the packed data from the message by calling
CpmPtrUnpack_typename(p). The unpack function must return a pointer to the unpacked data, which is allowed
to still contain pointers to the message buffer (or simply be a pointer to the message buffer). When the invocation is
done, the function CpmPtrFree_typename(v) is called to free any memory allocated by the unpack routine. The
user must supply the size, pack, unpack, and free routines.

The following program fragment shows the declaration of two user-defined types:

1 typedef struct { double x,y; } coordinate;
2 CpmDeclareSimple(coordinate);
3

4 void CpmPack_coordinate(coordinate *p)
5 {
6 CpmPack_double(&(p->x));
7 CpmPack_double(&(p->y));
8 }
9

10 void CpmPack_coordinate(coordinate *p)
11 {
12 CpmUnpack_double(&(p->x));
13 CpmUnpack_double(&(p->y));
14 }
15

16 typedef int *intptr;
17 CpmDeclarePointer(intptr);
18

19 #define CpmPtrSize_intptr(p) sizeof(int)
20

21 void CpmPtrPack_intptr(void *p, intptr v)
22 {
23 *(int *)p = *v;
24 CpmPack_int((int *)p);
25 }
26

27 intptr CpmPtrUnpack_intptr(void *p)
28 {
29 CpmUnpack_int((int *)p);

(continues on next page)
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30 return (int *)p;
31 }
32

33 #define CpmPtrFree_intptr(p) (0)
34

35 #include "example3.cpm.h"
36 ...

The first type declared in this file is the coordinate. Line 2 contains the C type declaration, and line 3 notifies CPM
that it is a simple type, containing no pointers. Lines 5-9 declare the pack function, which receives a pointer to a
coordinate, and must pack it in place. It makes use of the pack-function for doubles, which also packs in place. The
unpack function is similar.

The second type declared in this file is the intptr, which we intend to mean a pointer to a single integer. On line
18 we notify CPM that the type is a pointer, and that it should therefore use CpmPtrSize_intptr, CpmPtrPack_intptr,
CpmPtrUnpack_intptr, and CpmPtrFree_intptr. Line 20 shows the size function, a constant: we always need just
enough space to store one integer. The pack function copies the int into the message buffer, and packs it in place. The
unpack function unpacks it in place, and returns an intptr, which points right to the unpacked integer which is still
in the message buffer. Since the int is still in the message buffer, and not in dynamically allocated memory, the free
function on line 34 doesn’t have to do anything.

Note that the inclusion of the .cpm.h file comes after these type and pack declarations: the .cpm.h file will reference
these functions and macros, therefore, they must already be defined.

16.6.3 Inventing New Types of CpmDestinations

It is possible for the user to create new types of CpmDestinations, and to write functions that return these new desti-
nations. In order to do this, one must have a mental model of the steps performed when a Cpm message is sent. This
knowledge is only necessary to those wishing to invent new kinds of destinations. Others can skip this section.

The basic steps taken when sending a CPM message are:

1. The destination-structure is created. The first argument to the launcher is a CpmDestination. Therefore,
before the launcher is invoked, one typically calls a function (like CpmSend) to build the destination-structure.

2. The launcher allocates a message-buffer. The buffer contains space to hold a function-pointer and the func-
tion’s arguments. It also contains space for an “envelope”, the size of which is determined by a field in the
destination-structure.

3. The launcher stores the function-arguments in the message buffer. In doing so, the launcher converts the
arguments to a contiguous sequence of bytes.

4. The launcher sets the message’s handler. For every launcher, there is a matching function called an invoker
The launcher’s job is to put the argument data in the message and send the message. The invoker’s job is to
extract the argument data from the message and call the user’s function. The launcher uses CmiSetHandler
to tell Converse to handle the message by calling the appropriate invoker.

5. The message is sent, received, and handled. The destination-structure contains a pointer to a send-function.
The send-function is responsible for choosing the message’s destination and making sure that it gets there and
gets handled. The send-function has complete freedom to implement this in any manner it wishes. Eventually,
though, the message should arrive at a destination and its handler should be called.

6. The user’s function is invoked. The invoker extracts the function arguments from the message buffer and calls
the user’s function.

The send-function varies because messages take different routes to get to their final destinations. Compare, for exam-
ple, CpmSend to CpmEnqueueFIFO. When CpmSend is used, the message goes straight to the target processor and
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gets handled. When CpmEnqueueFIFO is used, the message goes to the target processor, goes into the queue, comes
out of the queue, and then gets handled. The send-function must implement not only the transmission of the message,
but also the possible “detouring” of the message through queues or into threads.

We now show an example CPM command, and describe the steps that are taken when the command is executed. The
command we will consider is this one:

Cpm_print_integer(CpmEnqueueFIFO(3), 12);

Which sends a message to processor 3, ordering it to call print_integer(12).

The first step is taken by CpmEnqueueFIFO, which builds the CpmDestination. The following is the code for CpmEn-
queueFIFO:

typedef struct CpmDestinationSend_s
{

void *(*sendfn)();
int envsize;
int pe;

}

*CpmDestinationSend;

CpmDestination CpmEnqueueFIFO(int pe)
{

static struct CpmDestinationSend_s ctrl;
ctrl.envsize = sizeof(int);
ctrl.sendfn = CpmEnqueueFIFO1;
ctrl.pe = pe;
return (CpmDestination)&ctrl;

}

Notice that the CpmDestination structure varies, depending upon which kind of destination is being used. In this case,
the destination structure contains a pointer to the send-function CpmEnqueueFIFO1, a field that controls the size
of the envelope, and the destination-processor. In a CpmDestination, the sendfn and envsize fields are required,
additional fields are optional.

After CpmEnqueueFIFO builds the destination-structure, the launcher Cpm_print_integer is invoked.
Cpm_print_integer performs all the steps normally taken by a launcher:

1. It allocates the message buffer. In this case, it sets aside just enough room for one int as an envelope, as
dictated by the destination-structure’s envsize field.

2. It stores the function-arguments in the message-buffer. In this case, the function-arguments are just the
integer 12.

3. It sets the message’s handler. In this case, the message’s handler is set to a function that will extract the
arguments and call print_integer.

4. It calls the send-function to send the message.

The code for the send-function is here:

void *CpmEnqueueFIFO1(CpmDestinationSend dest, int len, void *msg)
{

int *env = (int *)CpmEnv(msg);
env[0] = CmiGetHandler(msg);
CmiSetHandler(msg, CpvAccess(CpmEnqueueFIFO2_Index));
CmiSyncSendAndFree(dest->pe,len,msg);

}
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The send-function CpmEnqueueFIFO1 starts by switching the handler. The original handler is removed using
CmiGetHandler. It is set aside in the message buffer in the “envelope” space described earlier — notice the
use of CpmEnv to obtain the envelope. This is the purpose of the envelope in the message — it is a place where the
send-function can store information. The destination-function must anticipate how much space the send-function will
need, and it must specify that amount of space in the destination-structure field envsize. In this case, the envelope is
used to store the original handler, and the message’s handler is set to an internal function called CpmEnqueueFIFO2.

After switching the handler, CpmEnqueueFIFO1 sends the message. Eventually, the message will be received by
CsdScheduler, and its handler will be called. The result will be that CpmEnqueueFIFO2 will be called on the
destination processor. Here is the code for CpmEnqueueFIFO2:

void CpmEnqueueFIFO2(void *msg)
{

int *env;
CmiGrabBuffer(&msg);
env = (int *)CpmEnv(msg);
CmiSetHandler(msg, env[0]);
CsdEnqueueFIFO(msg);

}

This function takes ownership of the message-buffer from Converse using CmiGrabBuffer. It extracts the origi-
nal handler from the envelope (the handler that calls print_integer), and restores it using CmiSetHandler.
Having done so, it enqueues the message with the FIFO queueing policy. Eventually, the scheduler picks the message
from the queue, and print_integer is invoked.

In summary, the procedure for implementing new kinds of destinations is to write one send-function, one function
returning a CpmDestination (which contains a reference to the send-function), and one or more Converse handlers to
manipulate the message.

The destination-function must return a pointer to a “destination-structure”, which can in fact be any structure matching
the following specifications:

• The first field must be a pointer to a send-function,

• The second field must the an integer, the envelope-size.

This pointer must be coerced to type CpmDestination.

The send-function must have the following prototype:

void sendfunction(CpmDestination dest, int msglen, void *msgptr)

It can access the envelope of the message using CpmEnv:

int *CpmEnv(void *msg);

It can also access the data stored in the destination-structure by the destination-function.

16.7 Load Balancing

16.7.1 Using Converse Load Balancers

This module defines a function CldEnqueue that sends a message to a lightly-loaded processor. It automates the
process of finding a lightly-loaded processor.

The function CldEnqueue is extremely sophisticated. It does not choose a processor, send the message, and forget it.
Rather, it puts the message into a pool of movable work. The pool of movable work gradually shrinks as it is consumed
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(processed), but in most programs, there is usually quite a bit of movable work available at any given time. As load
conditions shift, the load balancers shifts the pool around, compensating. Any given message may be shifted more
than once, as part of the pool.

CldEnqueue also accounts for priorities. Normal load-balancers try to make sure that all processors have some work
to do. The function CldEnqueue goes a step further: it tries to make sure that all processors have some reasonably
high-priority work to do. This can be extremely helpful in AI search applications.

The two assertions above should be qualified: CldEnqueue can use these sophisticated strategies, but it is also possible
to configure it for different behavior. When you compile and link your program, you choose a load-balancing strategy.
That means you link in one of several implementations of the load-balancer. Most are sophisticated, as described
above. But some are simple and cheap, like the random strategy. The process of choosing a strategy is described in
the manual Converse Installation and Usage.

Before you send a message using CldEnqueue, you must write an info function with this prototype:

void InfoFn(void *msg, CldPackFn *pfn, int *len, int *queueing, int *priobits,
unsigned int *prioptr);

The load balancer will call the info function when it needs to know various things about the message. The load
balancer will pass in the message via the parameter msg. The info function’s job is to “fill in” the other parameters. It
must compute the length of the message, and store it at *len. It must determine the pack function for the message,
and store a pointer to it at *pfm. It must identify the priority of the message, and the queueing strategy that must
be used, storing this information at *queueing, *priobits, and *prioptr. Caution: the priority will not be
copied, so the *prioptr should probably be made to point to the message itself.

After the user of CldEnqueue writes the “info” function, the user must register it, using this:

int CldRegisterInfoFn(CldInfoFn fn)

Accepts a pointer to an info-function. Returns an integer index for the info-function. This index will be needed in
CldEnqueue.

Normally, when you send a message, you pack up a bunch of data into a message, send it, and unpack it at the receiving
end. It is sometimes possible to perform an optimization, though. If the message is bound for a processor within the
same address space, it isn’t always necessary to copy all the data into the message. Instead, it may be sufficient to
send a message containing only a pointer to the data. This saves much packing, unpacking, and copying effort. It
is frequently useful, since in a properly load-balanced program, a great many messages stay inside a single address
space.

With CldEnqueue, you don’t know in advance whether a message is going to cross address-space boundaries or not. If
it’s to cross address spaces, you need to use the “long form”, but if it’s to stay inside an address space, you want to use
the faster “short form”. We call this “conditional packing.” When you send a message with CldEnqueue, you should
initially assume it will not cross address space boundaries. In other words, you should send the “short form” of the
message, containing pointers. If the message is about to leave the address space, the load balancer will call your pack
function, which must have this prototype:

void PackFn(void **msg)

The pack function is handed a pointer to a pointer to the message (yes, a pointer to a pointer). The pack function is
allowed to alter the message in place, or replace the message with a completely different message. The intent is that
the pack function should replace the “short form” of the message with the “long form” of the message. Note that if it
replaces the message, it should CmiFree the old message.

Of course, sometimes you don’t use conditional packing. In that case, there is only one form of the message. In that
case, your pack function can be a no-op.

Pack functions must be registered using this:

int CldRegisterPackFn(CldPackFn fn)
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Accepts a pointer to an pack-function. Returns an integer index for the pack-function. This index will be needed in
CldEnqueue.

Normally, CldEnqueue sends a message to a lightly-loaded processor. After doing this, it enqueues the message with
the appropriate priority. The function CldEnqueue can also be used as a mechanism to simply enqueue a message on
a remote processor with a priority. In other words, it can be used as a prioritized send-function. To do this, one of the
CldEnqueue parameters allows you to override the load-balancing behavior and lets you choose a processor yourself.

The prototype for CldEnqueue is as follows:

void CldEnqueue(int pe, void *msg, int infofn)

The argument msg is a pointer to the message. The parameter infofn represents a function that can analyze
the message. The parameter packfn represents a function that can pack the message. If the parameter pe is
CLD_ANYWHERE, the message is sent to a lightly-loaded processor and enqueued with the appropriate priority. If
the parameter pe is a processor number, the message is sent to the specified processor and enqueued with the appro-
priate priority. CldEnqueue frees the message buffer using CmiFree.

The following simple example illustrates how a Converse program can make use of the load balancers.

hello.c:

#include <stdio.h>
#include "converse.h"
#define CHARES 10

void startup(int argc, char *argv[]);
void registerAndInitialize();

typedef struct pemsgstruct
{

char header[CmiExtHeaderSizeBytes];
int pe, id, pfnx;
int queuing, priobits;
unsigned int prioptr;

} pemsg;

CpvDeclare(int, MyHandlerIndex);
CpvDeclare(int, InfoFnIndex);
CpvDeclare(int, PackFnIndex);

int main(int argc, char *argv[])
{

ConverseInit(argc, argv, startup, 0, 0);
CsdScheduler(-1);

}

void startup(int argc, char *argv[])
{

pemsg *msg;
int i;

registerAndInitialize();
for (i=0; i<CHARES; i++) {
msg = (pemsg *)malloc(sizeof(pemsg));
msg->pe = CmiMyPe();
msg->id = i;
msg->pfnx = CpvAccess(PackFnIndex);
msg->queuing = CQS_QUEUEING_FIFO;

(continues on next page)
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msg->priobits = 0;
msg->prioptr = 0;
CmiSetHandler(msg, CpvAccess(MyHandlerIndex));
CmiPrintf("[%d] sending message %d\n", msg->pe, msg->id);
CldEnqueue(CLD_ANYWHERE, msg, CpvAccess(InfoFnIndex));
/* CmiSyncSend(i, sizeof(pemsg), &msg); */

}
}

void MyHandler(pemsg *msg)
{

CmiPrintf("Message %d created on %d handled by %d.\n", msg->id, msg->pe,
CmiMyPe());

}

void InfoFn(pemsg *msg, CldPackFn *pfn, int *len, int *queuing, int *priobits,
unsigned int *prioptr)

{

*pfn = (CldPackFn)CmiHandlerToFunction(msg->pfnx);

*len = sizeof(pemsg);

*queuing = msg->queuing;

*priobits = msg->priobits;
prioptr = &(msg->prioptr);

}

void PackFn(pemsg **msg)
{
}

void registerAndInitialize()
{

CpvInitialize(int, MyHandlerIndex);
CpvAccess(MyHandlerIndex) = CmiRegisterHandler(MyHandler);
CpvInitialize(int, InfoFnIndex);
CpvAccess(InfoFnIndex) = CldRegisterInfoFn((CldInfoFn)InfoFn);
CpvInitialize(int, PackFnIndex);
CpvAccess(PackFnIndex) = CldRegisterPackFn((CldPackFn)PackFn);

}

16.7.2 How to Write a Load Balancer for Converse/Charm++

Introduction

This manual details how to write your own general-purpose message-based load balancer for Converse. A Converse
load balancer can be used by any Converse program, but also serves as a seed load balancer for Charm++ chare
creation messages. Specifically, to use a load balancer, you would pass messages to CldEnqueue rather than directly
to the scheduler. This is the default behavior with chare creation message in Charm++. Thus, the primary provision of
a new load balancer is an implementation of the CldEnqueue function.

Existing Load Balancers and Provided Utilities

Throughout this manual, we will occasionally refer to the source code of two provided load balancers, the random
initial placement load balancer (cldb.rand.c) and the virtual topology-based load balancer (cldb.neighbor.
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c) which applies virtual topology including dense graph to construct neighbors. The functioning of these balancers is
described in the Charm++ manual load balancing section.

In addition, a special utility is provided that allows us to add and remove load-balanced messages from the scheduler’s
queue. The source code for this is available in cldb.c. The usage of this utility will also be described here in detail.

16.7.3 A Sample Load Balancer

This manual steps through the design of a load balancer using an example which we will call test. The test load
balancer has each processor periodically send half of its load to its neighbor in a ring. Specifically, for N processors,
processor K will send approximately half of its load to (K+1)%N, every 100 milliseconds (this is an example only; we
leave the genius approaches up to you).

Minimal Requirements

The minimal requirements for a load balancer are illustrated by the following code.

#include <stdio.h>
#include "converse.h"

const char *CldGetStrategy(void)
{

return "test";
}

CpvDeclare(int, CldHandlerIndex);

void CldHandler(void *msg)
{

CldInfoFn ifn; CldPackFn pfn;
int len, queueing, priobits; unsigned int *prioptr;

CmiGrabBuffer((void **)&msg);
CldRestoreHandler(msg);
ifn = (CldInfoFn)CmiHandlerToFunction(CmiGetInfo(msg));
ifn(msg, &pfn, &len, &queueing, &priobits, &prioptr);
CsdEnqueueGeneral(msg, queueing, priobits, prioptr);

}

void CldEnqueue(int pe, void *msg, int infofn)
{

int len, queueing, priobits; unsigned int *prioptr;
CldInfoFn ifn = (CldInfoFn)CmiHandlerToFunction(infofn);
CldPackFn pfn;

if (pe == CLD_ANYWHERE) {
/* do what you want with the message; in this case we'll just keep

it local */
ifn(msg, &pfn, &len, &queueing, &priobits, &prioptr);
CmiSetInfo(msg,infofn);
CsdEnqueueGeneral(msg, queueing, priobits, prioptr);

}
else {
/* pe contains a particular destination or broadcast */
ifn(msg, &pfn, &len, &queueing, &priobits, &prioptr);

(continues on next page)
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if (pfn) {
pfn(&msg);
ifn(msg, &pfn, &len, &queueing, &priobits, &prioptr);

}
CldSwitchHandler(msg, CpvAccess(CldHandlerIndex));
CmiSetInfo(msg,infofn);
if (pe==CLD_BROADCAST)

CmiSyncBroadcastAndFree(len, msg);
else if (pe==CLD_BROADCAST_ALL)

CmiSyncBroadcastAllAndFree(len, msg);
else CmiSyncSendAndFree(pe, len, msg);

}
}

void CldModuleInit()
{

char *argv[] = { NULL };
CpvInitialize(int, CldHandlerIndex);
CpvAccess(CldHandlerIndex) = CmiRegisterHandler(CldHandler);
CldModuleGeneralInit(argv);

}

The primary function a load balancer must provide is the CldEnqueue function, which has the following prototype:

void CldEnqueue(int pe, void *msg, int infofn);

This function takes three parameters: pe, msg and infofn. pe is the intended destination of the msg. pe may take
on one of the following values:

• Any valid processor number - the message must be sent to that processor

• CLD_ANYWHERE - the message can be placed on any processor

• CLD_BROADCAST - the message must be sent to all processors excluding the local processor

• CLD_BROADCAST_ALL - the message must be sent to all processors including the local processor

CldEnqueue must handle all of these possibilities. The only case in which the load balancer should get control of
a message is when pe = CLD_ANYWHERE. All other messages must be sent off to their intended destinations and
passed on to the scheduler as if they never came in contact with the load balancer.

The integer parameter infofn is a handler index for a user-provided function that allows CldEnqueue to extract
information about (mostly components of) the message msg.

Thus, an implementation of the CldEnqueue function might have the following structure:

void CldEnqueue(int pe, void *msg, int infofn)
{

...
if (pe == CLD_ANYWHERE)
/* These messages can be load balanced */

else if (pe == CmiMyPe())
/* Enqueue the message in the scheduler locally */

else if (pe==CLD_BROADCAST)
/* Broadcast to all but self */

else if (pe==CLD_BROADCAST_ALL)
/* Broadcast to all plus self */

else /* Specific processor number was specified */
/* Send to specific processor */

}
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In order to fill in the code above, we need to know more about the message before we can send it off to a scheduler’s
queue, either locally or remotely. For this, we have the info function. The prototype of an info function must be as
follows:

void ifn(void *msg, CldPackFn *pfn, int *len, int *queueing, int *priobits,
unsigned int **prioptr);

Thus, to use the info function, we need to get the actual function via the handler index provided to CldEnqueue.
Typically, CldEnqueue would contain the following declarations:

int len, queueing, priobits;
unsigned int *prioptr;
CldPackFn pfn;
CldInfoFn ifn = (CldInfoFn)CmiHandlerToFunction(infofn);

Subsequently, a call to ifn would look like this:

ifn(msg, &pfn, &len, &queueing, &priobits, &prioptr);

The info function extracts information from the message about its size, queuing strategy and priority, and also a pack
function, which will be used when we need to send the message elsewhere. For now, consider the case where the
message is to be locally enqueued:

...
else if (pe == CmiMyPe())

{
ifn(msg, &pfn, &len, &queueing, &priobits, &prioptr);
CsdEnqueueGeneral(msg, queueing, priobits, prioptr);

}
...

Thus, we see the info function is used to extract info from the message that is necessary to pass on to CsdEnqueue-
General.

In order to send the message to a remote destination and enqueue it in the scheduler, we need to pack it up with a
special pack function so that it has room for extra handler information and a reference to the info function. Therefore,
before we handle the last three cases of CldEnqueue, we have a little extra work to do:

...
else

{
ifn(msg, &pfn, &len, &queueing, &priobits, &prioptr);
if (pfn) {

pfn(&msg);
ifn(msg, &pfn, &len, &queueing, &priobits, &prioptr);

}
CldSwitchHandler(msg, CpvAccess(CldHandlerIndex));
CmiSetInfo(msg,infofn);
...

Calling the info function once gets the pack function we need, if there is one. We then call the pack function which
rearranges the message leaving space for the info function, which we will need to call on the message when it is
received at its destination, and also room for the extra handler that will be used on the receiving side to do the actual
enqueuing. CldSwitchHandler is used to set this extra handler, and the receiving side must restore the original
handler.

In the above code, we call the info function again because some of the values may have changed in the packing process.

Finally, we handle our last few cases:
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...
if (pe==CLD_BROADCAST)

CmiSyncBroadcastAndFree(len, msg);
else if (pe==CLD_BROADCAST_ALL)
CmiSyncBroadcastAllAndFree(len, msg);

else CmiSyncSendAndFree(pe, len, msg);
}

}

The above example also provides CldHandler which is used to receive messages that CldEnqueue forwards to other
processors.

CpvDeclare(int, CldHandlerIndex);

void CldHandler(void *msg)
{

CldInfoFn ifn; CldPackFn pfn;
int len, queueing, priobits; unsigned int *prioptr;

CmiGrabBuffer((void **)&msg);
CldRestoreHandler(msg);
ifn = (CldInfoFn)CmiHandlerToFunction(CmiGetInfo(msg));
ifn(msg, &pfn, &len, &queueing, &priobits, &prioptr);
CsdEnqueueGeneral(msg, queueing, priobits, prioptr);

}

Note that the CldHandler properly restores the message’s original handler using CldRestoreHandler, and calls the
info function to obtain the proper parameters to pass on to the scheduler. We talk about this more below.

Finally, Converse initialization functions call CldModuleInit to initialize the load balancer module.

void CldModuleInit()
{

char *argv[] = { NULL };
CpvInitialize(int, CldHandlerIndex);
CpvAccess(CldHandlerIndex) = CmiRegisterHandler(CldHandler);
CldModuleGeneralInit(argv);

/* call other init processes here */
CldBalance();

}

Provided Load Balancing Facilities

Converse provides a number of structures and functions to aid in load balancing (see cldb.c). Foremost amongst these
is a method for queuing tokens of messages in a processor’s scheduler in a way that they can be removed and relocated
to a different processor at any time. The interface for this module is as follows:

void CldSwitchHandler(char *cmsg, int handler)
void CldRestoreHandler(char *cmsg)
int CldCountTokens()
int CldLoad()
void CldPutToken(char *msg)
void CldGetToken(char **msg)
void CldModuleGeneralInit(char **argv)
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Messages normally have a handler index associated with them, but in addition they have extra space for an additional
handler. This is used by the load balancer when we use an intermediate handler (typically CldHandler) to handle the
message when it is received after relocation. To do this, we use CldSwitchHandler to temporarily swap the intended
handler with the load balancer handler. When the message is received, CldRestoreHandler is used to change back to
the intended handler.

CldPutToken puts a message in the scheduler queue in such a way that it can be retrieved from the queue. Once the
message gets handled, it can no longer be retrieved. CldGetToken retrieves a message that was placed in the scheduler
queue in this way. CldCountTokens tells you how many tokens are currently retrievable. CldLoad gives a slightly
more accurate estimate of message load by counting the total number of messages in the scheduler queue.

CldModuleGeneralInit is used to initialize this load balancer helper module. It is typically called from the load
balancer’s CldModuleInit function.

The helper module also provides the following functions:

void CldMultipleSend(int pe, int numToSend)
int CldRegisterInfoFn(CldInfoFn fn)
int CldRegisterPackFn(CldPackFn fn)

CldMultipleSend is generally useful for any load balancer that sends multiple messages to one processor. It works
with the token queue module described above. It attempts to retrieve up to numToSend messages, and then packs
them together and sends them, via CmiMultipleSend, to pe. If the number and/or size of the messages sent is very
large, CldMultipleSend will transmit them in reasonably sized parcels. In addition, the CldBalanceHandler and its
associated declarations and initializations are required to use it.

You may want to use the three status variables. These can be used to keep track of what your LB is doing (see usage
in cldb.neighbor.c and itc++queens program).

CpvDeclare(int, CldRelocatedMessages);
CpvDeclare(int, CldLoadBalanceMessages);
CpvDeclare(int, CldMessageChunks);

The two register functions register info and pack functions, returning an index for the functions. Info functions are
used by the load balancer to extract the various components from a message. Amongst these components is the pack
function index. If necessary, the pack function can be used to pack a message that is about to be relocated to another
processor. Information on how to write info and pack functions is available in the load balancing section of the
Converse Extensions manual.

Finishing the Test Balancer

The test balancer is a somewhat silly strategy in which every processor attempts to get rid of half of its load by
periodically sending it to someone else, regardless of the load at the destination. Hopefully, you won’t actually use
this for anything important!

The test load balancer is available in charm/src/Common/conv-ldb/cldb.test.c. To try out your own load balancer
you can use this filename and SUPER_INSTALL will compile it and you can link it into your Charm++ programs with
-balance test. (To add your own new balancers permanently and give them another name other than “test” you will
need to change the Makefile used by SUPER_INSTALL. Don’t worry about this for now.) The cldb.test.c provides a
good starting point for new load balancers.

Look at the code for the test balancer below, starting with the CldEnqueue function. This is almost exactly as
described earlier. One exception is the handling of a few extra cases: specifically if we are running the program on
only one processor, we don’t want to do any load balancing. The other obvious difference is in the first case: how do
we handle messages that can be load balanced? Rather than enqueuing the message directly with the scheduler, we
make use of the token queue. This means that messages can later be removed for relocation. CldPutToken adds the
message to the token queue on the local processor.
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#include <stdio.h>
#include "converse.h"
#define PERIOD 100
#define MAXMSGBFRSIZE 100000

const char *CldGetStrategy(void)
{

return "test";
}

CpvDeclare(int, CldHandlerIndex);
CpvDeclare(int, CldBalanceHandlerIndex);
CpvDeclare(int, CldRelocatedMessages);
CpvDeclare(int, CldLoadBalanceMessages);
CpvDeclare(int, CldMessageChunks);

void CldDistributeTokens()
{

int destPe = (CmiMyPe()+1)%CmiNumPes(), numToSend;

numToSend = CldLoad() / 2;
if (numToSend > CldCountTokens())
numToSend = CldCountTokens() / 2;

if (numToSend > 0)
CldMultipleSend(destPe, numToSend);

CcdCallFnAfter((CcdVoidFn)CldDistributeTokens, NULL, PERIOD);
}

void CldBalanceHandler(void *msg)
{

CmiGrabBuffer((void **)&msg);
CldRestoreHandler(msg);
CldPutToken(msg);

}

void CldHandler(void *msg)
{

CldInfoFn ifn; CldPackFn pfn;
int len, queueing, priobits; unsigned int *prioptr;

CmiGrabBuffer((void **)&msg);
CldRestoreHandler(msg);
ifn = (CldInfoFn)CmiHandlerToFunction(CmiGetInfo(msg));
ifn(msg, &pfn, &len, &queueing, &priobits, &prioptr);
CsdEnqueueGeneral(msg, queueing, priobits, prioptr);

}

void CldEnqueue(int pe, void *msg, int infofn)
{

int len, queueing, priobits; unsigned int *prioptr;
CldInfoFn ifn = (CldInfoFn)CmiHandlerToFunction(infofn);
CldPackFn pfn;

if ((pe == CLD_ANYWHERE) && (CmiNumPes() > 1)) {
ifn(msg, &pfn, &len, &queueing, &priobits, &prioptr);
CmiSetInfo(msg,infofn);
CldPutToken(msg);

(continues on next page)

16.7. Load Balancing 431



Charm++ Documentation

(continued from previous page)

}
else if ((pe == CmiMyPe()) || (CmiNumPes() == 1)) {
ifn(msg, &pfn, &len, &queueing, &priobits, &prioptr);
CmiSetInfo(msg,infofn);
CsdEnqueueGeneral(msg, queueing, priobits, prioptr);

}
else {
ifn(msg, &pfn, &len, &queueing, &priobits, &prioptr);
if (pfn) {

pfn(&msg);
ifn(msg, &pfn, &len, &queueing, &priobits, &prioptr);

}
CldSwitchHandler(msg, CpvAccess(CldHandlerIndex));
CmiSetInfo(msg,infofn);
if (pe==CLD_BROADCAST)

CmiSyncBroadcastAndFree(len, msg);
else if (pe==CLD_BROADCAST_ALL)

CmiSyncBroadcastAllAndFree(len, msg);
else CmiSyncSendAndFree(pe, len, msg);

}
}

void CldModuleInit()
{

char *argv[] = { NULL };
CpvInitialize(int, CldHandlerIndex);
CpvAccess(CldHandlerIndex) = CmiRegisterHandler(CldHandler);
CpvInitialize(int, CldBalanceHandlerIndex);
CpvAccess(CldBalanceHandlerIndex) = CmiRegisterHandler(CldBalanceHandler);
CpvInitialize(int, CldRelocatedMessages);
CpvInitialize(int, CldLoadBalanceMessages);
CpvInitialize(int, CldMessageChunks);
CpvAccess(CldRelocatedMessages) = CpvAccess(CldLoadBalanceMessages) =
CpvAccess(CldMessageChunks) = 0;

CldModuleGeneralInit(argv);
if (CmiNumPes() > 1)
CldDistributeTokens();

}

Now look two functions up from CldEnqueue. We have an additional handler besides the CldHandler: the Cld-
BalanceHandler. The purpose of this special handler is to receive messages that can be still be relocated again in
the future. Just like the first case of CldEnqueue uses CldPutToken to keep the message retrievable, CldBalance-
Handler does the same with relocatable messages it receives. CldHandler is only used when we no longer want the
message to have the potential for relocation. It places messages irretrievably in the scheduler queue.

Next we look at our initialization functions to see how the process gets started. The CldModuleInit function gets
called by the common Converse initialization code and starts off the periodic load distribution process by making a
call to CldDistributeTokens. The entirety of the balancing is handled by the periodic invocation of this function. It
computes an approximation of half of the PE’s total load (CsdLength()), and if that amount exceeds the number of
movable messages ( CldCountTokens()), we attempt to move all of the movable messages. To do this, we pass this
number of messages to move and the number of the PE to move them to, to the CldMultipleSend function.

16.8 Futures

This library supports the future abstraction, defined and used by Halstead and other researchers.
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Cfuture CfutureCreate()

Returns the handle of an empty future. The future is said to reside on the processor that created it. The handle is a
global reference to the future, in other words, it may be copied freely across processors. However, while the handle
may be moved across processors freely, some operations can only be performed on the processor where the future
resides.

Cfuture CfutureSet(Cfuture future, void *value, int nbytes)

Makes a copy of the value and stores it in the future. CfutureSet may be performed on processors other than the one
where the future resides. If done remotely, the copy of the value is created on the processor where the future resides.

void *CfutureWait(Cfuture fut)

Waits until the future has been filled, then returns a pointer to the contents of the future. If the future has already been
filled, this happens immediately (without blocking). Caution: CfutureWait can only be done on the processor where
the Cfuture resides. A second caution: blocking operations (such as this one) can only be done in user-created threads.

void CfutureDestroy(Cfuture f)

Frees the space used by the specified Cfuture. This also frees the value stored in the future. Caution: this operation
can only be done on the processor where the Cfuture resides.

void* CfutureCreateValue(int nbytes)

Allocates the specified amount of memory and returns a pointer to it. This buffer can be filled with data and stored
into a future, using CfutureStoreBuffer below. This combination is faster than using CfutureSet directly.

void CfutureStoreValue(Cfuture fut, void *value)

Make a copy of the value and stores it in the future, destroying the original copy of the value. This may be significantly
faster than the more general function, CfutureSet (it may avoid copying). This function can only used to store values
that were previously extracted from other futures, or values that were allocated using CfutureCreateValue.

void CfutureModuleInit()

This function initializes the futures module. It must be called once on each processor, during the handler-registration
process (see the Converse manual regarding CmiRegisterHandler).

16.9 Converse-POSIX threads

We have implemented the POSIX threads API on top of Converse threads. To use the Converse-pthreads, you must
include the header file:

#include <cpthreads.h>

Refer to the POSIX threads documentation for the documentation on the pthreads functions and types. Although
Converse-pthreads threads are POSIX-compliant in most ways, there are some specific things one needs to know to
use our implementation.

16.9.1 Pthreads and Converse

Our pthreads implementation is designed to exist within a Converse environment. For example, to send messages
inside a POSIX program, you would still use the usual Converse messaging primitives.
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16.9.2 Suppressing Name Conflicts

Some people may wish to use Converse pthreads on machines that already have a pthreads implementation in the
standard library. This may cause some name-conflicts as we define the pthreads functions, and the system include
files do too. To avoid such conflicts, we provide an alternative set of names beginning with the word Cpthread. These
names are interchangeable with their pthread equivalents. In addition, you may prevent Converse from defining the
pthread names at all with the preprocessor symbol SUPPRESS_PTHREADS:

#define SUPPRESS_PTHREADS
#include <cpthreads.h>

16.9.3 Interoperating with Other Thread Packages

Converse programs are typically multilingual programs. There may be modules written using POSIX threads, but
other modules may use other thread APIs. The POSIX threads implementation has the following restriction: you
may only call the pthreads functions from inside threads created with pthread_create. Threads created by other thread
packages (for example, the CthThread package) may not use the pthreads functions.

16.9.4 Preemptive Context Switching

Most implementations of POSIX threads perform time-slicing: when a thread has run for a while, it automatically
gives up the CPU to another thread. Our implementation is currently nonpreemptive (no time-slicing). Threads give
up control at two points:

• If they block (eg, at a mutex).

• If they call pthread_yield().

Usually, the first rule is sufficient to make most programs work. However, a few programs (particularly, those that
busy-wait) may need explicit insertion of yields.

16.9.5 Limits on Blocking Operations in main

Converse has a rule about blocking operations — there are certain pieces of code that may not block. This was
an efficiency decision. In particular, the main function, Converse handlers, and the Converse startup function (see
ConverseInit) may not block. You must be aware of this when using the POSIX threads functions with Converse.

There is a contradiction here — the POSIX standard requires that the pthreads functions work from inside main.
However, many of them block, and Converse forbids blocking inside main. This contradiction can be resolved by
renaming your posix-compliant main to something else: for example, mymain. Then, through the normal Converse
startup procedure, create a POSIX thread to run mymain. We provide a convenience function to do this, called
Cpthreads_start_main. The startup code will be much like this:

void mystartup(int argc, char **argv)
{

CpthreadModuleInit();
Cpthreads_start_main(mymain, argc, argv);

}

int main(int argc, char **argv)
{

ConverseInit(mystartup, argc, argv, 0, 0);
}
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This creates the first POSIX thread on each processor, which runs the function mymain. The mymain function is
executing in a POSIX thread, and it may use any pthread function it wishes.

16.9.6 CpthreadModuleInit

On each processor, the function CpthreadModuleInit must be called before any other pthread function is called. This
is shown in the example in the previous section.

16.10 Parallel Arrays of Threads

This module is CPath: Converse Parallel Array of Threads. It makes it simple to create arrays of threads, where the
threads are distributed across the processors. It provides simple operations like sending a message to a thread, as well
as group operations like multicasting to a row of threads, or reducing over an array of threads.

16.10.1 Creating Arrays of Threads

This module defines a data type CPath, also known as an “array descriptor”. Arrays are created by the function
CPathMakeArray, and individual threads are created using CPathMakeThread:

void CPathMakeArray(CPath *path, int threadfn, int mapfn, ...)

This function initiates the creation of an array of threads. It fills in the array descriptor *path. Each thread in the
array starts executing the function represented by threadfn. The function mapfn represents a mapping function,
controlling the layout of the array. This parameter must be followed by the dimensions of the array, and then a zero.

void CPathMakeThread(CPath *path, int startfn, int pe)

This function makes a zero-dimensional array of threads, in other words, just one thread.

16.10.2 Mapping Functions for Arrays of Threads

One of the parameters to CPathMakeArray is a “mapping function”, which maps array elements to processors. Map-
ping functions must be registered. The integer index returned by the registration process is the number which is passed
to CPathMakeArray. Mapping functions receive the array descriptor as a parameter, and may use it to determine the
dimensions of the array.

unsigned int MapFn(CPath *path, int *indices)

This is a prototype map function, all mapping functions must have this parameter list. It accepts an array descriptor
and a set of indices. It returns the processor number of the specified element.

int CPathRegisterMapper(void *mapfn)

Accepts a pointer to a mapping function, and returns an integer index for the function. This number can be used as a
parameter to CPathMakeArray.

int CPathArrayDimensions(CPath *path)

Returns the number of dimensions in the specified array.

int CPathArrayDimension(CPath *path, int n)

Returns the nth dimension of the specified array.
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16.10.3 Thread Functions for Arrays of Threads

Thread functions (the functions that the threads execute) must have the following prototype, and must be registered
using the following registration function. The integer index returned by the registration process is the number which
is passed to CPathMakeArray.

void ThreadFn(CPath *self, int *indices)

This is a prototype thread function. All thread-functions must have these parameters. When an array of threads is
created, each thread starts executing the specified thread function. The function receives a pointer to a copy of the
array’s descriptor, and the array element’s indices.

int CPathRegisterThreadFn(void *mapfn)

Accepts a pointer to a thread function, and returns an integer index for the function. This number can be used as a
parameter to CPathMakeArray.

16.10.4 Sending Messages to Threads

Threads may send messages to each other using CPathSend, which takes a complicated set of parameters. The param-
eters are most easily described by a context-free grammar:

void CPathSend(dest-clause, tag-clause, data-clause, end-clause)

Where:

dest-clause :== CPATH_DEST ',' pathptr ',' index ',' index ',' ...
tag-clause :== CPATH_TAG ',' tag
tag-clause :== CPATH_TAGS ',' tag ',' tag ',' ... ',' 0
tag-clause :== CPATH_TAGVEC ',' numtags ',' tagvector
data-clause :== CPATH_BYTES ',' numbytes ',' bufptr
end-clause :== CPATH_END

The symbols CPATH_DEST, CPATH_TAG, CPATH_TAGS, CPATH_TAGVEC, CPATH_BYTES, CPATH_END, and
the comma are terminal symbols. The symbols descriptor, index, tag, numtags, tagvector, numbytes, and bufptr all
represent C expressions.

The dest-clause specifies which array and which indices the message is to go to. One must provide a pointer to an
array descriptor and a set of indices. Any index may be either a normal index, or the wildcard CPATH_ALL. Using
the wildcard causes a multicast. The tag-clause provides several notations, all of which specify an array of one or
more integer tags to be sent with the message. These tags can be used at the receiving end for pattern matching. The
data-clause specifies the data to go in the message, as a sequence of bytes. The end-clause represents the end of the
parameter list.

Messages sent with CPathSend can be received using CPathRecv, analyzed using CPathMsgDecodeBytes, and finally
discarded with CPathMsgFree:

void *CPathRecv(tag-clause, end-clause)

The tag-clause and end-clause match the grammar for CPathSend. The function will wait until a message with the same
tags shows up (it waits using the thread-blocking primitives, see Converse threads). If any position in the CPathRecv
tag-vector is CPATH_WILD, then that one position is ignored. CPathRecv returns an “opaque CPath message”. The
message contains the data somewhere inside it. The data can be located using CPathMsgDecodeBytes, below. The
opaque CPath message can be freed using CPathMsgFree below.

void CPathMsgDecodeBytes(void *msg, int *len, void *bytes)

Given an opaque CPath message (as sent by CPathSend and returned by CPathRecv), this function will locate the data
inside it. The parameter *len is filled in with the data length, and *bytes is filled in with a pointer to the data bytes.
Bear in mind that once you free the opaque CPath message, this pointer is no longer valid.
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void CPathMsgFree(void *msg)

Frees an opaque CPath message.

16.10.5 Performing Reductions over Array Elements

An set of threads may participate in a reduction. All the threads wishing to participate must call CPathReduce. The
parameters to CPathReduce are most easily described by a context-free grammar:

void CPathReduce(over-clause, tag-clause, red-clause, data-clause,
dest-clause, end-clause)

Where:

over-clause :== CPATH_OVER ',' pathptr ',' index ',' index ',' ...
dest-clause :== CPATH_DEST ',' pathptr ',' index ',' index ',' ...
tag-clause :== CPATH_TAG ',' tag
tag-clause :== CPATH_TAGS ',' tag ',' tag ',' ... ',' 0
tag-clause :== CPATH_TAGVEC ',' numtags ',' tagvector
data-clause :== CPATH_BYTES ',' vecsize ',' eltsize ',' data
red-clause :== CPATH_REDUCER ',' redfn
end-clause :== CPATH_END

The over-clause specifies the set of threads participating in the reduction. One or more of the indices should be
CPATH_ALL, the wildcard value. All array elements matching the pattern are participating in the reduction. All
participants must supply the same over-clause. The tags-clause specifies a vector of integer tags. All participants must
supply the same tags. The reducer represents the function used to combine data pairwise. All participants must supply
the same reducer. The data-clause specifies the input-data, which is an array of arbitrary-sized values. All participants
must agree on the vecsize and eltsize. The dest-clause specifies the recipient of the reduced data (which may contain
CPATH_ALL again). The data is sent to the recipient. The results can be received with CPathRecv using the same
tags specified in the CPathReduce. The results may be analyzed with CPathMsgDecodeReduction, and freed with
CPathMsgFree.

void CPathMsgDecodeReduction(void *msg, int *vecsize, int *eltsize, void

*bytes)

This function accepts an opaque CPath message which was created by a reduction. It locates the data within the
message, and determines the vecsize and eltsize.

The function that combines elements pairwise must match this prototype, and be registered with the following regis-
tration function. It is the number returned by the registration function which must be passed to CPathReduce:

void ReduceFn(int vecsize, void *data1, void *data2)

The reduce function accepts two equally-sized arrays of input data. It combines the two arrays pairwise, storing the
results in array 1.

int CPathRegisterReducer(void *fn)

Accepts a pointer to a reduction function, and returns an integer index for the function. This number can be used as a
parameter to CPathReduce.
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Projections
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17.1 Generating Performance Traces

Projections is a performance analysis/visualization framework that helps you understand and investigate performance-
related problems in (Charm++) applications. It is a framework with an event tracing component which allows for
control over the amount of information generated. The tracing has low perturbation on the application. It also has a
Java-based visualization and analysis component with various views that help present the performance information in
a visually useful manner.

Performance analysis with Projections typically involves two simple steps:

1. Prepare your application by linking with the appropriate trace generation modules and execute it to generate
trace data.
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2. Using the Java-based tool to visually study various aspects of the performance and locate the performance issues
for that application execution.

The Charm++ runtime automatically records pertinent performance data for performance-related events during exe-
cution. These events include the start and end of entry method executions, message sends from entry methods and
scheduler idle time. This means most users do not need to manually insert code into their applications in order to
generate trace data. In scenarios where special performance information not captured by the runtime is required, an
API (see section 17.1.2) is available for user-specific events with some support for visualization by the Java-based
tool. If greater control over tracing activities (e.g. dynamically turning instrumentation on and off) is desired, the API
also allows users to insert code into their applications for such purposes.

The automatic recording of events by the Projections framework introduces the overhead of an if-statement for each
runtime event, even if no performance analysis traces are desired. Developers of Charm++ applications who consider
such an overhead to be unacceptable (e.g. for a production application which requires the absolute best performance)
may recompile the Charm++ runtime with the --with-production flag, which removes the instrumentation stubs.
To enable the instrumentation stubs while retaining the other optimizations enabled by --with-production, one
may compile Charm++ with both --with-production and --enable-tracing, which explicitly enables
Projections tracing.

To enable performance tracing of your application, users simply need to link the appropriate trace data generation
module(s) (also referred to as tracemode(s)). (see section 17.1.1)

17.1.1 Enabling Performance Tracing at Link/Run Time

Projections tracing modules dictate the type of performance data, detail, and format each processor will record. They
are also referred to as “tracemodes.” There are currently 2 tracemodes available. Zero or more tracemodes may be
specified at link-time. When no tracemodes are specified, no trace data is generated.

Tracemode projections

Link time option: -tracemode projections

This tracemode generates files that contain information about all Charm++ events like entry method calls and message
packing during the execution of the program. The data will be used by Projections in visualization and analysis.

This tracemode creates a single symbol table file and 𝑝 ASCII log files for 𝑝 processors. The names of the log files
will be NAME.#.log{.gz} where NAME is the name of your executable and # is the processor #. The name of the
symbol table file is NAME.sts where NAME is the name of your executable.

This is the main source of data needed by the performance visualizer. Certain tools like timeline will not work without
the detail data from this tracemode.

The following is a list of runtime options available under this tracemode:

• +logsize NUM: keep only NUM log entries in the memory of each processor. The logs are emptied and
flushed to disk when filled. (defaults to 1,000,000)

• +binary-trace: generate projections log in binary form.

• +gz-trace: generate gzip (if available) compressed log files.

• +gz-no-trace: generate regular (not compressed) log files.

• +checknested: a debug option. Checks if events are improperly nested while recorded and issue a warning
immediately.

• +trace-subdirs NUM: divide the generated log files among NUM subdirectories of the trace root, each
named NAME.projdir.K
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Tracemode summary

Compile option: -tracemode summary

In this tracemode, execution time across all entry points for each processor is partitioned into a fixed number of equally
sized time-interval bins. These bins are globally resized whenever they are all filled in order to accommodate longer
execution times while keeping the amount of space used constant.

Additional data like the total number of calls made to each entry point is summarized within each processor.

This tracemode will generate a single symbol table file and 𝑝 ASCII summary files for 𝑝 processors. The names of the
summary files will be NAME.#.sum where NAME is the name of your executable and # is the processor #. The name
of the symbol table file is NAME.sum.sts where NAME is the name of your executable.

This tracemode can be used to control the amount of output generated in a run. It is typically used in scenarios
where a quick look at the overall utilization graph of the application is desired to identify smaller regions of time for
more detailed study. Attempting to generate the same graph using the detailed logs of the prior tracemode may be
unnecessarily time consuming or resource intensive.

The following is a list of runtime options available under this tracemode:

• +bincount NUM: use NUM time-interval bins. The bins are resized and compacted when filled.

• +binsize TIME: sets the initial time quantum each bin represents.

• +version: set summary version to generate.

• +sumDetail: Generates a additional set of files, one per processor, that stores the time spent by each entry
method associated with each time-bin. The names of “summary detail” files will be NAME.#.sumd where
NAME is the name of your executable and # is the processor #.

• +sumonly: Generates a single file that stores a single utilization value per time-bin, averaged across all pro-
cessors. This file bears the name NAME.sum where NAME is the name of your executable. This runtime option
currently overrides the +sumDetail option.

General Runtime Options

The following is a list of runtime options available with the same semantics for all tracemodes:

• +traceroot DIR: place all generated files in DIR.

• +traceoff: trace generation is turned off when the application is started. The user is expected to insert code
to turn tracing on at some point in the run.

• +traceWarn: By default, warning messages from the framework are not displayed. This option enables
warning messages to be printed to screen. However, on large numbers of processors, they can overwhelm the
terminal I/O system of the machine and result in unacceptable perturbation of the application.

• +traceprocessors RANGE: Only output logfiles for PEs present in the range (i.e. 0-31,
32-999966:1000,999967-999999 to record every PE on the first 32, only every thousanth for the middle
range, and the last 32 for a million processor run).

End-of-run Analysis for Data Reduction

As applications are scaled to thousands or hundreds of thousands of processors, the amount of data generated becomes
extremely large and potentially unmanageable by the visualization tool. At the time of documentation, Projections
is capable of handling data from 8000+ processors but with somewhat severe tool responsiveness issues. We have
developed an approach to mitigate this data size problem with options to trim-off “uninteresting” processors’ data by
not writing such data at the end of an application’s execution.
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This is currently done through heuristics to pick out interesting extremal (i.e. poorly behaved) processors and at the
same time using a 𝑘-means clustering to pick out exemplar processors from equivalence classes to form a representative
subset of processor data. The analyst is advised to also link in the summary module via +tracemode summary
and enable the +sumDetail option in order to retain some profile data for processors whose data were dropped.

• +extrema: enables extremal processor identification analysis at the end of the application’s execution.

• +numClusters: determines the number of clusters (equivalence classes) to be used by the 𝑘-means clustering
algorithm for determining exemplar processors. Analysts should take advantage of their knowledge of natural
application decomposition to guess at a good value for this.

This feature is still being developed and refined as part of our research. It would be appreciated if users of this feature
could contact the developers if you have input or suggestions.

17.1.2 Controlling Tracing from Within the Program

Selective Tracing

Charm++ allows users to start/stop tracing the execution at certain points in time on the local processor. Users are
advised to make these calls on all processors and at well-defined points in the application.

Users may choose to have instrumentation turned off at first (by command line option +traceoff - see section
17.1.1) if some period of time in middle of the applications’ execution is of interest to the user.

Alternatively, users may start the application with instrumentation turned on (default) and turn off tracing for specific
sections of the application.

Again, users are advised to be consistent as the +traceoff runtime option applies to all processors in the application.

• void traceBegin()

Enables the runtime to trace events (including all user events) on the local processor where traceBegin is
called.

• void traceEnd()

Disables the runtime from tracing events (including all user events) on the local processor where traceEnd is
called.

Explicit Flushing

By default, when linking with -tracemode projections, log files are flushed to disk whenever the number of
entries on a processor reaches the logsize limit (see Section 17.1.1). However, this can occur at any time during the
execution of the program, potentially causing performance perturbations. To address this, users can explicitly flush
to disk using the traceFlushLog() function. Note that automatic flushing will still occur if the logsize limit is
reached, but sufficiently frequent explicit flushes should prevent that from happening.

• void traceFlushLog()

Explicitly flushes the collected logs to disk.

User Events

Projections has the ability to visualize traceable user specified events. User events are usually displayed in the Timeline
view as vertical bars above the entry methods. Alternatively the user event can be displayed as a vertical bar that
vertically spans the timelines for all processors. Follow these following basic steps for creating user events in a
Charm++ program:
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1. Register an event with an identifying string and either specify or acquire a globally unique event identifier. All
user events that are not registered will be displayed in white.

2. Use the event identifier to specify trace points in your code of interest to you.

The functions available are as follows:

• int traceRegisterUserEvent(char* EventDesc, int EventNum=-1)

This function registers a user event by associating EventNum to EventDesc. If EventNum is not specified,
a globally unique event identifier is obtained from the runtime and returned. The string EventDesc must
either be a constant string, or it can be a dynamically allocated string that is NOT freed by the program. If
the EventDesc contains the substring “***” then the Projections Timeline tool will draw the event vertically
spanning all PE timelines.

EventNum has to be the same on all processors. Therefore use one of the following methods to ensure the
same value for any PEs generating the user events:

1. Call traceRegisterUserEvent on PE 0 in main::main without specifying an event number and
store the returned event number into a readonly variable.

2. Call traceRegisterUserEvent and specify the event number on processor 0. Doing this on other
processors has no effect. Afterwards, the event number can be used in the following user event calls.

Eg. traceRegisterUserEvent("Time Step Begin", 10);

Eg. eventID = traceRegisterUserEvent("Time Step Begin");

There are two main types of user events, bracketed and non bracketed. Non-bracketed user events mark a specific point
in time. Bracketed user events span an arbitrary contiguous time range. Additionally, the user can supply a short user
supplied text string that is recorded with the event in the log file. These strings should not contain newline characters,
but they may contain simple html formatting tags such as <br>, <b>, <i>, <font color=#ff00ff>, etc.

The calls for recording user events are the following:

• void traceUserEvent(int EventNum)

This function creates a user event that marks a specific point in time.

Eg. traceUserEvent(10);

• void traceBeginUserBracketEvent(int EventNum)

void traceEndUserBracketEvent(int EventNum)

These functions record a user event spanning a time interval. The tracing framework automatically as-
sociates the call with the time it was made, so timestamps are not explicitly passed in as they are with
traceUserBracketEvent.

• void traceUserBracketEvent(int EventNum, double StartTime, double EndTime)

This function records a user event spanning a time interval from StartTime to EndTime. Both StartTime
and EndTime should be obtained from a call to CmiWallTimer() at the appropriate point in the program.

Eg.

traceRegisterUserEvent("Critical Code", 20); // on PE 0
double critStart = CmiWallTimer(); // start time
// do the critical code
traceUserBracketEvent(20, critStart, CmiWallTimer());

• void traceUserSuppliedData(int data)

This function records a user specified data value at the current time. This data value can be used to color entry
method invocations in Timeline, see 17.2.3.
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• void traceUserSuppliedNote(char * note)

This function records a user specified text string at the current time.

• void traceUserSuppliedBracketedNote(char *note, int EventNum, double
StartTime, double EndTime)

This function records a user event spanning a time interval from StartTime to EndTime. Both StartTime
and EndTime should be obtained from a call to CmiWallTimer() at the appropriate point in the program.

Additionally, a user supplied text string is recorded, and the EventNum is recorded. These events
are therefore displayed with colors determined by the EventNum, just as those generated with
traceUserBracketEvent are.

User Stats

Charm++ allows the user to track the progression of any variable or value throughout the program execution. These
user specified stats can then be plotted in Projections, either over time or by processor. To enable this feature for
Charm++, build Charm++ with the -enable-tracing flag.

Follow these steps to track user stats in a Charm++ program:

1. Register a stat with an identifying string and a globally unique integer identifier.

2. Update the value of the stat at points of interest in the code by calling the update stat functions.

3. Compile program with -tracemode projections flag.

The functions available are as follows:

• int traceRegisterUserStat(const char * StatDesc, int StatNum)

This function is called once near the beginning the of the Charm++ program. StatDesc is the identifying
string and StatNum is the unique integer identifier.

• void updateStat(int StatNum, double StatValue)

This function updates the value of a user stat and can be called many times throughout program execution.
StatNum is the integer identifier corresponding to the desired stat. StatValue is the updated value of the
user stat.

• void updateStatPair(int StatNum, double StatValue, double Time)

This function works similar to updateStat(), but also allows the user to store a user specified time for the
update. In Projections, the user can then choose which time scale to use: real time, user specified time, or
ordered.

Function-level Tracing for Adaptive MPI Applications

Adaptive MPI (AMPI) is an implementation of the MPI interface on top of Charm++. As with standard MPI pro-
grams, the appropriate semantic context for performance analysis is captured through the observation of MPI calls
within C/C++/Fortran functions. Users can selectively begin and end tracing in AMPI programs using the routines
AMPI_Trace_begin and AMPI_Trace_end.

17.2 The Projections Performance Visualization Tool

The Projections Java-based visualization tool (henceforth referred to as simply Projections) can be downloaded from
the Charm++ website at http://charm.cs.illinois.edu/software. The directory which you download will henceforth be
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referred to as PROJECTIONS_LOCATION.

17.2.1 Building Projections

To rebuild Projections (optional) from the source:

1. Make sure your PATH contains the JDK commands “java”, “javac”, and “jar”, as well as the build tools “gradle”
and “make”.

2. Make sure that you are using Java 8 or later. Do this by running “java -version” and “javac -version”.

3. From PROJECTIONS_LOCATION/, type “make”.

4. The following files are placed in ‘bin’:

projections : Starts projections, for UNIX machines

projections.bat : Starts projections, for Windows machines

projections.jar : archive of all the java and image files

17.2.2 Visualization and Analysis using Projections

Starting Up

From any location, type:
$ PROJECTIONS_LOCATION/bin/projections [NAME.sts]

where PROJECTIONS_LOCATION is the path to the main projections directory.

Available options to the visualization component of Projections include:

• -h or --help: displays help information about available options.

• -V or --version: displays current Projections version number.

• -u or --use-version <ver>: overrides the data interpretation behavior of Projections to explicitly use
𝑣𝑒𝑟 instead of the current version. This is useful in scenarios where the latest version of Projections is not
backward-compatible with older log formats.

• -no-idle: tells Projections to ignore idle time information contained in the logs.

• -bgsize <x> <y> <z>: tells Projections to compute additional derived information by assuming a logical
3-D Torus topology with the specified dimensionality and a processor-to-torus placement policy that matches
Charm++’s placement policy on the BG/L class of machines. The presence of this option enables additional
communication visualization options (see later). Note that this option is really meant to be used for logs gener-
ated from virtual-node mode BG/L executions. The additional information derived from any other logs would
probably be misleading.

• -print_usage: tells Projections to also write to standard output the detailed graph numbers when viewing
Usage Profiles (see later). This is useful for generating visuals that are better expressed by tools such as gnuplot
than through screen captures of Projections plots.

Supplying the optional NAME.sts file in the command line will cause Projections to load data from the file at startup.
This shortcut saves time selecting the desired dataset via the GUI’s file dialog.

When Projections is started, it will display a main window as shown in figure 28. If summary (.sum) files are available
in the set of data, a low-resolution utilization graph (Summary Display) will be displayed as shown. If summary files
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28: Projections main window

are not available, or if Projections was started without supplying the optional NAME.sts file, the main window will
show a blank screen.

• File contains 3 options. Open File(s) allows you to explicitly load a data set. This happens if you had not
specified a NAME.sts file in the command line when starting Projections or if you wish to explicitly load a
new dataset. It brings up a dialog box that allows you to select the location of the dataset you wish to study.
Navigate to the directory containing your data and select the .sts file. Click on “Open”. If you have selected a
valid file, Projections will load in some preliminary data from the files and then activate the rest of the options
under the menu item Tools. Close current data currently works the same way as Close all data. They unload
all current Projections data so one can load in a new set of data. They will also deactivate the individual items
provided in the Tools menu option.

• Preferences generally allows you to set foreground or background colors and entry method color schemes. This
is useful for configuring the color schemes of Projections windows to be print-friendly.

• Tools lists the set of available tools for analysis of generated trace data. It will be described in great detail under
section 17.2.2.

The Summary Display loaded on the Main Window displays basic processor utilization data (averaged across all
processors) over time intervals. This is provided by the data generated by the summary tracemode. This view offers no
special features over and above the Standard Graph Display described in section 17.2.4. Please refer the appropriate
section on information for using its available features.

There should not be any serious performance issues involved in the loading of summary data on the main window.

Available Tools

The following tools and views become available to you after a dataset has been loaded (with the exception of Multirun
Analysis) and may be accessed via the menu item Tools:

• The Graphs view is where you can analyze your data by breaking it into any number of intervals and look at
what goes on in each of those intervals.
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• The Timelines view lets you look at what a specific processor is doing at each moment of the program. It is the
most detailed view of a parallel application Projections offers (and correspondingly, the most resource-hungry).

• The Usage Profile view lets you see percentage-wise what entry methods each processor spends its time on
during a specified time range. It is particularly useful for identifying load imbalance and the probable offending
entry method.

• The Communication view is a general tool that presents communication properties contributed by each entry
point across the processors.

• The Log File Viewer provides a human-readable, verbose interpretation of a log file’s entries.

• The Histograms view presents entry point or communication histogram information (ie. the frequency of
occurrence of events given an activity property like time bin size or message size on the x-axis).

• The Overview view gives user an overview of the utilization of all processors during the execution. It is an
extremely useful initial tool to begin your performance analysis efforts with as it provides an overall picture of
application performance while being very light-weight at the same time.

• The Animation view animates the processor usage over a specified range of time and a specified interval size.

• The Time Profile Graph view is a more detailed presentation of the Graphs utilization view in that it presents
the time contribution by each entry point across the desired time interval. While the Graphs view can show the
same data, it is unable to stack the entry points, which proves useful in some cases.

17.2.3 Performance Views

Graphs

The Graphs window (see figure 29) is where you can analyze your data by breaking it into any number of intervals
and look at what goes on in each of those intervals.

When the Graph Window first appears, a dialog box will also appear. It will ask for the following information (Please
refer to Miscellaneous features for information on special features you can use involving the various fields):

• Processor(s): Choose which processor(s) you wish to visualize graph information for.

• Start Time : Choose the starting time of interest. A time-based field.

• End Time : Choose the ending time of interest. A time-based field.

• Interval Size : Determine the size of an interval. The number of intervals will also be determined by this value
(End Time - Start Time divided by Interval Size). A time-based field.

Standard Projections dialog options and buttons are also available (see Miscellaneous features for details).

The following menu items are available:

• File contains 2 options: Print Graph uses Java’s built-in print manager feature to render the tool’s displays
(usually to a printer or a file depending on the platform on which Java is supported). Note that the current
implementation of the renderer does not behave in exactly the same fashion as the screen renderer, so you
should expect the output to look somewhat different. Close simply closes the Graph window.

• Tools contains 2 options: Set Interval Size reloads the dialog box so you could select a new time range over
which to view Graph data. Timeline is currently not implemented. Its intended as a convenient way to load
Timeline data (see section 17.2.3) over the same parameters as the current Graph view.

The amount of time to analyze your data depends on several factors, including the number of processors, number of
entries, and number of intervals you have selected. A progress meter will show the amount of data loaded so far. The
meter will not, however, report rendering progress which is determined mainly by the number of intervals selected. As
a rule of thumb, limit the number of intervals to 1,000 or less.
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29: Graph tool

The Graph Window has 3 components in its display:

1. Display Panel (located : top-left area)

• Displays title, graph, and axes. To the left is a y-axis bar for detailed information involving the number of
messages sent or time executed depending on the Control Panel toggle selected (see below). To the right
is a y-axis bar for average processor-utilization information. The x-axis may be based on time-interval or
per-processor information depending on the appropriate Control Panel toggle.

• Allows you to toggle display between a line graph and a bar graph.

• Allows you to scale the graph along the X-axis. You can either enter a scale value >= 1.0 in the text box,
or you can use the << and >> buttons to increment/decrement the scale by .25. Clicking on Reset sets
the scale back to 1.0. When the scale is greater than 1.0, a scrollbar will appear along the bottom of the
graph to let you scroll back and forth.

2. Legend Panel (located : top-right area)

• Shows what information is currently being displayed on the graph and what color represents that informa-
tion.

• Click on the ‘Select Display Items’ button to bring up a window to add/remove items from the graph and
to change the colors of the items:

– The Select Display Items window shows a list of items that you can display on the graph. There are 3
main sections: System Usage, System Msgs, and User Entries. The System Usage and System Msgs
are the same for all programs. The User Entries section has program-specific items in it.

– Click on the checkbox next to an item to have it displayed on the graph.

– Click on the colorbox next to an item to modify its color.

– Click on ‘Select All’ to choose all of the items

– Click on ‘Clear All’ to remove all of the items

– Click on ‘Apply’ to apply you choices/changes to the graph
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– Click on ‘Close’ to exit

3. Control Panel (located : bottom area)

• Allows you to toggle what is displayed on the X-axis. You can either have the x-axis display the data by
interval or by processor.

• Allows you to toggle what is displayed on the Y-axis. You can either have the y-axis display the data by
the number of msgs sent or by the amount of time taken.

• Allows you to change what data is being displayed by iterating through the selections. If you have selected
an x-axis type of ‘interval’, that means you are looking at what goes on in each interval for a specific
processor. Clicking on the <<,<,>,>> buttons will change the processor you are looking at by either
-5, -1, +1, or +5. Conversely, if you have an x-axis of ‘processor’, then the iterate buttons will change the
value of the interval that you are looking at for each processor.

• Allows you to indicate which intervals/processors you want to examine. Instead of just looking at one
processor or one interval, the box and buttons on the right side of this panel let you choose any number or
processors/intervals to look at. This field behaves like a processor field. Please refer to section 17.2.4 for
more information about the special features on using processor fields.

Clicking on ‘Apply’ updates the graph with your choices. Clicking on ‘Select All’ chooses the entire
processor range. When you select more than one processor’s worth of data to display, the graph will
show the desired information summed across all selected processors. The exception to this is processor
utilization data which is always displayed as data averaged across all selected processors.

Timelines

The Timeline window (see figure 30) lets you look at what a specific processor is doing at each moment of the program.

30: Timeline Tool

When opening a Timeline view, a dialog box appears. The box asks for the following information (Please refer to
17.2.4 for information on special features you can use involving the various fields):

• Processor(s): Choose which processor(s) you want to see in the timeline.

• Start Time : Choose what time you want your timeline to start at. A time-based field.

• End Time : Choose what time you want your timeline to end at. A time-based field.

Standard Projections dialog options and buttons are also available (see 17.2.4 for details).

The following menu options are available:

• File contains 1 enabled option: Close simply closes the Timeline Window.

• Tools contains 1 option: Modify Ranges opens the initial dialog box thereby allowing you to select new set of
processors or time duration parameters.
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• Colors contains options for loading, using, and modifying color schemes. Change Colors functions in a manner
similar to the button of the same name described under control panel information below. Save Colors allows you
to save the current color set to a file named “color.map” into the same directory where your data logs are stored.
Note that the directory must have write permissions for you before this can work. We are currently working
on a more flexible scheme for storing saved color sets. Restore Colors allows you to load any previously saved
color sets described above. Default Colors resets the current color set to the default set that Projections assigns
without user intervention.

Other color schemes are provided that can be used for some applications. The colors set as described above
are the default coloring scheme. Other options for coloring the events are by event ID (chare array index), user
supplied parameter, or memory usage. In order to color by a user supplied parameter such as timestep, the
C function traceUserSuppliedData(int value); should be called within some entry methods. If
such a method is called in an entry method, the entry method invocation can be colored by the parameter. The
user supplied data can also be viewed in the tooltip that appears when the cursor hovers over an entry method
invocation in the window. To color by memory usage, the C function traceMemoryUsage(); should be
called in all entry methods. The call records the current memory usage. Red indicates high memory usage, and
green indicates low memory usage. The actual memory usage can also be viewed in the tooltips that appear
when the cursor is over an event. The memory usage is only available in when using a Charm++ version that
uses GNU memory.

• Screenshot contains 1 option: Save as JPG or PNG save the visible portion of the visualization to an image
file. You must choose a filename ending with a .png or .jpg extension when choosing the location to save
the image. The appropriate filetype is chosen based on the chosen filename extension. If the view is zoomed in,
only the portion currently shown on screen is saved.

The Timeline Window consists of two parts:

1. Display Panel (located: top area)

This is where the timelines are displayed and is the largest portion of the window. The time axis is displayed at
the top of the panel. The left side of the panel shows the processor labels, each containing a processor number
and two strange numbers. These two numbers represent the percentage of the loaded timeline during which
work occurs. The first of the two numbers is the “non-idle” time, i.e. the portion of the time in the timeline
not spent in idle regions. This contains both time for entry methods as well as other uninstrumented time spent
likely in the Charm++ runtime. The second number is the percentage of the time used by the entry methods for
the selected range.

The timeline itself consists of colored bars for each event. Placing the cursor over any of these bars will display
information about the event including: the name, the begin time, the end time, the total time, the time spent
packing, the number of messages it created, and which processor created the event.

Hovering over an event bar will cause a window to popup. This window contains detailed information about the
messages sent by the clicked upon event.

Clicking on an event bar will cause a line to be drawn to the beginning of the event bar from the point where
the message causing the event originated. This option may not be applicable for threaded events. If the message
originated on a processor not currently included in the visualization, the other processor will be loaded, and then
the message line will be drawn. A warning message will appear if the message origination point is outside the
time duration, and hence no line will be drawn.

User events are displayed as bars above the ordinary event bars in the display area. If the name of the user event
contains a substring “***” then the bar will vertically span the whole screen.

Message pack times and send points can be displayed below the event bars. The message sends are small white
tick marks, while the message pack times are small pink bars usually occurring immediately after the message
send point. If zoomed in to a point where each microsecond takes more than one pixel, the message send point
and the following packing time may appear disconnected. This is an inherent problem with the granularity used
for the logfiles.
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2. Control Panel (located: bottom area)

The controls in this panel are obvious, but we mention one here anyway.

View User Event - Checking this box will bring up a new window showing the string description, begin time, end
time and duration of all user events on each processor. You can access information on user events on different
processors by accessing the numbered tabs near the top of the display.

31: User Event Window

Various features appear when the user moves the mouse cursor over the top axis. A vertical line will appear to highlight
a specific time. The exact time will be displayed at the bottom of the window. Additionally a user can select a range
by clicking while a time is highlighted and dragging to the left or right of that point. As a selection is being made, a
vertical white line will mark the beginning and end of the range. Between these lines, the background color for the
display will change to gray to better distinguish the selection from the surrounding areas. After a selection is made,
its duration is displayed at the bottom. A user can zoom into the selection by clicking the “Zoom Selected” button.
To release a selection, single-click anywhere along the axis. Clicking “Load Selected” when a selection is active will
cause the timeline range to be reloaded. To zoom out, the “<<” or “Reset” button can be used.

To then zoom into the selected area via this interface, click on either the “Zoom Selected” or the “Load Selected”
buttons. The difference between these two buttons is that the “Load Selected” zooms into the selected area and
discards any events that are outside the time range. This is more efficient than “Zoom Selected” as the latter draws all
the events on a virtual canvas and then zooms into the canvas. The disadvantage of using “Load Selected” is that it
becomes impossible to zoom back out without having to re-specify the time range via the “Select Ranges” button.

Performance-wise, this is the most memory-intensive part of the visualization tool. The load and zoom times are
proportional to the number of events displayed. The user should be aware of how event-intensive the application is
over the desired time-period before proceeding to use this view. If Projections takes too long to load a timeline, cancel
the load and choose a smaller time range or fewer processors. We expect to add features to alleviate this problem in
future releases.

Usage Profile

The Usage Profile window (see figure 32) lets you see percentage-wise what each processor spends its time on during
a specified period.

When the window first comes up, a dialog box appears asking for the processor(s) you want to look at as well as the
time range you want to look at. This dialog functions in exactly the same way as for the Timeline tool (see section
17.2.3).

The following menu options are available in this view:

• File has 2 options: Select Processors reloads the dialog box for the view and allows you to select a new processor
and time range for this view. Print Profile currently does nothing. This will be addressed in a later release of
Projections.

The following components are supported in this view:
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32: Usage Profile

• Main Display (located: top area) The left axis of the display shows a scale from 0% to 100%. The main
part of the display shows the statistics. Each processor is represented by a vertical bar with the leftmost bar
representing the statistics averaged across all processors. The bottom of the bar always shows the time spent
in each entry method (distinguished by the entry method’s assigned color) . Above that is always reported
the message pack time (in black), message unpack time (in orange) and idle time (in white). Above this, if
the information exists, are colored bars representing communication CPU overheads contributed by each entry
method (again, distinguished by the same set of colors representing entry methods). Finally the black area on
top represents time overheads that the Charm++ runtime cannot account for.

If you mouse-over a portion of the bar (with the exception of the black area on top), a pop-up window will
appear telling you the name of the item, what percent of the usage it has, and the processor it is on.

• Control Panel (located: bottom area) Allows for adjustments of the scales in both the X and Y directions. The
X direction is useful if you are looking at a large number of processors. The Y direction is useful if there are
small-percentage items for a processor. The “Reset” button allows you to reset the X and Y scales.

The “Pie Chart” button generates a pie chart representation (see figure 33) of the same information using aver-
aged statistics but without idle time and communication CPU overheads.

33: Pie Chart representation of average usage
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The “Change Colors” button lists all entry methods displayed on the main display and their assigned colors. It
allows you to change those assigned colors to aid in highlighting entry methods.

The resource consumption of this view is moderate. Load times and visualization times should be relatively
fast, but dismissing the tool may result in a very slight delay while Projections reclaims memory through Java’s
garbage collection system.

Communication

The communication tool (see figure 34) visualizes communication properties on each processor over a user-specified
time range.

The dialog box of the tool allows you to specify the time period within which to load communication characteristics
information. This dialog box is exactly the same as that of the Timeline tool (see section 17.2.3).

The main component employs the standard capabilities provided by Projections’ standard graph (see 17.2.4).

The control panel allows you to switch between the following communication characteristics:

• Number of messages sent by entry methods (initial default view)

• Number of bytes sent by entry methods

• Number of messages received by entry methods

• Number of bytes received by entry methods

• Number of messages sent externally (physically) by entry methods

• Number of bytes sent externally (physically) by entry methods

• Number of hops messages traveled before being received by an entry methods. This is available when the
runtime option -bgsize (See section 17.2.2) is supplied.

34: Communication View

This view uses memory proportional to the number of processors selected.
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Communication vs Time

The communication over time tool (see figure 35) visualizes communication properties over all processors and dis-
played over a user-specified time range on the x-axis.

The dialog box of the tool allows you to specify the time period within which to load communication characteristics
information. This dialog box is exactly the same as that of the Communication tool (see section 17.2.3).

The main component employs the standard capabilities provided by Projections’ standard graph (see 17.2.4).

The control panel allows you to switch between the following communication characteristics:

• Number of messages sent by entry methods (initial default view)

• Number of bytes sent by entry methods

• Number of messages received by entry methods

• Number of bytes received by entry methods

• Number of messages sent externally (physically) by entry methods

• Number of bytes sent externally (physically) by entry methods

• Number of hops messages travelled before being received by an entry methods (available only on trace logs
generated on the Bluegene machine).

35: Communication View over Time

This view has no known problems loading any range or volume of data.

View Log Files

This window (see figure 36) lets you see a translation of a log file from a bunch of numbers to a verbose version. A
dialog box asks which processor you want to look at. After choosing and pressing OK, the translated version appears.
Note that this is not a standard processor field. This tool will only load exactly one processor’s data.

Each line has:
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36: Log File View

• a line number (starting at 0)

• the time the event occurred at

• a description of what happened.

This tool has the following menu options:

• File has 2 options: Open File reloads the dialog box and allows the user to select a new processor’s data to be
loaded. Close closes the current window.

• Help has 2 options: Index currently does not do anything. This will be addressed in a later release of Projections.
About currently does not do anything. This will also be addressed in a later release of Projections.

The tool has 2 buttons. “Open File” reloads the dialog box (described above) and allows the user to select a new
processor’s data to be loaded. “Close Window” closes the current window.

Histograms

This module (see figure 37) allows you to examine the performance property distribution of all your entry points (EP).
It gives a histogram of different number of EPs that have the following properties falling in different property bins:

The dialog box for this view asks the following information from the user. (Please refer to 17.2.4 for information on
special features you can use involving the various fields):

• Processor(s): Choose which processor(s) you wish to visualize histogram information for.

• Start Time: Choose the starting time of interest. A time-based field.

• End Time: Choose the ending time of interest. A time-based field.

• Number of Bins: Select the number of property bins to fit frequency data under. A simple numeric field.

• Size of Bin: Determine (in units - microseconds or bytes) how large each bin should be. A simple numeric field.

• Starting Bin Size: Determine (in units - microseconds or bytes) how far to offset the data. This is useful for
ignoring data that is too small to be considered significant, but could overwhelm other data because of the sheer
numbers of occurrences. A simple numeric field.

The dialog box reports the selection of bins as specified by the user by displaying the minimum bin size (in units -
microseconds or bytes) to the maximum bin size. “units” refer to microseconds for time-based histograms or bytes for
histograms representing message sizes.

Standard graph features can be employed for the main display of this view (see section 17.2.4).
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The following menu items are available in this tool:

• File offers 3 options: Select Entry Points currently does nothing. It is intended to behave similarly to the button
“Select Entries” described below. This will be fixed in a later release of Projections. Set Range reloads the
dialog box and allows the user to load data based on new parameters. Close closes the current tool window.

• View provides 1 option: Show Longest EPs currently does nothing. It is intended to behave similarly to the
button “Out-of-Range EPs” and will be fixed in a later release of Projections.

The following options are available in the control panel in the form of toggle buttons:

• Entry method execution time (How long did that entry method ran for?)

• Entry method creation message size (How large was the message that caused the entry method’s execution?)

37: Histogram view

The use of the tool is somewhat counterintuitive. The dialog box is created immediately and when the tool window is
created, it is defaulted to a time-based histogram. You may change this histogram to a message-size-based histogram
by selecting the “Message Size” radio button which would then update the graph using the same parameters provided
in the dialog box. This issue will be fixed in upcoming editions of Projections.

The following features are, as of this writing, not implemented. They will be ready in a later release of Projections.

The “Select Entries” button is intended to bring up a color selection and filtering window that allows you to filter away
entry methods from the count. This offers more control over the analysis (e.g. when you already know EP 5 takes
20-30ms and you want to know if there are other entry points also takes 20-30ms).

The “Out-of-Range EPs” button is intended to bring up a table detailing all the entry methods that fall into the overflow
(last) bin. This list will, by default, be listed in descending order of time taken by the entry methods.

The performance of this view is affected by the number of bins the user wishes to analyze. We recommend the user
limits the analysis to 1,000 bins or less.

Overview

Overview (see figure 38) gives users an overview of the utilization of all processors during the execution over a user-
specified time range.
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The dialog box of the tool allows you to specify the time period within which to load overview information. This
dialog box is exactly the same as that of the Timeline tool (see section 17.2.3).

This tool provides support for the following menu options:

• File provides 1 option: Close closes the current tool.

• Modify provides 1 option: Set Range reloads the dialog box and allows the user to specify new parameters for
rendering new overview information.

38: Different Overview presentation forms (1) - Overview.

39: Different Overview presentation forms (2) - Overview with dominant Entry Method colors.

The view currently hard codes the number of intervals to 7,000 independent of the time-range desired.

Each processor has a row of colored bars in the display, different colors indicating different utilization at that time
(white representing 100 utilization and black representing idle time). The usage of a processor at the specific time is
displayed in the status bar below the graph. Vertical and horizontal zoom is enabled by two zooming bars to the right
and lower of the graph. Panning is possible by clicking on any part of the display and dragging the mouse.

The “by EP colors” radio button provides more detail by replacing the utilization colors with the colors of the most
significant entry method execution time in that time-interval on that processor represented by the cells (as illustrated
in figure 39).
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The Overview tool uses memory proportional to the number of processors selected. If an out-of-memory error is
encountered, try again by skipping processors (e.g. 0-8191:2 instead of 0-8191). This should show the general
application structure almost as well as using the full processor range.

Animations

This window (see figure 40) animates the processor usage over a specified range of time and a specified interval size.

The dialog box to load animation information is exactly the same as that of the Graph tool (see section 17.2.3).

40: Animation View

A color temperature bar serves as a legend for displaying different processor utilization as the animation progresses.
Each time interval will have its data rendered as a frame. A frame displays in text on the top of the display the currently
represented execution time of the application and what the size of an interval is.

Each selected processor is laid out in a 2-D plot as close to a square as possible. The view employs a color temperature
ranging from blue (cool - low utilization) to bright red (hot - high utilization) to represent utilization.

You may manually update the frames by using the “<<” or “>>” buttons to visualize the preceding or next frames
respectively. The “Auto” button toggles automatic animation given the desired refresh rate.

The “Frame Refresh Delay” field allows you to select the real time delay between frames. It is a time-based field (see
section 17.2.4 for special features in using time-based fields).

The “Set Ranges” button allows you to set new parameters for this view via the dialog box.

This view has no known performance issues.

Time Profile Graph

The Time Profile view (see figure 41) is a visualization of the amount of time contributed by each entry method
summed across all processors and displayed by user-adjustable time intervals.

Time Profile’s dialog box is exactly the same as that of the Graph tool (see section 17.2.3).

Standard graph features can be employed for the main display of this view (see section 17.2.4).

Under the tool options, one may:
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41: Time Profile Graph View

• Filter the set of entry methods to be displayed on the graph via the “Select Entry Points” button. One may also
modify the color set used for the entry methods via this option.

• Use the “Select New Range” button to reload the dialog box for the tool and set new parameters for visualization
(eg. different time range, different set of processors or different interval sizes).

• Store the current set of entry method colors to disk (to the same directory where the trace logs are stored). This
is done via the “Save Entry Colors” button.

• Load the stored set of entry method colors (if it exists) from disk (from the same directory where the trace logs
are stored). This is done via the “Load Entry Colors” button.

This tool’s performance is tied to the number of intervals desired by the user. We recommend that the user stick to
visualizing 1,000 intervals or less.

User Events Profile

The User Events view is essentially a usage profile (See section 17.2.3) of bracketed user events (if any) that were
recorded over a specified time range. The x-axis holds bars of data associated with each processor while the y-axis
represents the time spent by each user event. Each user event is assigned a color.

It is important to note that user-events can be arbitrarily nested. The view currently displays information based on raw
data without regard to the way the events are nested. Memory usage is proportional to the number of processors to be
displayed.

Performance Counters

This view is enabled when Charm++ is compiled with the papi option, which enables the collection
of performance counter data using PAPI. Currently, this collects the highest level cache misses and ac-
cesses available on the system (PAPI_L1_TCM and PAPI_L1_TCA, PAPI_L2_TCM and PAPI_L2_TCA,
or PAPI_L3_TCM and PAPI_L3_TCA) on all platforms except Cray, where it collects PAPI_FP_OPS,
PAPI_TOT_INS, perf::PERF_COUNT_HW_CACHE_LL:MISS, DATA_PREFETCHER:ALL, PAPI_L1_DCA
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42: User Events Profile View

and PAPI_TOT_CYC. This tool shows the values of the collected performance counters on different PEs, broken
down by entry point. An example is show in Figure 43.

43: Performance Counters View

Outlier Analysis

For performance logs generated from large numbers of processors, it is often difficult to view in detail the behavior of
poorly behaved processors. This view attempts to present information similar to usage profile but only for processors
whose behavior is “extreme”.

“Extreme” processors are identified through the application of heuristics specific to the attribute that analysts wish to
study applied to a specific activity type. You can specify the number of “extreme” processors are to be picked out by
Projections by filling the appropriate number in the field “Outlier Threshold”. The default is to pick 10% of the total
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44: Outlier Analysis Selection Dialog

number of processors up to a cap of 20. As an example, an analyst may wish to find “extreme” processors with respect
to the idle time of normal Charm++ trace events.

Figure 44 shows the choices available to this tool. Specific to this view are two pull-down menus: Attribute and
Activity.

There are two Activity options:

1. The Projections activity type refer to the entry methods executed by the Charm++ runtime system.

2. The User Events activity type refer to records of events as captured through traceUserEvent-type calls
described in section 17.1.2.

There are four Attribute options:

1. Execution time by Activity tells the tool to apply heuristics based on the execution time of each instance of an
activity occurring within the specified time range.

2. Idle time tells the tool to apply a simple sort over all processors on the least total idle time recorded. This will
work only for the Projections activity type.

3. Msgs sent by Activity tells the tool to apply heuristics based on the number of messages sent over each instance
of an activity occurring within the specified time range. This option is currently not implemented but is expected
to work over all activity types.

4. Bytes sent by Activity tells the tool to apply heuristics based on the size (in bytes) of messages sent over each
instance of an activity occurring within the specified time range. This option is currently not implemented but
is expected to work over all activity types.

At the same time, a 𝑘-means clustering algorithm is applied to the data to help identify processors with exemplar
behavior that is representative of each cluster (or equivalence class) identified by the algorithm. You can control the
value of 𝑘 by filling in the appropriate number in the field “Number of Clusters”. The default value is 5.

The result of applying the required heuristics to the appropriate attribute and activity types results in a chart similar to
figure 45. This is essentially a usage profile that shows, over the user’s selected time range, from left to right:
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45: Outlier Analysis View

• A bar representing the global average of execution time of each activity over all processors.

• A bar representing the average activity profile of all non-outlier (or non-extreme) processors.

• A bar representing the average activity profile of all outlier (or extreme) processors identified by the heuristics.

• Bars representing the activity profile of a representative processor from each cluster of processors identified by
the application of the 𝑘-means clustering algorithm.

• Bars representing the activity profile of each identified outlier processor, sorted in order of significance (right-
most processor bar is the most significant).

The tool helps the user reduce the number of processor bars that must be visually examined in order to identify
candidates for more detailed study. To further the cause of this goal, if the analyst has the timeline view (see section
17.2.3) open, a mouse-click on any of the processor activity profile bars (except for group-averaged bars) will load
that processor’s detailed timeline (over the time range specified in the timeline view) into the timeline view itself.

Online Live Analysis

Projections provides a continuous performance monitoring tool - CCS streaming. Different from other tools discussed
above, which are used to visualize post-mortem data, CCS streaming visualizes the running programs. In order to
use it, the Charm++ program needs to be linked with -tracemode utilization. The command line needs to
include ++server ++server-port <port>. <port> is the socket port number on the server side.

Multirun Analysis

Noise Miner

The NoiseMiner view (see figure 46 and 47) displays statistics about abnormally long entry methods. Its purpose is
to detect symptoms consistent with Operating System Interference or Computational Noise or Software Interference.
The abnormally long events are filtered and clustered across multiple dimensions to produce a concise summary. The
view displays both the duration of the events as well as the rate at which they occur. The initial dialog box allows a
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46: NoiseMiner View showing a 5.7 ms noise component that occurred 1425 times during a run. In this case, MPI
calls to a faulty MPI implementation took an extra 5.7 ms to return.

47: NoiseMiner noise component view showing miniature timelines for one of the noise components.
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selection of processors and a time range. The user should select a time range that ignores any startup phase where
events have chaotic durations. The tool makes only a single pass through the log files using a small bounded amount
of memory, so the user should select as large time range as possible.

The tool uses stream mining techniques to produce its results by making only one pass through the input data while
using a limited amount of memory. This allows NoiseMiner to be very fast and scalable.

The initial result window shows a list of zero or more noise components. Each noise component is a cluster of events
whose durations are abnormally long. The noise duration for each event is computed by comparing the actual duration
of the event with an expected duration of the event. Each noise component contains events of different types across
one or more processors, but all the events within the noise component have similar noise durations.

Clicking on the “view” button for a noise component opens a window similar to figure 47. This second window
displays up to 36 miniature timelines, each for a different event associated with the noise component.

NoiseMiner works by storing histograms of each entry method’s duration. The histogram bins contain a window of
recent occurrences as well as an average duration and count. After data stream has been parsed into the histogram bins,
the histogram bins are clustered to determine the expected entry method duration. The histograms are then normalized
by the expected duration so that they represent the abnormally stretched amounts for the entry methods. Then the
histogram bins are clustered by duration and across processors. Any clusters that do not contribute much to the overall
runtime are dropped.

17.2.4 Miscellaneous features

Standard Graph Display Interface

A standard graph display (an example of which can be found with the Main Summary Graph - figure 28) has the
following features:

• Graph types can be selected between “Line Graph” which connects each data point with a colored line rep-
resenting the appropriate data entry. This information may be “stacked” or “unstacked” (controlled by the
checkbox to the right). A “stacked” graph places one data point set (Y values) on top of another. An “un-
stacked” graph simply uses the data point’s Y value to directly determine the point’s position; “Bar Graph” (the
default) which draws a colored bar for each data entry and the value of the data point determines its height or
starting position (depending on whether the bar graph is “stacked” or “unstacked”). A “Bar Graph” displayed
in “unstacked” mode draws its bars in a tallest to shortest order so that the large Y values do not cover over the
small Y values; “Area Graph” is similar to a “Line Graph” except that the area under the lines for a particular Y
data point set is also colored by the data’s appropriate color. “Area Graph”s are always stacked.

• x-scale allows the user to scale the X-Axis. This can be done by directly entering a scaling factor in the text
field (simple numeric field - see below) or by using the “<<” or “>>” buttons to increase or decrease the scale
by 0.25 each time. The “Reset” button changes the scale factor back to 1.0. A scrollbar automatically appears if
the scale factor causes the canvas to be larger than the window.

• y-scale allows the user to scale the Y-Axis. This functions similarly to the x-scale feature where the buttons and
fields are concerned.

Standard Dialog Features

Figure 48 shows a sample dialog box with standard features. The following are standard features that can be employed
in such a dialog box:

• Moving from field to field via the tab key causes the dialog box update the last field input by the user. It also
performs a consistency check. Whenever it finds an inconsistency, it will move mouse focus onto the offending
field, disabling the “OK” button so as to force the user to fix the inconsistency. Examples of inconsistency
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48: An example Dialog with standard fields

includes: input that violates a field’s format; input whose value violates constraints (eg. start time larger than
end time); or out-of-range stand-alone values.

• Available buttons include “OK” which confirms the user’s choice of parameters. This button is only activated
if the dialog box considers the parameters’ input to be consistent. “Update” causes the dialog box to update
the last field input by the user and perform a consistency check. This is similar in behavior to the user tabbing
between fields. “Cancel” closes the dialog box without modifying any parameters if the tool has already been
loaded or aborts the tool’s load attempt otherwise.

• Parameter History allows the user to quickly access information for all tools for a set of frequently needed
time periods. An example of such a use is the desire by the analyst to view a particular phase or timestep of
a computation without having to memorize or write on a piece of paper when exactly the phase or timestep
occurred.

It consists of a pull-down text box and 2 buttons. “Add to History List” adds the current time range to the
pull-down list to the left of the button. The dialog box maintains up to 5 entries, replacing older entries with
newer ones. “Remove Selected History” removes the currently selected entry in the history list. “Save History
to Disk” stores current history information to the file “ranges.hst” in the same directory where your logs are
stored. Note that you will need write access to that directory to successfully store history information. A more
flexible scheme is currently being developed and will be released in a later version of Projections. Clicking on
the pull-down list allows the user to select one out of up to 5 possible time ranges. You can do so by moving the
mouse up or down the list. Clicking on any one item changes the start and end times on the dialog box.

Data Fields

Throughout Projections tools and dialog boxes (see sample figure 48), data entry fields are provided. Unless otherwise
specified, these can be of the following standard field with some format requirements:

• Simple numeric fields: An example can be found in figure 48 for “# of Time Bins:”. This field expects a single
number.

• Time-Based Field: An example can be found in figure 48 for “Start Time:”. This field expects a single simple
or floating point number followed by a time-scale modifier. The following modifiers are supported: none -
this is the default and means the input number represents time in microseconds. A whole number is expected;
The characters “us” - the input number represents time in microseconds. A whole number is expected; The
characters “ms” - the input number represents time in milliseconds. This can be a whole number or floating
point number; or The character “s” - the input number represents time in seconds. This can be a whole number
or floating point number.

• Processor-Based Field: An example can be found in figure 48 for “Processors:”. This field expects a single
whole number, a list of whole numbers, a range, or a mixed list of whole numbers and ranges. Here are some
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examples which makes the format clearer:

eg: Want to see processors 1, 3, 5, 7: Enter 1,3,5,7

eg: Want to see processors 1, 2, 3, 4: Enter 1-4

eg: Want to see processors 1, 2, 3, 7: Enter 1-3,7

eg: Want to see processors 1, 3, 4, 5, 7, 8: Enter 1,3-5,7-8

Ranges also allow skip-factors. Here are some examples:

eg: Want to see processors 3, 6, 9, 12, 15: Enter 3-15:3

eg: Want to see processors 1, 3, 6, 9, 11, 14: Enter 1,3-9:3,11,14

This feature is extremely flexible. It will normalize your input to a canonical form, tolerating duplication of
entries as well as out-of-order entries (ie. 4,6,3 is the same as 3-4,6).

17.2.5 Known Issues

This section lists known issues and bugs with the Projections framework that we have not resolved at this time.

• Charm++ scheduler idle time is known to be incorrectly recorded on the BG/L machine at IBM TJ Watson.

• End-of-Run analysis techniques (while tracing applications) are currently known to hang for applications that
make multiple calls to traceBegin() and traceEnd() on the same processor through multiple Charm++ objects.

466 Chapter 17. Projections



CHAPTER 18

Charm++ Debugger

Contents

• Charm++ Debugger

– Introduction

– Building the Charm++ Debug Tool

– Preparing the Charm++ Application for Debugging
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– Running the Debugger

* CharmDebug command line parameters

* Basic usage

* Charm Debugging Related Options

* CharmDebug limitations

* Using the Debugger

– Debugger Implementation Details

* Converse Client-Server Interface

18.1 Introduction

The primary goal of the Charm++ parallel debugger is to provide an integrated debugging environment that allows the
programmer to examine the changing state of parallel programs during the course of their execution.

The Charm++ debugging system has a number of useful features for Charm++ programmers. The system includes
a Java GUI client program which runs on the programmer’s desktop, and a Charm++ parallel program which acts as
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a server. The client and server need not be on the same machine, and communicate over the network using a secure
protocol described in Converse Client-Server Interface.

The system provides the following features:

• Provides a means to easily access and view the major programmer-visible entities, including array elements and
messages in queues, across the parallel machine during program execution. Objects and messages are extracted
as raw data, and interpreted by the debugger.

• Provides an interface to set and remove breakpoints on remote entry points, which capture the major
programmer-visible control flows in a Charm++ program.

• Provides the ability to freeze and unfreeze the execution of selected processors of the parallel program, which
allows a consistent snapshot by preventing things from changing as they are examined.

• Provides a way to attach a sequential debugger to a specific subset of processes of the parallel program during
execution, which keeps a manageable number of sequential debugger windows open. Currently these windows
are opened independently of the GUI interface, while in the future they will be transformed into an integrated
view.

The debugging client provides these features via extensive support built into the Charm++ runtime.

18.2 Building the Charm++ Debug Tool

To get the CharmDebug tool, check out the source code from the following repository. This will create a directory
named ccs_tools. Change to this directory and build the project.

$ git clone https://charm.cs.illinois.edu/gerrit/ccs_tools
$ cd ccs_tools
$ ant

This will create the executable bin/charmdebug.

You can also download the binaries from the Charm++ downloads website and use it directly without building. (NOTE:
Binaries may work properly on some platforms, so building from the source code is recommended.)

18.3 Preparing the Charm++ Application for Debugging

Build Charm++ using --enable-charmdebug option. For example:

$ ./build charm++ netlrts-darwin-x86_64 --enable-charmdebug

No instrumentation is required to use the Charm++ debugger. Being CCS based, you can use it to set and step through
entry point breakpoints and examine Charm++ structures in any Charm++ application.

Nevertheless, for some features to be present, some additional options may be required at either compile or link time:

• In order to provide a symbolic representation of the machine code executed by the application, the -g option is
needed at compile time. This setting is needed to provide function names as well as source file names and line
numbers wherever useful. This is also important to fully utilize gdb (or any other serial debugger) on one or
more processes.

• Optimization options, by nature of transforming the source code, can produce a mismatch between the function
displayed in the debugger (for example in a stack trace) and the functions present in the source code. To produce
information coherent with source code, optimization is discouraged. Newer versions of some compilers support
the -Og optimization level, which performs all optimizations that do not inhibit debugging.
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• The link time option -memory charmdebug is only needed if you want to use the Memory view (see 18.4.5)
or the Inspector framework (see 18.4.5) in CharmDebug.

18.3.1 Record Replay

The Record Replay feature is independent of the charmdebug application. It is a mechanism used to detect bugs that
happen rarely depending on the order in which messages are processed. The program in consideration is first executed
in record mode which produces a trace. When the program is run in replay mode it uses previously recorded trace
to ensure that messages are processed in the same order as the recorded run. The idea is to make use of a message
sequence number to satisfy a theorem says that the serial numbers will be the same if the messages are processed in
the same order. .. cite{rashmithesis}

Record Replay tracing is automatically enabled for Charm++ programs and requires nothing special to be done during
compilation. (Linking with the option -tracemode recordreplay used to be necessary). At run time, the
+record option is used, which records messages in order in a file for each processor. The same execution order can
be replayed using the +replay runtime option, which can be used at the same time as the other debugging tools in
Charm++.

Note! If your Charm++ is built with CMK_OPTIMIZE on, all tracing will be disabled. So, use an unoptimized
Charm++ to do your debugging.

18.4 Running the Debugger

18.4.1 CharmDebug command line parameters

-pes Number of PEs

+p Number of PEs

-host hostname of CCS server for application

-user the username to use to connect to the hostname selected

-port portnumber of CCS server for application

-sshtunnel force the communication between client and server (in particular the one for CCS) to be tunnelled
through ssh. This allow the bypass of firewalls.

-display X Display

18.4.2 Basic usage

To run an application locally via the debugger on 4 PEs with command line options for your program (shown here as
opt1 opt2):

$ charmdebug pgm +p4 4 opt1 opt2

If the application should be run in a remote cluster behind a firewall, the previous command line will become:

$ charmdebug -host cluster.inst.edu -user myname -sshtunnel pgm +p4 4 opt1 opt2

CharmDebug can also be executed without any parameters. The user can then choose the application to launch and its
command line parameters from within the File menu as shown in Figure 49.

Note: charmdebug command line launching only works on netlrts-* and verbs-* builds of Charm++.
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49: Using the menu to set parameters for the Charm++ program

To replay a previously recorded session:

$ charmdebug pgm +p4 opt1 opt2 +replay

18.4.3 Charm Debugging Related Options

When using the Charm debugger to launch your application, it will automatically set these to defaults appropriate for
most situations.

+cpd Triggers application freeze at startup for debugger.

++charmdebug Triggers charmrun to provide some information about the executable, as well as provide an inter-
face to gdb for querying.

+debugger Which debuggers to use.

++debug Run each node under gdb in an xterm window, prompting the user to begin execution.

++debug-no-pause Run each node under gdb in an xterm window immediately (i.e. without prompting the user
to begin execution).

Note: If you’re using the charm debugger it will probably be best to control the sequential (i.e. gdb) debuggers
from within its GUI interface.

++DebugDisplay X Display for xterm

++server-port Port to listen for CCS requests

++server Enable client-server (CCS) mode

+record Use the recordreplay tracemode to record the exact event/message sequence for later use.

+replay Force the use of recorded log of events/messages to exactly reproduce a previous run.

The preceding pair of commands +record +replay are used to produce the “instant replay” feature. This
feature is valuable for catching errors which only occur sporadically. Such bugs which arise from the nondeter-
minacy of parallel execution can be fiendishly difficult to replicate in a debugging environment. Typical usage is
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to keep running the application with +record until the bug occurs. Then run the application under the debugger
with the +replay option.

18.4.4 CharmDebug limitations

Clusters

CharmDebug is currently limited to applications started directly by the debugger due to implementation peculiarities.
It will be extended to support connection to remote running applications in the near future.

Due to the current implementation, the debugging tool is limited to netlrts-* and verbs-* versions. Other builds of
Charm++ might have unexpected behavior. In the near future this will be extended at least to the mpi-* versions.

Record Replay

The Record Replay feature does not work well with spontaneous events. Load balancing is the most common form of
spontaneous event in that it occurs periodically with no other causal event.

50: Parallel debugger when a break point is reached

As per Rashmi’s thesis:

“There are some unique issues for replay in the context of Charm because it provides high-level support
for dynamic load balancing, quiescence detection and information sharing. Many of the load balancing
strategies in Charm have a spontaneous component. The strategy periodically checks the sizes of the
queues on the local processor. A replay load balancing strategy implements the known load redistribution.
The behavior of the old balancing strategy is therefore not replayed only its effect is. Since minimal
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tracing is used by the replay mechanism the amount of perturbation due to tracing is reduced. The replay
mechanism is proposed as a debugging support to replay asynchronous message arrival orders.”

Moreover, if your application crashes without a clean shutdown, the log may be lost with the application.

18.4.5 Using the Debugger

Once the debugger’s GUI loads, the programmer triggers the program execution by clicking the Start button. When
starting by command line, the application is automatically started. The program begins by displaying the user and
system entry points as a list of check boxes, pausing at the onset. The user could choose to set breakpoints by clicking
on the corresponding entry points and kick off execution by clicking the Continue Button. Figure 50 shows a snapshot
of the debugger when a breakpoint is reached. The program freezes when a breakpoint is reached.

Clicking the Freeze button during the execution of the program freezes execution, while Continue button resumes
execution. The Quit button can be used to abort execution at any point of time. Entities (for instance, array elements)
and their contents on any processor can be viewed at any point in time during execution as illustrated in Figure 51.

51: Freezing program execution and viewing the contents of an array element using the Parallel Debugger

Specific individual processes of the Charm++ program can be attached to instances of gdb as shown in Figure 52. The
programmer chooses which PEs to connect gdb processes to via the checkboxes on the right side. Note! While the
program is suspended in gdb for step debugging, high-level CharmDebug features such as object inspection will not
work.

Charm++ objects can be examined via the View Entities on PE : Display selector. It allows the user to choose from
Charm Objects, Array Elements, Messages in Queue, Readonly Variables, Readonly Messages, Entry Points, Chare
Types, Message Types and Mainchares. The right sideselector sets the PE upon which the request for display will be
made. The user may then click on the Entity to see the details.
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52: Parallel debugger showing instances of gdb open for the selected processor elements
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Memory View

The menu option Action→ Memory allows the user to display the entire memory layout of a specific processor. An
example is shown in Figure 53. This layout is colored and the colors have the following meaning:

red memory allocated by the Charm++ Runtime System;

blue memory allocated directly by the user in its code;

pink memory used by messages;

orange memory allocated to a chare element;

black memory not allocated;

gray a big jump in memory addresses due to the memory pooling system, it represent a large portion of virtual space
not used between two different zones of used virtual space address;

yellow the currently selected memory slot;

Currently it is not possible to change this color association. The bottom part of the view shows the stack trace at the
moment when the highlighted (yellow) memory slot was allocated. By left clicking on a particular slot, this slot is
fixed in highlight mode. This allows a more accurate inspection of its stack trace when this is large and does not fit the
window.

Info→Show Statistics will display a small information box like the one in Figure 54.

A useful tool of this view is the memory leak search. This is located in the menu Action → Search Leaks. The
processor under inspection runs a reachability test on every memory slot allocated to find if there is a pointer to it. If
there is none, the slot is partially colored in green, to indicate its status of leak. The user can the inspect further these
slots. Figure 55 shows some leaks being detected.

If the memory window is kept open while the application is unfrozen and makes progress, the loaded image will
become obsolete. To cope with this, the “Update” button will refresh the view to the current allocation status. All the
leaks that had been already found as such, will still be partially colored in green, while the newly allocated slots will
not, even if leaking. To update the leak status, re-run the Search Leaks tool.

Finally, when a specific slot is highlighted, the menu Action→ Inspect opens a new window displaying the content of
the memory in that slot, as interpreted by the debugger (see next subsection for more details on this).

Inspector framework

Without any code rewriting of the application, CharmDebug is capable of loading a raw area of memory and parsing
it with a given type name. The result (as shown in Figure 56, is a browsable tree. The initial type of a memory area
is given by its virtual table pointer (Charm++ objects are virtual and therefore loadable). In the case of memory slots
not containing classes with virtual methods, no display will be possible.

When the view is open and is displaying a type, by right clicking on a leaf containing a pointer to another memory
location, a popup menu will allow the user to ask for its dereference (shown in Figure 56). In this case, CharmDebug
will load this raw data as well and parse it with the given type name of the pointer. This dereference will be inlined
and the leaf will become an internal node of the browse tree.

18.5 Debugger Implementation Details

The following classes in the PUP framework were used in implementing debugging support in charm.

• class PUP::er - This class is the abstract superclass of all the other classes in the framework. The pup
method of a particular class takes a reference to a PUP::er as parameter. This class has methods for dealing
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53: Main memory view
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54: Information box display memory statistics

with all the basic C++ data types. All these methods are expressed in terms of a generic pure virtual method.
Subclasses only need to provide the generic method.

• class PUP::toText - This is a subclass of the PUP::toTextUtil class which is a subclass of the
PUP::er class. It copies the data of an object to a C string, including the terminating NULL.

• class PUP::sizerText - This is a subclass of the PUP::toTextUtil class which is a subclass of
the PUP::er class. It returns the number of characters including the terminating NULL and is used by the
PUP::toText object to allocate space for building the C string.

The code below shows a simple class declaration that includes a pup method.

class foo {
private:
bool isBar;
int x;
char y;
unsigned long z;
float q[3];

public:
void pup(PUP::er &p) {
p(isBar);
p(x);p(y);p(z);
p(q,3);

}
};

18.5.1 Converse Client-Server Interface

The Converse Client-Server (CCS) module enables Converse .. cite{InterOpIPPS96} programs to act as parallel
servers, responding to requests from non-Converse programs. The CCS module is split into two parts – client and
server. The server side is used by Converse programs while the client side is used by arbitrary non-Converse programs.
A CCS client accesses a running Converse program by talking to a server-host which receives the CCS requests
and relays them to the appropriate processor. The server-host is charmrun .. cite{charmman} for netlrts-
versions and is the first processor for all other versions.

In the case of the netlrts- version of Charm++, a Converse program is started as a server by running the Charm++
program using the additional runtime option ++server. This opens the CCS server on any TCP port number. The
TCP port number can be specified using the command-line option server-port. A CCS client connects to a CCS
server, asks a server PE to execute a pre-registered handler and receives the response data. The function CcsConnect
takes a pointer to a CcsServer as an argument and connects to the given CCS server. The functions CcsNumNodes,
CcsNumPes, and CcsNodeSize implemented as part of the client interface in Charm++ return information about
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55: Memory view after running the Search Leaks tool
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56: Raw memory parsed and displayed as a tree
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the parallel machine. The function CcsSendRequest takes a handler ID and the destination processor number
as arguments and asks the server to execute the requested handler on the specified processor. CcsRecvResponse
receives a response to the previous request in-place. A timeout is also specified which gives the number of seconds to
wait until the function returns 0, otherwise the number of bytes received is returned.

Once a request arrives on a CCS server socket, the CCS server runtime looks up the appropriate registered handler and
calls it. If no handler is found the runtime prints a diagnostic and ignores the message. If the CCS module is disabled
in the core, all CCS routines become macros returning 0. The function CcsRegisterHandler is used to register
handlers in the CCS server. A handler ID string and a function pointer are passed as parameters. A table of strings
corresponding to appropriate function pointers is created. Various built-in functions are provided which can be called
from within a CCS handler. The debugger behaves as a CCS client invoking appropriate handlers which make use of
some of these functions. Some of the built-in functions are as follows.

• CcsSendReply - This function sends the data provided as an argument back to the client as a reply. This
function can only be called from a CCS handler invoked remotely.

• CcsDelayReply - This call is made to allow a CCS reply to be delayed until after the handler has completed.

The CCS runtime system provides several built-in CCS handlers, which are available to any Converse program. All
Charm++ programs are essentially Converse programs. ccs_getinfo takes an empty message and responds with
information about the parallel job. Similarly the handler ccs_killport allows a client to be notified when a parallel
run exits.
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ARMCI Interface under Charm++

Contents

• ARMCI Interface under Charm++

– Introduction

* Building ARMCI Support under The Charm++ Runtime System

* Writing a Simple ARMCI Program

* Building an ARMCI Binary and Execution

– ARMCI Data Structures

– Application Programmer’s Interface

* Startup, Cleanup and Status Functions

* ARMCI Memory Allocation

* Put and Get Communication

* Explicit Synchronization

* Extensions to the Standard API

– List of Unimplemented Functions

– Error Codes

– Related Manuals and Documents

19.1 Introduction

This manual describes the basic features and API of the Aggregate Remote Memory Copy Interface (ARMCI) library
implemented under Charm++. It is meant for developers using ARMCI who desire the performance features of the
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Charm++ run-time system (e.g. dynamic load balancing, fault tolerance and scalability) applied transparently to their
libraries written using the ARMCI API.

ARMCI is a library that supports remote memory copy functionality. It focuses on non-contiguous data transfers
and is meant to be used by other libraries as opposed to application development. Libraries that the original ARMCI
developers have targeted include Global Arrays, P++/Overture and the Adlib PCRC run-time system.

ARMCI remote copy operations are one-sided and complete, regardless of the actions taken by the remote process. For
performance reasons, polling can be helpful but should not be necessary to ensure progress. The operations are ordered
when referencing the same remote process. Operations issued to different processes can complete in an arbitrary order.
Both blocking and non-blocking APIs are supported.

ARMCI supports three classes of operations: data transfer using put, get and accumulate operations; synchroniza-
tion with local and global fence operations and atomic read-modify-write; and utility functions for memory manage-
ment and error handling. Accumulate and atomic read-modify-write operations are currently not implemented for the
charmpp port.

A get operation transfers data from the remote process memory (source) to the calling processing local memory
(destination). A put operation transfers data from the local memory of the calling process (source) to the memory of
the remote process (destination).

This manual will include several useful Charm++-specific extensions to the ARMCI API. It will also list the functions
that have not yet been implemented but exists in the original ARMCI implementation. Readers of this manual are ad-
vised to refer to the original ARMCI documentation (See Section 19.6) for more complete information and motivation
for the development of this library.

19.1.1 Building ARMCI Support under The Charm++ Runtime System

Build charm target ARMCI (instead of charm or AMPI):

$ cd charm
$ ./build ARMCI netlrts-linux -O3

19.1.2 Writing a Simple ARMCI Program

The following simple example has two processes place their own string into the global array and then acquire the
appropriate string from the other’s global address space in order to print “hello world”.

The main function has to be compliant to ANSI C:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include <armci.h>

#define MAX_PROCESSORS 2

int main(int argc, char * argv[]) {
void *baseAddress[MAX_PROCESSORS];
char *myBuffer;
int thisImage;

// initialize
ARMCI_Init();
ARMCI_Myid(&thisImage);

(continues on next page)
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(continued from previous page)

// allocate data (collective operation)
ARMCI_Malloc(baseAddress, strlen("hello")+1);

if (thisImage == 0) {
sprintf((char *)baseAddress[0], "%s", "hello");

} else if (thisImage == 1) {
sprintf((char *)baseAddress[1], "%s", "world");

}

// allocate space for local buffer
myBuffer = (char *)AMRCI_Malloc_local(strlen("hello")+1);

ARMCI_Barrier();

if (thisImage == 0) {
ARMCI_Get(baseAddress[1], myBuffer, strlen("hello")+1, 1);
printf("[%d] %s %s\n",thisImage, baseAddress[0], myBuffer);

} else if (thisImage == 1) {
ARMCI_Get(baseAddress[0], myBuffer, strlen("hello")+1, 0);
printf("[%d] %s %s\n",thisImage, myBuffer, baseAddress[1]);

}

// finalize
ARMCI_Finalize();
return 0;

}

19.1.3 Building an ARMCI Binary and Execution

Compiling the code with:

$ charm/bin/charmc -c hello.c /$(OPTS)

Linking the program with:

$ charm/bin/charmc hello.o -o hello -swapglobals -memory isomalloc -language armci
→˓$(OPTS)

Run the program:

$ ./charmrun ./hello +p2 +vp8

19.2 ARMCI Data Structures

ARMCI provides two formats to describe non-contiguous layouts of data in memory.

The generalized I/O vector is the most general format intended for multiple sets of equally sized data segments to be
moved between arbitrary local and remote memory locations. It uses two arrays of pointers: one for source and one
for destination addresses. The length of each array is equal to the number of segments.
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typedef struct {
void *src_ptr_ar;
void *dst_ptr_ar;
int bytes;
int ptr_ar_len;

} armci_giov_t;

Currently, there is no support for generalized I/O vector operations in the charmpp implementation.

The strided format is an optimization of the generalized I/O vector format. It is intended to minimize storage required
to describe sections of dense multi-dimensional arrays. Instead of including addresses for all the segments, it specifies
only an address of the first segment in the set for source and destination. The addresses of the other segments can be
computed using the stride information.

19.3 Application Programmer’s Interface

The following is a list of functions supported on the Charm++ port of ARMCI. The integer value returned by most
ARMCI operations represents the error code. The zero value is successful, other values represent failure (See Section
19.5 for details).

19.3.1 Startup, Cleanup and Status Functions

int ARMCI_Init(void);

Initializes the ARMCI library. This function must be called before any ARMCI functions may be used.

int ARMCI_Finalize(void);

Shuts down the ARMCI library. No ARMCI functions may be called after this call is made. It must be used before
terminating the program normally.

void ARMCI_Cleanup(void);

Releases system resources that the ARMCI library might be holding. This is intended to be used before terminating
the program in case of error.

void ARMCI_Error(char *msg, int code);

Combines the functionality of ARMCI_Cleanup and Charm++’s CkAbort call. Prints to stdout and stderr msg fol-
lowed by an integer code.

int ARMCI_Procs(int *procs);

The number of processes is stored in the address procs.

int ARMCI_Myid(int *myid);

The id of the process making this call is stored in the address myid.
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19.3.2 ARMCI Memory Allocation

int ARMCI_Malloc(void* ptr_arr[], int bytes);

Collective operation to allocate memory that can be used in the context of ARMCI copy operations. Memory of size
bytes is allocated on each process. The pointer address of each process’ allocated memory is stored at ptr_arr[]
indexed by the process’ id (see ARMCI_Myid). Each process gets a copy of ptr_arr.

int ARMCI_Free(void *ptr);

Collective operation to free memory which was allocated by ARMCI_Malloc.

void *ARMCI_Malloc_local(int bytes);

Local memory of size bytes allocated. Essentially a wrapper for malloc.

int ARMCI_Free_local(void *ptr);

Local memory address pointed to by ptr is freed. Essentially a wrapper for free.

19.3.3 Put and Get Communication

int ARMCI_Put(void *src, void *dst, int bytes, int proc);

Transfer contiguous data of size bytes from the local process memory (source) pointed to by src into the remote
memory of process id proc pointed to by dst (remote memory pointer at destination).

int ARMCI_NbPut(void *src, void* dst, int bytes, int proc,
armci_hdl_t *handle);

The non-blocking version of ARMCI_Put. Passing a NULL value to handle makes this function perform an implicit
handle non-blocking transfer.

int ARMCI_PutS(void *src_ptr, int src_stride_ar[],
void *dst_ptr, int dst_stride_ar[],
int count[], int stride_levels, int proc);

Transfer strided data from the local process memory (source) into remote memory of process id proc. src_ptr
points to the first memory segment in local process memory. dst_ptr is a remote memory address that points to
the first memory segment in the memory of process proc. stride_levels represents the number of additional
dimensions of striding beyond 1. src_stride_ar is an array of size stride_levels whose values indicate the
number of bytes to skip on the local process memory layout. dst_stride_ar is an array of size stride_levels
whose values indicate the number of bytes to skip on process proc’s memory layout. count is an array of size
stride_levels + 1 whose values indicate the number of bytes to copy.

As an example, assume two 2-dimensional C arrays residing on different processes.

double A[10][20]; /* local process */
double B[20][30]; /* remote process */

To put a block of data of 3x6 doubles starting at location (1,2) in A into location (3,4) in B, the arguments to
ARMCI_PutS will be as follows (assuming C/C++ memory layout):
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src_ptr = &A[0][0] + (1 * 20 + 2); /* location (1,2) */
src_stride_ar[0] = 20 * sizeof(double);
dst_ptr = &B[0][0] + (3 * 30 + 4); /* location (3,4) */
dst_stride_ar[0] = 30 * sizeof(double);
count[0] = 6 * sizeof(double); /* contiguous data */
count[1] = 3; /* number of rows of contiguous data */
stride_levels = 1;
proc = /*<B's id> */;

int ARMCI_NbPutS(void *src_ptr, int src_stride_ar[],
void *dst_ptr, int dst_stride_ar[],
int count[], int stride_levels, int proc
armci_hdl_t *handle);

The non-blocking version of ARMCI_PutS. Passing a NULL value to handlemakes this function perform an implicit
handle non-blocking transfer.

int ARMCI_Get(void *src, void *dst, int bytes, int proc);

Transfer contiguous data of size bytes from the remote process memory at process proc (source) pointed to by src
into the local memory of the calling process pointed to by dst.

int ARMCI_NbGet(void *src, void *dst, int bytes, int proc,
armci_hdl_t *handle);

The non-blocking version of ARMCI_Get. Passing a NULL value to handle makes this function perform an implicit
handle non-blocking transfer.

int ARMCI_GetS(void *src_ptr, int src_stride_ar[],
void* dst_ptr, int dst_stride_ar[],
int count[], int stride_levels, int proc);

Transfer strided data segments from remote process memory on process proc to the local memory of the calling
process. The semantics of the parameters to this function are the same as that for ARMCI_PutS.

int ARMCI_NbGetS(void *src_ptr, int src_stride_ar[],
void* dst_ptr, int dst_stride_ar[],
int count[], int stride_levels, int proc,
armci_hdl_t *handle);

The non-blocking version of ARMCI_GetS. Passing a NULL value to handlemakes this function perform an implicit
handle non-blocking transfer.

19.3.4 Explicit Synchronization

int ARMCI_Wait(armci_hdl_t *handle);
int ARMCI_WaitProc(int proc);
int ARMCI_WaitAll();
int ARMCI_Test(armci_hdl_t *handle);
int ARMCI_Barrier();

int ARMCI_Fence(int proc);

Blocks the calling process until all put or accumulate operations the process issued to the remote process proc are
completed at the destination.
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int ARMCI_AllFence(void);

Blocks the calling process until all outstanding put or accumulate operations it issued are completed on all remote
destinations.

19.3.5 Extensions to the Standard API

void ARMCI_Migrate(void);
void ARMCI_Async_Migrate(void);
void ARMCI_Checkpoint(char* dirname);
void ARMCI_MemCheckpoint(void);

int armci_notify(int proc);
int armci_notify_wait(int proc, int *pval);

19.4 List of Unimplemented Functions

The following functions are supported on the standard ARMCI implementation but not yet supported in the Charm++
port.

int ARMCI_GetV(...);
int ARMCI_NbGetV(...);
int ARMCI_PutV(...);
int ARMCI_NbPutV(...);
int ARMCI_AccV(...);
int ARMCI_NbAccV(...);

int ARMCI_Acc(...);
int ARMCI_NbAcc(...);
int ARMCI_AccS(...);
int ARMCI_NbAccS(...);

int ARMCI_PutValueLong(long src, void* dst, int proc);
int ARMCI_PutValueInt(int src, void* dst, int proc);
int ARMCI_PutValueFloat(float src, void* dst, int proc);
int ARMCI_PutValueDouble(double src, void* dst, int proc);
int ARMCI_NbPutValueLong(long src, void* dst, int proc, armci_hdl_t* handle);
int ARMCI_NbPutValueInt(int src, void* dst, int proc, armci_hdl_t* handle);
int ARMCI_NbPutValueFloat(float src, void* dst, int proc, armci_hdl_t* handle);
int ARMCI_NbPutValueDouble(double src, void* dst, int proc, armci_hdl_t* handle);
long ARMCI_GetValueLong(void *src, int proc);
int ARMCI_GetValueInt(void *src, int proc);
float ARMCI_GetValueFloat(void *src, int proc);
double ARMCI_GetValueDouble(void *src, int proc);

void ARMCI_SET_AGGREGATE_HANDLE (armci_hdl_t* handle);
void ARMCI_UNSET_AGGREGATE_HANDLE (armci_hdl_t* handle);

int ARMCI_Rmw(int op, int *ploc, int *prem, int extra, int proc);
int ARMCI_Create_mutexes(int num);
int ARMCI_Destroy_mutexes(void);
void ARMCI_Lock(int mutex, int proc);
void ARMCI_Unlock(int mutex, int proc);
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19.5 Error Codes

As of this writing, attempts to locate the documented error codes have failed because the release notes have not been
found. Attempts are being made to derive these from the ARMCI source directly. Currently Charm++ implementation
does not implement any error codes.

19.6 Related Manuals and Documents

ARMCI website: http://www.emsl.pnl.gov/docs/parsoft/armci/index.html
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Charisma
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• Charisma
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* Sequential Code

– Building and Running a Charisma Program

– Support for Library Module

– Writing Module Library

– Using Module Library

– Using Load Balancing Module

* Coding

* Compiling and Running

– Handling Sparse Object Arrays

– Example: Jacobi 1D

20.1 Introduction

This manual describes Charisma, an orchestration language for migratable parallel objects. Charisma can be down-
loaded from https://charm.cs.illinois.edu/gerrit/gitweb?p=Charisma.git
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20.2 Charisma Syntax

A Charisma program is composed of two parts: the orchestration code in a .or file, and sequential user code in C/C++
form.

20.2.1 Orchestration Code

The orchestration code in the .or file can be divided into two parts. The header part contains information about the
program, included external files, defines, and declaration of parallel constructs used in the code. The orchestration
section is made up of statements that form a global control flow of the parallel program. In the orchestration code,
Charisma employs a macro dataflow approach; the statements produce and consume values, from which the control
flows can be organized, and messages and method invocations generated.

Header Section

The very first line should give the name of the Charisma program with the program keyword.

program jacobi

The program keyword can be replaced with module, which means that the output program is going to be a library
module instead of a stand-alone program. Please refer to Section 20.4 for more details.

Next, the programmer can include external code files in the generated code with the keyword include specifying
the filename without extension. For example, the following statement tells the Charisma compiler to look for header
file “particles.h” to be included in the generated header file “jacobi.h” and to look for C/C++ code file “particles.[C |
cc | cpp | cxx | c]” to be included in the generated C++ code file “jacobi.C”.

include particles;

It is useful when there is source code that must precede the generated parallel code, such as basic data structure
declaration.

After the include section is the define section, where environmental variables can be defined for Charisma. For
example, to tell Charisma to generate additional code to enable the load balancing module, the programmer needs to
use define ldb; in the orchestration code. Please refer to Section 20.7 for details.

Declaration Section

Next comes the declaration section, where classes, objects and parameters are declared. A Charisma program is
composed of multiple sets of parallel objects which are organized by the orchestration code. Different sets of objects
can be instantiated from different class types. Therefore, we have to specify the class types and object instantiation.
Also we need to specify the parameters (See Section 20.2.1) to use in the orchestration statements.

A Charisma program or module has one “MainChare” class, and it does not require explicit instantiation since it is a
singleton. The statement to declare MainChare looks like this:

class JacobiMain : MainChare;

For object arrays, we first need to declare the class types inherited from 1D object array, 2D object array, etc, and then
instantiate from the class types. The dimensionality information of the object array is given in a pair of brackets with
each dimension size separated by a comma.

490 Chapter 20. Charisma



Charm++ Documentation

class JacobiWorker : ChareArray1D;
obj workers : JacobiWorker[N];

class Cell : ChareArray3D;
obj cells : Cell[M,M,M];

Note that key word class is for class type derivation, and obj is for parallel object or object array instantiation. The
above code segment declares a new class type JacobiWorker which is a 1D object array, and the programmer is
supposed to supply sequential code for it in files JacobiWorker.h and JacobiWorker.C (see Section 20.2.2 for
more details on sequential code). Object array workers is instantiated from JacobiWorker and has 16 elements.

The last part is orchestration parameter declaration. These parameters are used only in the orchestration code to
connect input and output of orchestration statements, and their data type and size is declared here. More explanation
of these parameters can be found in Section 20.2.1.

param lb : double[N];
param rb : double[N];

With this, lb and rb are declared as parameters that can be “connected” with local variables of double array of size
of 512.

Orchestration Section

In the main body of orchestration code, the programmer describes the behavior and interaction of the elements of the
object arrays using orchestration statements.

∙ Foreach Statement

The most common kind of parallelism is the invocation of a method across all elements in an object array. Charisma
provides a foreach statement for specifying such parallelism. The keywords foreach and end-foreach forms
an enclosure within which the parallel invocation is performed. The following code segment invokes the entry method
compute on all the elements of array myWorkers.

foreach i in workers
workers[i].compute();

end-foreach

∙ Publish Statement and Produced/Consumed Parameters

In the orchestration code, an object method invocation can have input and output (consumed and produced) param-
eters. Here is an orchestration statement that exemplifies the input and output of this object methods workers.
produceBorders and workers.compute.

foreach i in workers
(lb[i], rb[i]) <- workers[i].produceBorders();
workers[i].compute(lb[i+1], rb[i-1]);

(+error) <- workers[i].reduceData();
end-foreach

Here, the entry method workers[i].produceBorders produces (called published in Charisma) values of
lb[i], rb[i], enclosed in a pair of parentheses before the publishing sign <-. In the second statement, func-
tion workers[i].compute consumes values of lb[i+1], rb[i-1], just like normal function parameters. If
a reduction operation is needed, the reduced parameter is marked with a + before it, like the error in the third
statement.
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An entry method can have arbitrary number of published (produced and reduced) values and consumed values. In
addition to basic data types, each of these values can also be an object of arbitrary type. The values published by
A[i] must have the index i, whereas values consumed can have the index e(i), which is an index expression in the
form of i±𝑐 where 𝑐 is a constant. Although we have used different symbols (p and q) for the input and the output
variables, they are allowed to overlap.

The parameters are produced and consumed in the program order. Namely, a parameter produced in an early statement
will be consumed by the next consuming statement, but will no longer be visible to any consuming statement after
a subsequent statement producing the same parameter in program order. Special rules involving loops are discussed
later with loop statement.

∙ Overlap Statement

Complicated parallel programs usually have concurrent flows of control. To explicitly express this, Charisma provides
a overlap keyword, whereby the programmer can fire multiple overlapping control flows. These flows may contain
different number of steps or statements, and their execution should be independent of one another so that their progress
can interleave with arbitrary order and always return correct results.

overlap
{

foreach i in workers1
(lb[i], rb[i]) <- workers1[i].produceBorders();

end-foreach
foreach i in workers1
workers1[i].compute(lb[i+1], rb[i-1]);

end-foreach
}
{

foreach i in workers2
(lb[i], rb[i]) <- workers2[i].compute(lb[i+1], rb[i-1]);

end-foreach
}
end-overlap

This example shows an overlap statement where two blocks in curly brackets are executed in parallel. Their
execution joins back to one at the end mark of end-overlap.

∙ Loop Statement

Loops are supported with for statement and while statement. Here are two examples.

for iter = 0 to MAX_ITER
workers.doWork();

end-for

while (err > epsilon)
(+err) <- workers.doWork();
MainChare.updateError(err);

end-while

The loop condition in for statement is independent from the main program; it simply tells the program to repeat the
block for so many times. The loop condition in while statement is actually updated in the MainChare. In the above
example, err and epsilon are both member variables of class MainChare, and can be updated as the example
shows. The programmer can activate the “autoScalar” feature by including a define autoScalar; statement
in the orchestration code. When autoScalar is enabled, Charisma will find all the scalars in the .or file, and create
a local copy in the MainChare. Then every time the scalar is published by a statement, an update statement will
automatically be inserted after that statement. The only thing that the programmer needs to do is to initialize the local
scalar with a proper value.
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Rules of connecting produced and consumed parameters concerning loops are natural. The first consuming statement
will look for values produced by the last producing statement before the loop, for the first iteration. The last producing
statement within the loop body, for the following iterations. At the last iteration, the last produced values will be
disseminated to the code segment following the loop body. Within the loop body, program order holds.

for iter = 1 to MAX_ITER
foreach i in workers
(lb[i], rb[i]) <- workers[i].compute(lb[i+1], rb[i-1]);

end-foreach
end-for

One special case is when one statement’s produced parameter and consumed parameter overlaps. It must be noted
that there is no dependency within the same foreach statement. In the above code segment, the values consumed
lb[i], rb[i] by worker[i] will not come from its neighbors in this iteration. The rule is that the consumed
values always originate from previous foreach statements or foreach statements from a previous loop iteration,
and the published values are visible only to following foreach statements or foreach statements in following loop
iterations.

∙ Scatter and Gather Operation

A collection of values produced by one object may be split and consumed by multiple object array elements for a
scatter operation. Conversely, a collection of values from different objects can be gathered to be consumed by one
object.

foreach i in A
(points[i,*]) <- A[i].f(...);

end-foreach
foreach k,j in B
(...) <- B[k,j].g(points[k,j]);

end-foreach

A wildcard dimension * in A[i].f()’s output points specifies that it will publish multiple data items. At the
consuming side, each B[k,j] consumes only one point in the data, and therefore a scatter communication will be
generated from A to B. For instance, A[1] will publish data points[1,0..N-1] to be consumed by multiple array
objects B[1,0..N-1].

foreach i,j in A
(points[i,j]) <- A[i,j].f(...);

end-foreach
foreach k in B

(...) <- B[k].g(points[*,k]);
end-foreach

Similar to the scatter example, if a wildcard dimension * is in the consumed parameter and the corresponding published
parameter does not have a wildcard dimension, there is a gather operation generated from the publishing statement to
the consuming statement. In the following code segment, each A[i,j] publishes a data point, then data points from
A[0..N-1,j] are combined together to for the data to be consumed by B[j].

Many communication patterns can be expressed with combination of orchestration statements. For more details, please
refer to PPL technical report 06-18, “Charisma: Orchestrating Migratable Parallel Objects”.

Last but not least, all the orchestration statements in the .or file together form the dependency graph. According to
this dependency graph, the messages are created and the parallel program progresses. Therefore, the user is advised
to put only parallel constructs that are driven by the data dependency into the orchestration code. Other elements such
as local dependency should be coded in the sequential code.
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20.2.2 Sequential Code

Sequential Files

The programmer supplies the sequential code for each class as necessary. The files should be named in the form of
class name with appropriate file extension. The header file is not really an ANSI C header file. Instead, it is the
sequential portion of the class’s declaration. Charisma will generate the class declaration from the orchestration code,
and incorporate the sequential portion in the final header file. For example, if a molecular dynamics simulation has the
following classes (as declared in the orchestration code):

class MDMain : MainChare;
class Cell : ChareArray3D;
class CellPair : ChareArray6D;

The user is supposed to prepare the following sequential files for the classes: MDMain.h, MDMain.C, Cell.h,
Cell.C, CellPair.h and CellPair.C, unless a class does not need sequential declaration and/or definition
code. Please refer to the example in the Appendix.

For each class, a member function void initialize(void) can be defined and the generated constructor will
automatically call it. This saves the trouble of explicitly call initialization code for each array object.

Producing and Consuming Functions

The C/C++ source code is nothing different than ordinary sequential source code, except for the producing/consuming
part. For consumed parameters, a function treats them just like normal parameters passed in. To handle produced
parameters, the sequential code needs to do two special things. First, the function should have an extra parameter for
output parameters. The parameter type is keyword outport, and the parameter name is the same as appeared in the
orchestration code. Second, in the body of the function, the keyword produce is used to connect the orchestration
parameter and the local variables whose value will be sent out, in a format of a function call, as follows.

produce(produced_parameter, local_variable[, size_of_array]);

When the parameter represents a data array, we need the additional size_of_array to specify the size of the data
array.

The dimensionality of an orchestration parameter is divided into two parts: its dimension in the orchestration code,
which is implied by the dimensionality of the object arrays the parameter is associated, and the local dimensionality,
which is declared in the declaration section. The orchestration dimension is not explicitly declared anywhere, but it is
derived from the object arrays. For instance, in the 1D Jacobi worker example, lb and rb has the same orchestration
dimensionality of workers, namely 1D of size 16. The local dimensionality is used when the parameter is associated
with local variables in sequential code. Since lb and rb are declared to have the local type and dimension of double
[512], the producing statement should connect it with a local variable of double [512].

void JacobiWorker::produceBorders(outport lb, outport rb) {
...
produce(lb, localLB, 512);
produce(rb, localRB, 512);

}

Special cases of the produced/consumed parameters involve scatter/gather operations. In scatter operation, since an
additional dimension is implied in the produced parameter, we the local_variable should have additional di-
mension equal to the dimension over which the scatter is performed. Similarly, the input parameter in gather operation
will have an additional dimension the same size of the dimension of the gather operation.

For reduction, one additional parameter of type char[] is added to specify the reduction operation. Built-in reduction
operations are + (sum), * (product), < (minimum), > (maximum) for basic data types. For instance the following
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statements takes the sum of all local value of result and for output in sum.

reduce(sum, result, "+");

If the data type is a user-defined class, then you might use the function or operator defined to do the reduction. For
example, assume we have a class called Force, and we have an add function (or a + operator) defined.

Force& Force::add(const Force& f);

In the reduction to sum all the local forces, we can use

reduce(sumForces, localForce, "add");

Miscellaneous Issues

In sequential code, the user can access the object’s index by a keyword thisIndex. The index of 1-D to 6-D object
arrays are:

1D: thisIndex
2D: thisIndex.{x,y}
3D: thisIndex.{x,y,z}
4D: thisIndex.{w,x,y,z}
5D: thisIndex.{v,w,x,y,z}
6D: thisIndex.{x1,y1,z1,x2,y2,z2}

20.3 Building and Running a Charisma Program

There are two steps to build a Charisma program: generating Charm++ program from orchestration code, and building
the Charm++ program.

1) Charisma compiler, currently named orchc, is used to compile the orchestration code (.or file) and integrate
sequential code to generate a Charm++ program. The resultant Charm++ program usually consists of the following
code files: Charm++ Interface file ([modulename].ci), header file ([modulename].h) and C++ source code
file ([modulename].C). The command for this step is as follows.

$ orchc [modulename].or

2) Charm++ compiler, charmc, is used to parse the Charm++ Interface (.ci) file, compile C/C++ code, and link and
build the executable. The typical commands are:

$ charmc [modulename].ci
$ charmc [modulename].C -c
$ charmc [modulename].o -o pgm -language charm++

Running the Charisma program is the same as running a Charm++ program, using Charm++’s job launcher charmrun
(on some platforms like CSE’s Turing Cluster, use the customized job launcher rjq or rj).

$ charmrun pgm +p4

Please refer to Charm++’s manual and tutorial for more details of building and running a Charm++ program.
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20.4 Support for Library Module

Charisma is capable of producing library code for reuse with another Charisma program. We explain this feature in
the following section.

20.5 Writing Module Library

The programmer uses the keyword module instead of program in the header section of the orchestration code to
tell the compiler that it is a library module. Following keyword module is the module name, then followed by a set of
configuration variables in a pair parentheses. The configuration variables are used in creating instances of the library,
for such info as problem size.

Following the first line, the library’s input and output parameters are posted with keywords inparam and outparam.

module FFT3D(CHUNK, M, N);
inparam indata;
outparam outdata1, outdata2;

The body of the library is not very different from that of a normal program. It takes input parameters and produces out
parameters, as posted in the header section.

20.6 Using Module Library

To use a Charisma module library, the programmer first needs to create an instance of the library. There are two steps:
including the module and creating an instance.

use FFT3D;
library f1 : FFT3D(CHUNK=10, M=10, N=100);
library f2 : FFT3D(CHUNK=8, M=8, N=64);

The keyword use and the module name includes the module in the program, and the keyword library creates
an instance with the instance name, followed by the module name with value assignment of configuration variables.
These statements must appear in the declaration section before the library instance can be used in the main program’s
orchestration code.

Invoking the library is like calling a publish statement; the input and output parameters are the same, and the object
name and function name are replaced with the library instance name and the keyword call connected with a colon.

(f1_outdata[*]) <- f1:call(f1_indata[*]);

Multiple instances can be created out of the same module. Their execution can interleave without interfering with one
another.

20.7 Using Load Balancing Module

20.7.1 Coding

To activate the load balancing module and prepare objects for migration, there are 3 things that need to be added in
Charisma code.
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First, the programmer needs to inform Charisma about load balancing with a define ldb; statement in the header
section of the orchestration code. This will make Charisma generate extra Charm++ code to do load balancing such
as PUP methods.

Second, the user has to provide a PUP function for each class with sequential data that needs to be moved when the
object migrates. When choosing which data items to pup, the user has the flexibility to leave the dead data behind
to save on communication overhead in migration. The syntax for the sequential PUP is similar to that in a Charm++
program. Please refer to the load balancing section in Charm++ manual for more information on PUP functions. A
typical example would look like this in user’s sequential .C file:

void JacobiWorker::sequentialPup(PUP::er& p){
p|myLeft; p|myRight; p|myUpper; p|myLower;
p|myIter;
PUParray(p, (double *)localData, 1000);

}

Thirdly, the user will make the call to invoke load balancing session in the orchestration code. The call is AtSync();
and it is invoked on all elements in an object array. The following example shows how to invoke load balancing session
every 4th iteration in a for-loop.

for iter = 1 to 100
// work work
if (iter % 4 == 0) then
foreach i in workers

workers[i].AtSync();
end-foreach

end-if
end-for

If a while-loop is used instead of for-loop, then the test-condition in the if statement is a local variable in the program’s
MainChare. In the sequential code, the user can maintain a local variable called iter in MainChare and increment it
every iteration.

20.7.2 Compiling and Running

Unless linked with load balancer modules, a Charisma program will not perform actual load balancing. The way to
link in a load balancer module is adding -module EveryLB as a link-time option.

At run-time, the load balancer is specified in command line after the +balancer option. If the balancer name
is incorrect, the job launcher will automatically print out all available load balancers. For instance, the following
command uses RefineLB.

$ ./charmrun ./pgm +p16 +balancer RefineLB

20.8 Handling Sparse Object Arrays

In Charisma, when we declare an object array, by default a dense array is created with all the elements populated. For
instance, when we have the following declaration in the orchestration code, an array of NxNxN is created.

class Cell : ChareArray3D;
obj cells : Cell[N,N,N];

There are certain occasions when the programmer may need sparse object arrays, in which not all elements are cre-
ated. An example is neighborhood force calculation in molecular dynamics application. We have a 3D array of Cell
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objects to hold the atom coordinates, and a 6D array of CellPair objects to perform pairwise force calculation between
neighboring cells. In this case, not all elements in the 6D array of CellPair are necessary in the program. Only those
which represent two immediately neighboring cells are needed for the force calculation. In this case, Charisma pro-
vides flexibility of declaring a sparse object array, with a sparse keyword following the object array declaration, as
follows.

class CellPair : ChareArray6D;
obj cellpairs : CellPair[N,N,N,N,N,N],sparse;

Then the programmer is expected to supply a sequential function with the name getIndex_ARRAYNAME to generate
a list of selected indices of the elements to create. As an example, the following function essentially tells the system
to generate all the NxNxNxNxNxN elements for the 6D array.

void getIndex_cellpairs(CkVec<CkArrayIndex6D>& vec) {
int i,j,k,l,m,n;
for(i=0;i<N;i++)
for(j=0;j<N;j++)

for(k=0;k<N;k++)
for(l=0;l<N;l++)
for(m=0;m<N;m++)

for(n=0;n<N;n++)
vec.push_back(CkArrayIndex6D(i,j,k,l,m,n));

}

20.9 Example: Jacobi 1D

Following is the content of the orchestration file jacobi.or.

program jacobi

class JacobiMain : MainChare;
class JacobiWorker : ChareArray1D;
obj workers : JacobiWorker[M];
param lb : double[N];
param rb : double[N];

begin
for iter = 1 to MAX_ITER
foreach i in workers

(lb[i], rb[i]) <- workers[i].produceBorders();
workers[i].compute(lb[i+1], rb[i-1]);

end-foreach
end-for

end

The class JacobiMain does not need any sequential code, so the only sequential code are in JacobiWorker.
h and JacobiWorker.C. Note that JacobiWorker.h contains only the sequential portion of JacobiWorker’s
declaration.

#define N 512
#define M 16

int currentArray;
double localData[2][M][N];
double localLB[N];

(continues on next page)
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(continued from previous page)

double localRB[N];
int myLeft, myRight, myUpper, myLower;

void initialize();
void compute(double lghost[], double rghost[]);
void produceBorders(outport lb, outport rb);
double abs(double d);

Similarly, the sequential C code will be integrated into the generated C file. Below is part of the sequen-
tial C code taken from JacobiWorker.C to show how consumed parameters (rghost and lghost in
JacobiWorker::compute) and produced parameters (lb and rb in JacobiWorker::produceBorders)
are handled.

void JacobiWorker::compute(double rghost[], double lghost[]) {
/* local computation for updating elements*/

}

void JacobiWorker::produceBorders(outport lb, outport rb) {
produce(lb, localData[currentArray][myLeft], myLower-myUpper+1);
produce(rb, localData[currentArray][myRight], myLower-myUpper+1);

}

The user compile these input files with the following command:

$ orchc jacobi.or

The compiler generates the parallel code for sending out messages, organizing flow of control, and then it looks for
sequential code files for the classes declared, namely JacobiMain and JacobiWorker, and integrates them into
the final output: jacobi.h, jacobi.C and jacobi.ci, which is a Charm++ program and can be built the way a
Charm++ program is built.
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Charj

Contents

• Charj

– Introduction

– Building, Compiling and Running

– Writing a Charj Program

* General structure of a Charj program;

* Chare creation and method calls:

* Arrays:

* SDAG statements:

* Extern statements:

* Reduction statements:

* Some Charm++ statements that can be used in a Charj program:

21.1 Introduction

Charj is a new programming language which incorporates syntax, semantic analysis, and optimization targeted at HPC
code with its associated compiler.

With Charj, we aim to allow programmers to achieve the performance associated with carefully written, hand-
optimized Charm++ applications, but with much less time and effort. If effect, we hope to combine the produc-
tivity that programmers experience when writing relatively simple, naive applications while enjoying performance
that would normally require a much greater investment of time, effort, and expertise.

Charj compiler takes Charj codes as input and produces Charm++ interface (.ci) and C++ code (.C and .h) as an output.
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57: Charj

58: Compilation process for Charj application
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To make use of Charj;

1. Build Charm++, then build Charj

2. Write your Charj program

3. Compile and run it!

21.2 Building, Compiling and Running

To write a program and compile with Charj:

1. Go to: charm/src/langs/charj and “make” (Assuming Charm++ is already installed)

2. Write your Charj code in a file with .cj extension. (SampleProgram.cj)

3. Execute charjc script on the file SampleProgram.cj:
$ charm/src/langs/charj/bin/charjc SampleProgram.cj
For other compiler options, use help:
$ charm/src/langs/bin/charjc -h

4. After execution of charjc script, a folder named “SampleProgram.cj.gen” will be created in the directory of
SampleProgram.cj. This folder will contain the emitted Charm++ files; SampleProgram.ci, SampleProgram.h
SampleProgram.cc .

* Example Charj programs can be found at charm/src/langs/charj/tests

21.3 Writing a Charj Program

21.3.1 General structure of a Charj program;

readonly Main@ mainProxy; //readonly proxy type
readonly int value; //readonly variable

public mainchare Main {
public entry Main(CkArgMsg[~]@ m){...} //Main constructor
public entry void done(){...} //entry method
private int localMethod(int value){...} //non-entry method

}
public chare_array [1d] SampleChareArray1d{...} //1d chare array
public chare_array [2d] SampleChareArray2d{...} //2d chare array

public class SampleObject{...} //sample class

public chare SampleChare {
public entry SampleChare(){...} //constructor
public entry SampleChare(boolean flag){...} //constructor 2
public entry void test(SampleObject obj){...} //entry method

}
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21.3.2 Chare creation and method calls:

SampleChare@ sp = new SampleChare@();
SampleChareArray1d@ sp1 = new SampleChareArray1d@(x_dim);
SampleChareArray2d@ sp2 = new SampleChareArray2d@(x_dim, y_dim);
sp@test();
sp1@test();
sp1[index]@test();
sp2@test(int value);

21.3.3 Arrays:

Array<int> foo = new Array<int>([10]); //1d array of integers of size 10
foo[i] = ...;
Array<double, 2> foo2 = new Array<double, 2>([s1, s2]); //2d array of size s1, s2
foo2[i, j] = ...;

21.3.4 SDAG statements:

These statements can be used inside of any entry method.

when receiveMsg(SampleObject obj) {...}

overlap{ //two overlapping when statements
when receiveMsg1[i](int iter, SampleObject obj) {...}
when receiveMsg2[i](int iter, int value) {...}

}

21.3.5 Extern statements:

If you want to use any other C++ function/feature, you have to define it as extern.

extern atoi; //define in the beginning of the file
int x = atoi(y); //use anywhere

21.3.6 Reduction statements:

Currently only plain reductions are supported.

contribute(CkCallback(CkReductionTarget(Main, done), mainProxy));

21.3.7 Some Charm++ statements that can be used in a Charj program:

CkExit();
CkPrintf();
CkMyPe();
CkNumPes();
CkMyNode();

(continues on next page)
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(continued from previous page)

CkNumNodes();
CkWallTimer();
thisProxy
thisIndex
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22.1 Introduction

This manual describes Jade, which is a parallel programming language developed over Charm++ and Java. Charm++
is a C++-based parallel programming library developed by Prof. L. V. Kalé and his students over the last 10 years at
University of Illinois.

We first describe our philosophy behind this work (why we do what we do). Later we give a brief introduction to
Charm++ and rationale for Jade. We describe Jade in detail. Appendices contain the details of installing Jade, building
and running Jade programs.

22.1.1 Our Philosophy

22.1.2 Terminology

Module A module refers to a named container which is the top-level construct in a program.

Thread A thread is a lightweight process that owns a stack and machine registers including program counter, but
shares code and data with other threads within the same address space. If the underlying operating system
recognizes a thread, it is known as kernel thread, otherwise it is known as user-thread. A context-switch be-
tween threads refers to suspending one thread’s execution and transferring control to another thread. Kernel
threads typically have higher context switching costs than user-threads because of operating system overheads.
The policy implemented by the underlying system for transferring control between threads is known as thread
scheduling policy. Scheduling policy for kernel threads is determined by the operating system, and is often
more inflexible than user-threads. Scheduling policy is said to be non-preemptive if a context-switch occurs
only when the currently running thread willingly asks to be suspended, otherwise it is said to be preemptive.
Jade threads are non-preemptive user-level threads.

Object An object is just a blob of memory on which certain computations can be performed. The memory is referred
to as an object’s state, and the set of computations that can be performed on the object is called the interface of
the object.

22.2 Charm++

Charm++ is an object-oriented parallel programming library for C++. It differs from traditional message passing
programming libraries (such as MPI) in that Charm++ is “message-driven”. Message-driven parallel programs do not
block the processor waiting for a message to be received. Instead, each message carries with itself a computation that
the processor performs on arrival of that message. The underlying runtime system of Charm++ is called Converse,
which implements a “scheduler” that chooses which message to schedule next (message-scheduling in Charm++
involves locating the object for which the message is intended, and executing the computation specified in the incoming
message on that object). A parallel object in Charm++ is a C++ object on which a certain computations can be asked
to performed from remote processors.

Charm++ programs exhibit latency tolerance since the scheduler always picks up the next available message rather
than waiting for a particular message to arrive. They also tend to be modular, because of their object-based nature.
Most importantly, Charm++ programs can be dynamically load balanced, because the messages are directed at objects
and not at processors; thus allowing the runtime system to migrate the objects from heavily loaded processors to lightly
loaded processors. It is this feature of Charm++ that we utilize for Jade.

Since many CSE applications are originally written using MPI, one would have to do a complete rewrite if they were
to be converted to Charm++ to take advantage of dynamic load balancing. This is indeed impractical. However,
Converse - the runtime system of Charm++ - came to our rescue here, since it supports interoperability between
different parallel programming paradigms such as parallel objects and threads. Using this feature, we developed Jade,
an implementation of a significant subset of MPI-1.1 standard over Charm++. Jade is described in the next section.
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22.3 Jade

Every mainchare’s main is executed at startup.

22.3.1 threaded methods

class C {
public threaded void start(CProxy_CacheGroup cg) { ... }

}

22.3.2 readonly

class C {
public static readonly CProxy_TheMain mainChare;
public static int readonly aReadOnly;

}

The readonly variable can be accessed as C.aReadOnly.

Must be initialized in the main of a mainchare. Value at the end of main is propagated to all processors. Then execution
begins.

22.3.3 msa

arr1.enroll();
int a = arr1[10]; // get
arr1[10] = 122; // set
arr1[10] += 2; // accumulate
arr1.sync(); // sync

22.4 Installing Jade

Jade is included in the source distribution of Charm++. To get the latest sources from PPL, visit: http://charm.cs.uiuc.
edu/

and follow the download link. Now one has to build Charm++ and Jade from source.

The build script for Charm++ is called build. The syntax for this script is:

$ build <target> <version> <opts>

For building Jade(which also includes building Charm++ and other libraries needed by Jade), specify <target> to
be jade. And <opts> are command line options passed to the charmc compile script. Common compile time
options such as -g, -O, -Ipath, -Lpath, -llib are accepted.

To build a debugging version of Jade, use the option: -g. To build a production version of Jade, use the options: -O
-DCMK_OPTIMIZE=1.

<version> depends on the machine, operating system, and the underlying communication library one wants to use
for running Jade programs. See the charm/README file for details on picking the proper version. Following is an
example of how to build Jade under linux and ethernet environment, with debugging info produced:
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$ build jade netlrts-linux -g

22.5 Compiling and Running Jade Programs

22.5.1 Compiling Jade Programs

Charm++ provides a cross-platform compile-and-link script called charmc to compile C, C++, Fortran, Charm++ and
Jade programs. This script resides in the bin subdirectory in the Charm++ installation directory. The main purpose of
this script is to deal with the differences of various compiler names and command-line options across various machines
on which Charm++ runs.

In spite of the platform-neutral syntax of charmc, one may have to specify some platform-specific options for com-
piling and building Jade codes. Fortunately, if charmc does not recognize any particular options on its command
line, it promptly passes it to all the individual compilers and linkers it invokes to compile the program.

You can use charmc to build your Jade program the same way as other compilers like cc. To build an Jade program,
the command line option -language jade should be specified. All the command line flags that you would use for other
compilers can be used with charmc the same way. For example:

$ charmc -language jade -c pgm.java -O3
$ charmc -language jade -o pgm pgm.o -lm -O3

22.5.2 Running

The Charm++ distribution contains a script called charmrun that makes the job of running Jade programs portable
and easier across all parallel machines supported by Charm++. When compiling a Jade program, charmc copies
charmrun to the directory where the Jade program is built. charmrun takes a command line parameter specifying
the number of processors to run on, and the name of the program followed by Jade options (such as TBD) and the
program arguments. A typical invocation of Jade program pgm with charmrun is:

$ charmrun pgm +p16 +vp32 +tcharm_stacksize 3276800

Here, the Jade program pgm is run on 16 physical processors with 32 chunks (which will be mapped 2 per processor
initially), where each user-level thread associated with a chunk has the stack size of 3,276,800 bytes.

22.6 Jade Developer documentation

22.6.1 Files

Jade source files are spread out across several directories of the Charm++ CVS tree.

charm/doc/jade Jade user documentation files
charm/src/langs/jade/ ANTLR parser files, Jade runtime library code
charm/java/charm/jade/ Jade java code
charm/java/bin/ Jade scripts
charm/pgms/jade/ Jade example programs and tests

After building Jade, files are installed in:
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charm/include/ Jade runtime library header files
charm/lib/ Jade runtime library
charm/java/bin/ jade.jar file

22.6.2 Java packages

The way packages work in Java is as follows: There is a ROOT directory. Within the ROOT, a subdirectory is used
which also gives the package name. Beneath the package directory all the .class files are stored. The ROOT
directory should be placed in the java CLASSPATH.

For Jade, the ROOT is charm/java/charm/.

The Jade package name is jade, and is in charm/java/charm/jade. Within here, all the jade Java files are placed,
they are compiled to .class files, and then jar’d up into the jade.jar file, which is placed in charm/java/bin for
convenience.
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23.1 Introduction

TERRY

23.1.1 Philosophy

TERRY

23.1.2 Terminology

TERRY

23.2 Program Structure, Compilation and Execution

23.2.1 Getting ParFUM

ParFUM is built on Charm++ so you must begin by downloading the latest source version of Charm++ from http:/
/charm.cs.illinois.edu/. Build the source by running ./build and answering the interactive prompts, or
by manually specifying the configuration you want to the build script. Make sure to build the Charm++ libraries, not
just the core system.

In a charm installation, see charm/examples/ParFUM/ for example and test programs.

23.2.2 Structure of a Typical ParFUM Program

A typical ParFUM program consists of two functions: init() and driver. The init() function runs only
on the first processor, and typically does specialized I/O and startup tasks. In most ParFUM programs init() is
primarily used to read in a serial mesh. Once init() completes, ParFUM partitions the mesh and distributes it
among all processors. Then driver() is called for every chunk on every processor and performs the main work of
the program. This program structure is shown in Figure 59. In the language of the TCHARM manual, init() runs
in the serial context and driver() runs in the parallel context.

In pseudocode, a simple ParFUM program would have the following structure:
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59: A typical ParFUM program consists of an init() function running in serial context and a driver() function
running in parallel context.

subroutine init
read the serial mesh and configuration data

end subroutine
/* after init, the FEM framework partitions the mesh */

subroutine driver
get local mesh chunk
time loop

FEM computations
communicate boundary conditions
more FEM computations

end time loop
end subroutine

23.2.3 ParFUM Programs without init/driver

Although ParFUM provides the init/driver structure as a convenience to the programmer, you can write a ParFUM
program without using init or driver. This is a more flexible approach, but it is more complicated than an init/driver
program.

In pseudocode, a ParFUM program with a stand-alone main function might look like this:

main program
MPI_Init
FEM_Init(MPI_COMM_WORLD)
if (I am master processor)

read mesh
partition mesh
time loop

FEM computations
communicate boundary conditions
more FEM computations

(continues on next page)
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end time loop
end main program

In this mode, the FEM framework does not set a default reading or writing mesh, and does no partitioning; you must
use the FEM_Mesh routines to create and partition your mesh. See the AMPI manual for details on how to declare the
main routine, or the file main.C in ParFUM for an example of how to write a stand-alone main routine. Compiling a
ParFUM program without init or driver requires slightly different link flags than a typical ParFUM program, see the
compilation section for details.

23.2.4 Compilation

To compile and link a ParFUM program, you must first have a working copy of Charm++ and the ParFUM libraries.
The process for downloading and building this software is described in section 23.2.1.

To compile a FEM program, compile and link using charmc, and pass the flag -language ParFUM to charmc
when linking. If your program uses its own main function rather than init and driver, pass -language AMPI
instead.

23.2.5 Execution

At runtime, a Charm++/FEM framework program accepts the following options, in addition to all the usual Charm++
options described in the Charm++ “Installation and Usage Manual”.

• +vp 𝑣

Create 𝑣 mesh chunks, or “virtual processors”. By default, the number of mesh chunks is equal to the number
of physical processors (set with +p 𝑝).

• -write

Skip driver(). After running init() normally, the framework partitions the mesh, writes the mesh partitions to
files, and exits. As usual, the +vp 𝑣 option controls the number of mesh partitions.

This option is only used in programs with an init function.

• -read

Skip init(). The framework reads the partitioned input mesh from files and calls driver(). Together with -write,
this option allows you to separate out the mesh preparation and partitioning phase from the actual parallel
solution run.

This can be useful, for example, if init() requires more memory to hold the unpartitioned mesh than is available
on one processor of the parallel machine. To avoid this limitation, you can run the program with -write on a
machine with a lot of memory to prepare the input files, then copy the files and run with -read on a machine
with a lot of processors.

-read can also be useful during debugging or performance tuning, by skipping the (potentially slow) mesh
preparation phase. This option is only used in programs with a driver function.

• +tcharm_trace fem

Give a diagnostic printout on every call into the ParFUM framework. This can be useful for locating a sudden
crash, or understanding how the program and framework interact. Because printing the diagnostics can slow a
program down, use this option with care.
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23.3 ParFUM API Reference

TERRY

23.3.1 Utilities

ISAAC

23.3.2 Basic Mesh Operations

TERRY

23.3.3 Mesh Entities

TERRY

Nodes

TERRY

Elements

TERRY

Sparse Elements

TERRY

Mesh Entity Operations

TERRY

Mesh Entity Queries

TERRY

Advanced Mesh Entity Operations

TERRY

23.3.4 Meshes

TERRY
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Basic Mesh Operations

TERRY

Mesh Utilities

TERRY

Advanced Mesh Operations

TERRY

23.3.5 Mesh Communication: Ghost Layers

SAYANTAN

Ghost Numbering

SAYANTAN

Ghost Layer Creation

SAYANTAN

Symmetries and Ghosts: Geometric Layer

SAYANTAN

Advanced Symmetries and Ghosts: Lower Layer

SAYANTAN

23.3.6 Older Mesh Operations

SAYANTAN

Mesh Data Operations

SAYANTAN

Ghost Numbering

SAYANTAN
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Backward Compatibility

SAYANTAN

Sparse Data

SAYANTAN

23.3.7 Mesh Modification

AARON

23.3.8 Topological Mesh Data

A ParFUM application can request that the ParFUM framework compute topological adjacencies. All ParFUM ap-
plications initially specify the mesh as a set of elements, each element defined by a fixed number of nodes. ParFUM
can compute and maintain other sets of adjacencies such as which elements are adjacent to a given node, or which
nodes are adjacent(they are both associated with a single element), or which elements share an edge/face with another
element. Currently only a single element type is supported, and that element must be FEM_ELEM+0. To generate the
structures storing the other types of adjacencies, each process in the ParFUM application should call the following
subroutines:

FEM_Add_elem2face_tuples(int mesh, 0, nodesPerFace, numFacesPerElement,
faces); specifies the topology of an element, specifically the configuration of its faces(if 3D) or edges(if
2D). Two elements are adjacent if they share a common face. The parameter faces is an integer array of length
𝑛𝑜𝑑𝑒𝑠𝑃𝑒𝑟𝐹𝑎𝑐𝑒 · 𝑛𝑢𝑚𝐹𝑎𝑐𝑒𝑠𝑃𝑒𝑟𝐸𝑙𝑒𝑚𝑒𝑛𝑡. The description is the same as used for determining ghost layers in
section 23.3.5.

FEM_Mesh_allocate_valid_attr(int mesh, int entity_type);

FEM_Mesh_create_node_elem_adjacency(int mesh);

FEM_Mesh_create_node_node_adjacency(int mesh);

FEM_Mesh_create_elem_elem_adjacency(int mesh);

These subroutines can be called in init on a sequential mesh, or after partitioning in driver. The adjacen-
cies will contain references to ghost elements if the subroutines were called in driver when ghosts are used.
The indexes to ghosts are negative integers which can easily be converted to positive indices by using the function
FEM_To_ghost_index(id). The C header ParFUM_internals.h is required to be included by the ParFUM
application to access the adjacencies. The functions to access the adjacencies are in sections 23.3.8, 23.3.8, and 23.3.8.

The internal data structures representing the adjacencies are maintained correctly when the adaptivity operations de-
scribed in section 23.3.9 are used.

Accessing Element to Element Adjacencies

void e2e_getAll(int e, int *neighbors); places all of element e’s adjacent element ids in neighbors;
assumes neighbors is already allocated to correct size

int e2e_getNbr(int e, short idx); returns the id of the idx-th adjacent element

23.3. ParFUM API Reference 519



Charm++ Documentation

Accessing Node to Element Adjacencies

n2e_getLength(int n) returns the number of elements adjacent to the given node n.

n2e_getAll(int n, int *&adjelements, int &sz) for node n place all the ids for adjacent elements
into adjelements. You can ignore sz if you correctly determine the length beforehand.

Accessing Node to Node Adjacencies

n2n_getLength(int n) returns the number of nodes adjacent to the given node n.

n2n_getAll(int n, int *&adjnodes, int &sz) for node n place all the ids for adjacent nodes into
adjnodes. You can ignore sz if you correctly determine the length beforehand.

23.3.9 Mesh Adaptivity

Initialization

If a ParFUM application wants to use parallel mesh adaptivity, the first task is to call the initialization routine from the
driver function. This creates the node and element adjacency information that is essential for the adaptivity operations.
It also initializes all the mesh adaptivity related internal objects in the framework.

void FEM_ADAPT_Init(int meshID)

Initializes the mesh defined by meshID for the mesh adaptivity operations.

Preparing the Mesh

For every element entity in the mesh, there is a desired size entry for each element. This entry is called meshSizing.
This meshSizing entry contains a metric that determines element quality. The default metric is the average of the
length of the three edges of an element. ParFUM provides various mechanisms to set this field. Some of the adaptive
operations use these metrics to maintain quality. In addition, there is another metric which is computed for each
element and maintained during mesh adaptivity. This metric is the ratio of the longest side to the shortest altitude, and
this value is not allowed to go beyond a certain limit in order to maintain element quality.

void FEM_ADAPT_SetElementSizeField(int meshID, int elem, double size);

For the mesh specified by meshID, for the element elem, we set the desired size for each element to be size.

void FEM_ADAPT_SetElementSizeField(int meshID, double \*sizes);

For the mesh specified by meshID, for the element elem, we set the desired size for each element from the correspond-
ing entry in the sizes array.

void FEM_ADAPT_SetReferenceMesh(int meshID);

For each element int this mesh defined by meshID set its size to the average edge length of the corresponding element.

void FEM_ADAPT_GradateMesh(int meshID, double smoothness);

Resize mesh elements to avoid jumps in element size. That is, avoid discontinuities in the desired sizes for elements
of a mesh by smoothing them out. Algorithm based on h-shock correction, described in Mesh Gradation Control,
Borouchaki et al.
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Modifying the Mesh

Once the elements in the mesh have been prepared by specifying their desired sizes, we are ready to use the actual
adaptivity operations. Currently we provide Delaunay flip operations, edge bisect operations and edge coarsen op-
erations, all of which are implemented in parallel. We provide several higher level functions which use these basic
operations to generate a mesh with higher quality elements while achieving the desired sizing.

void FEM_ADAPT_Refine(int meshID, int qm, int method, double factor,double
\*sizes);

Perform refinements on the mesh specified by meshId. Tries to maintain/improve element quality by refining the mesh
as specified by a quality measure qm. If method = 0, refine areas with size larger than factor down to factor If method
= 1, refine elements down to sizes specified in the sizes array. In this array each entry corresponds to the corresponding
element. Negative entries in sizes array indicate no refinement.

void FEM_ADAPT_Coarsen(int meshID, int qm, int method, double factor,double
\*sizes);

Perform refinements on the mesh specified by meshId. Tries to maintain/improve element quality by coarsening the
mesh as specified by a quality measure qm. If method = 0, coarsen areas with size smaller than factor down to factor
If method = 1, coarsen elements up to sizes specified in the sizes array. In this array each entry corresponds to the
corresponding element. Negative entries in sizes array indicate no coarsening.

void FEM_ADAPT_AdaptMesh(int meshID, int qm, int method, double factor,double
\*sizes);

This function has the same set of arguments as required by the previous two operations, namely refine and coarsen.
This function keeps using the above two functions until we have all elements in the mesh with as close to the desired
quality. Apart from using the above two operations, it also performs a mesh repair operation which gets rid of some
bad quality elements by Delaunay flip or coarsening as the geometry in the area demands.

int FEM_ADAPT_SimpleRefineMesh(int meshID, double targetA, double xmin, double
ymin, double xmax, double ymax);

A region is defined by (xmax, xmin, ymax, ymin) and the target area to be achieved for all elements in this region in
the mesh specified by meshID is given by targetA. This function only performs a series of refinements on the elements
in this region. If the area is larger, then no coarsening is done.

int FEM_ADAPT_SimpleCoarsenMesh(int meshID, double targetA, double xmin,
double ymin, double xmax, double ymax);

A region is defined by (xmax, xmin, ymax, ymin) and the target area to be achieved for all elements in this region in
the mesh specified by meshID is given by targetA. This function only performs a series of coarsenings on the elements
in this region. If the area is smaller, then no refinement is done.

23.3.10 Verifying correctness

We provide a checking function that can be used for debugging purposes to identify corrupted meshes or low quality
elements.

void FEM_ADAPT_TestMesh(int meshID);

This provides a series of tests to determine the consistency of the mesh specified by meshID.

23.3.11 Communication

SAYANTAN
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23.3.12 Index Lists

SAYANTAN

Index List Calls

SAYANTAN

Advanced Index List Calls

SAYANTAN

23.3.13 Data Layout

SAYANTAN

Layout Routines

SAYANTAN

Advanced Layout Routines
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Layout Compatibility Routines
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23.3.14 IDXL Communication

SAYANTAN

Communication Routines

SAYANTAN

Advanced Communication Routines
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23.3.15 Old Communication Routines

SAYANTAN
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Ghost Communication

SAYANTAN

Ghost List Exchange

SAYANTAN
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Charm++/Converse license

Non-Commercial Non-Exclusive License for Charm++ Software

The Software (as defined below) will only be licensed to You (as defined below) upon the condition that You accept
all of the terms and conditions contained in this license agreement (“License”). Please read this License carefully. By
downloading and using the Software, You accept the terms and conditions of this License.

1 Definitions.

1.1 “Illinois” means The Board of Trustees of the University of Illinois.

1.2 “Software” means the Charm++/Converse parallel programming software source code and ob-
ject code.

1.3 “You” (or “Your”) means an individual or legal entity exercising rights under, and complying
with all of the terms of, this License. For legal entities, “You” includes any entity that controls,
is controlled by, or is under common control with You. For purposes of this License, “control”
means ownership, directly or indirectly, of more than fifty percent (50%) of the equity capital of the
legal entity.

2 License Grant. Subject to Your compliance with the terms and conditions of this License, Illinois on behalf of
Prof. Sanjay Kale’s Parallel Programming Laboratory (PPL) group in the Department of Computer Science,
hereby grants You a non-commercial, non-exclusive, non-transferable, royalty-free, restrictive license to down-
load, use, and create derivative works of the Software for academic and research purposes only.

License Restrictions. Any uses of Software or Software derivative works beyond those granted in Section 2 above
require a separate for a fee license. To negotiate a license with additional rights, You may contact Illinois at the Office
of Technology Management at otm@illinois.edu or Charmworks, Inc. at info@hpccharm.com.

3 The following are some of the restricted use cases:

3.1 Integration of all or part of the Software or Software derivative works into a product for sale,
lease or license by or on behalf of You to third parties; or

3.2 Distribution of all or part of the Software or Software derivative works to third parties for any
reason, including for commercializing products sold or licensed by or on behalf of You, except
for contributing changes to Software;

3.3 Use of Software or Software derivative works for internal commercial purposes.
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3.4 For avoidance of doubt, You may at Your own expense, create and freely distribute Your works
that interoperate with the Software, directing the users of such works to license and download the
Software itself from Illinois’ site at http://charm.cs.illinois.edu/research/charm.

4 Derivative works: You may at Your own expense, modify the Software to make derivative works as outlined in
Section 2. Any derivative work should be clearly marked and renamed to notify users that it is a modified version
and not the original Software distributed by Illinois. You agree to reproduce the copyright notice per Section
7 and other proprietary markings on any derivative work and to include in the documentation of such work the
acknowledgement: “This software includes code developed by Parallel Programming Laboratory research group
in the Department of Computer Science, at the University of Illinois at Urbana-Champaign.”

5 Contributing derivative works: Software is being freely distributed as a research and teaching tool and as such,
PPL research group encourages feedback and contributions from users of the code that might, at Illinois’ sole
discretion, be used or incorporated to make the basic operating framework of the Software a more stable, flexible,
and/or useful product. If You wish to contribute Your code to become an internal portion of the Software:

5.1 You agree that such code may be distributed by Illinois under the terms of this License; and

5.2 You may be required to sign an “Agreement Regarding Contributory Code for Charm++ Software”
(contact kale@illinois.edu), before Illinois can accept it.

6 Acknowledgment.

6.1 You shall own the results obtained by using the outputs of Software and Software
derivative works. If You publish such results, You shall acknowledge the use of Software
and its derivative works by the appropriate citation as follows: “Charm++ software was
developed by the Parallel Programming Laboratory research group in the Department of
Computer Science at the University of Illinois at Urbana-Champaign.”

6.2 Any published work, which utilizes Software, shall include the following the references listed in
the file named CITATION.cff in the distribution.

6.3 Electronic documents will include a direct link to the official Software page at http://charm.cs.
illinois.edu/research/charm.

7 Copyright Notices. All copies of the Software or derivative works shall include the following copyright notice:
“Copyright 2019 The Board of Trustees of the University of Illinois. All rights reserved.”

8 Confidential Information. You acknowledge that the Software is proprietary to Illinois. You agree to protect the
Software from unauthorized disclosure, use, or release and to treat the Software with at least the same level of
care as You use to protect Your own proprietary software and/or confidential information, but in no event less
than a reasonable standard of care. If You become aware of any unauthorized licensing, copying or use of the
Software, You shall promptly notify Illinois in writing at otm@illinois.edu.

9 Limitation of Warranties. Limitation of Liability. Indemnification. THIS SOFTWARE IS PROVIDED “AS
IS” AND ILLINOIS MAKES NO REPRESENTATIONS AND EXTENDS NO WARRANTIES OF ANY
KIND, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO WARRANTIES OR MER-
CHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, OR THAT THE USE OF THE SOFT-
WARE AND DERIVATIVE WORKS WILL NOT INFRINGE ANY PATENT, TRADEMARK, OR OTHER
RIGHTS. YOU ASSUME THE ENTIRE RISK AS TO THE RESULTS AND PERFORMANCE OF THE
SOFTWARE AND/OR DERIVATIVE WORKS. YOU AGREE THAT ILLINOIS SHALL NOT BE HELD
LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, OR INCIDENTAL DAMAGES WITH RE-
SPECT TO ANY CLAIM BY YOU OR ANY THIRD PARTY ON ACCOUNT OF OR ARISING FROM THIS
LICENSE OR USE OF THE SOFTWARE AND/OR DERIVATIVE WORKS. YOU SHALL INDEMNIFY
AND HOLD HARMLESS ILLINOIS (INCLUDING ITS TRUSTEES, FELLOWS, OFFICERS, EMPLOY-
EES, STUDENTS, AND AGENTS) AGAINST ANY AND ALL CLAIMS, LOSSES, DAMAGES, AND/OR
LIABILITY, AS WELL AS COSTS AND EXPENSES (INCLUDING LEGAL EXPENSES AND REASON-
ABLE ATTORNEYS’ FEES) ARISING OUT OF OR RELATED TO YOUR USE, OR INABILITY TO USE,
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THE SOFTWARE OR SOFTWARE DERIVATIVE WORKS, REGARDLESS OF THEORY OF LIABILITY,
WHETHER FOR BREACH OR IN TORT (INCLUDING NEGLIGENCE).

10 Termination.

10.1 This License is effective until terminated, as provided herein, or until all intellectual property
rights in the Software expire.

10.2 You may terminate this License at any time by destroying all copies of the Software and its
derivative works.

10.3 This License, and the rights granted hereunder, will terminate automatically, and without any
further notice from or action by Illinois, if You fail to comply with any obligation of this License.

10.4 Upon termination, You must immediately cease use of and destroy all copies of the Software
and its derivative works and verify such destruction in writing.

10.5 The provisions set forth in Sections 5, 9, 11, 12, 13, 14, 15 shall survive termination or expiration
of this License.

11 Governing Law. By using this Software, You agree to abide by the laws of the State of Illinois and all other
applicable laws of the U.S, including, but not limited to, export control laws, copyright law and the terms of this
License.

12 Severability. If any provision of this License is held to be invalid or unenforceable by a court of competent ju-
risdiction, such invalidity or unenforceability shall not in any way affect the validity or enforceability of the
remaining provisions.

13 Assignment. You may not assign or otherwise transfer any of Your rights or obligations under this License,
without the prior written consent of Illinois.

14 Entire License. This License represents the parties’ entire agreement relating to the Software. Except as oth-
erwise provided herein, no modification of this License is binding unless in writing and signed by an authorized
representative of each party.

15 Waiver. The failure of either party to enforce any provision of this License shall not constitute a waiver of that
right or future enforcement of that or any other provision.

Approved for legal form Illinois Counsel SJA 10/18

University Technology No. TF08023 Commercial Non-Exclusive Software License
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